
IBM® DB2 Universal Database™

SQL Reference
for Cross-Platform Development
Version 1.1

Product Information
This book contains information about the following relational database products:

v Version 7 of DB2 Universal Database for z/OS and OS/390

v Version 5 Release 2 of DB2 Universal Database for iSeries

v Version 8 of DB2 Universal Database for the Linux, UNIX and Windows platforms

���

IBM® DB2 Universal Database™

SQL Reference
for Cross-Platform Development
Version 1.1

���

Before using this information and the products it supports, be sure to read the general information under “Notices” on page 743.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

© Copyright International Business Machines Corporation 1982, 2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book ix
Who should read this book ix
How to use this book ix

Assumptions relating to examples of SQL
statements x
How to read the syntax diagrams x
Conventions used in this manual xii
SQL accessibility xiii
Related documentation xiii

Chapter 1. Concepts 1
Relational database 1
Structured query language. 1

Static SQL 1
Dynamic SQL 1
Interactive SQL 2
SQL call level interface and open database
connectivity 2
Java database connectivity and embedded SQL for
Java programs 2

Schemas 3
Tables 3

Keys 3
Constraints 3
Indexes 6
Triggers 7

Views. 8
Aliases 9
Packages and access plans 9
Routines 9

Functions 9
Procedures 9

Authorization, privileges and object ownership . . 11
Catalog 13
Application processes, concurrency, and recovery. . 13

Locking, commit, and rollback 13
Unit of work 14
Rolling back work 15

Isolation level 16
Repeatable read 17
Read stability 17
Cursor stability 18
Uncommitted read 18
Comparison of isolation levels 18

Storage structures 19
Character conversion 20

Character sets and code pages 21
Coded character sets and CCSIDs 22
Default CCSID 23

Distributed relational database 23
Application servers 24
CONNECT (Type 1) and CONNECT (Type 2) . . 24
Remote unit of work 24
Application-directed distributed unit of work . . 26
Data representation considerations. 29

Chapter 2. Language elements 31
Characters 31
Tokens 32
Identifiers 33

SQL identifiers 33
Host identifiers 33

Naming conventions 34
SQL path 40
Qualification of unqualified object names . . . 40

Aliases 42
Authorization IDs and authorization names . . . 43

Example 43
Data types. 44

Nulls 45
Numbers 45
Character strings 46
Character encoding schemes 46
Graphic strings 47
Graphic encoding schemes 48
Binary strings 48
Large objects 49
Limitations on use of strings. 50
Datetime values 51
User-defined types 53

Promotion of data types 55
Casting between data types 56
Assignments and comparisons 60

Numeric assignments 61
String assignments 62
Datetime assignments 64
Distinct type assignments. 65
Assignments to LOB locators 66
Numeric comparisons 66
String comparisons 67
Datetime comparisons 68
Distinct type comparisons 69

Rules for result data types 70
Numeric operands 70
Character string operands 71
Graphic string operands 71
Binary string operands 71
Datetime operands 72
Distinct type operands. 72

Conversion rules for operations that combine strings 73
Constants 75

Integer constants 75
Floating-point constants 75
Decimal constants 75
Character-string constants 75
Graphic-string constants 76
Decimal point 77

Special registers 78
CURRENT DATE 78
CURRENT PATH 78
CURRENT SERVER 79
CURRENT TIME 79

© Copyright IBM Corp. 1982, 2003 iii

CURRENT TIMESTAMP 80
CURRENT TIMEZONE 80
USER 80

Column names 81
Qualified column names 81
Correlation names 81
Column name qualifiers to avoid ambiguity . . 83
Column name qualifiers in correlated references 85
Unqualified column names in correlated
references 86

References to variables 87
References to host variables 87
Host variables in dynamic SQL 89
References to LOB host variables 90
References to LOB locator variables 90
Host structures 91

Functions 93
Types of functions 93
Function invocation 94
Function resolution 94
Determining the best fit 96
Best fit considerations 98

Expressions 99
Without operators 99
With arithmetic operators. 99
With the concatenation operator 101
Datetime operands and durations 103
Datetime arithmetic in SQL. 104
Precedence of operations 108
CASE expressions 109
CAST specification 112

Predicates 115
Basic predicate 116
Quantified predicate 117
BETWEEN predicate 119
EXISTS predicate 120
IN predicate 121
LIKE predicate 123
NULL predicate 128

Search conditions 129
Examples 129

Chapter 3. Built-in functions 131
Column functions 135

AVG 136
COUNT 137
COUNT_BIG 138
MAX 139
MIN 140
STDDEV 141
SUM 142
VARIANCE or VAR 143

Scalar functions 144
Example 144
ABS 145
ACOS 146
ASIN 147
ATAN 148
ATANH 149
ATAN2 150
BLOB 151

CEILING 152
CHAR. 153
CLOB 158
COALESCE 159
CONCAT. 160
COS 161
COSH 162
DATE 163
DAY 165
DAYOFWEEK 166
DAYOFWEEK_ISO 167
DAYOFYEAR 168
DAYS 169
DBCLOB 170
DECIMAL or DEC 171
DEGREES 173
DIGITS 174
DOUBLE_PRECISION or DOUBLE 175
EXP 177
FLOAT 178
FLOOR 179
GRAPHIC 180
HEX 181
HOUR. 182
IDENTITY_VAL_LOCAL 183
INTEGER or INT 187
JULIAN_DAY 188
LCASE 189
LEFT 190
LENGTH 191
LN 192
LOCATE 193
LOG10 195
LOWER 196
LTRIM 197
MICROSECOND 198
MIDNIGHT_SECONDS 199
MINUTE 200
MOD 201
MONTH 202
NULLIF 203
POSSTR 204
POWER 206
QUARTER 207
RADIANS 208
RAND. 209
REAL 210
ROUND 211
RTRIM 213
SECOND 214
SIGN 215
SIN. 216
SINH 217
SMALLINT 218
SPACE 219
SQRT 220
SUBSTR 221
TAN 224
TANH. 225
TIME 226
TIMESTAMP 227

iv DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

TRANSLATE 229
TRUNCATE or TRUNC 231
UCASE 233
UPPER 234
VALUE 235
VARCHAR 236
VARGRAPHIC 238
WEEK 241
WEEK_ISO 242
YEAR 243

Chapter 4. Queries 245
Authorization 245
subselect 246

select-clause 247
from-clause 251
where-clause 256
group-by-clause 257
having-clause 258
Examples of a subselect 259

fullselect 261
Rules for columns 261
Examples of a fullselect 262

select-statement 263
order-by-clause 264
fetch-first-clause 266
update-clause 267
read-only-clause 268
optimize-clause. 269
isolation-clause 270
Examples of a select-statement 271

Chapter 5. Statements 273
How SQL statements are invoked 276

Embedding a statement in an application
program 276
Dynamic preparation and execution 277
Static invocation of a select-statement 278
Dynamic invocation of a select-statement . . . 278
Interactive invocation. 278

SQL return codes 279
SQLSTATE 279
SQLCODE 279

SQL comments 280
ALTER TABLE 281
BEGIN DECLARE SECTION 295
CALL 297
CLOSE 302
COMMENT 304
COMMIT. 309
CONNECT (Type 1) 311
CONNECT (Type 2) 315
CREATE ALIAS 318
CREATE DISTINCT TYPE 319
CREATE FUNCTION. 325
CREATE FUNCTION (External Scalar) 329
CREATE FUNCTION (External Table) 340
CREATE FUNCTION (Sourced) 350
CREATE FUNCTION (SQL Scalar) 357
CREATE INDEX 364

CREATE PROCEDURE 366
CREATE PROCEDURE (External) 367
CREATE PROCEDURE (SQL) 374
CREATE TABLE 379
CREATE TRIGGER 398
CREATE VIEW 406
DECLARE CURSOR 411
DECLARE GLOBAL TEMPORARY TABLE . . . 416
DELETE 424
DESCRIBE 429
DROP 433
END DECLARE SECTION 438
EXECUTE 439
EXECUTE IMMEDIATE 442
FETCH 444
FREE LOCATOR 447
GRANT (Distinct Type Privileges) 448
GRANT (Function or Procedure Privileges) . . . 450
GRANT (Package Privileges) 454
GRANT (Table or View Privileges) 456
INCLUDE 459
INSERT 461
LOCK TABLE 466
OPEN 467
PREPARE 471
RELEASE (Connection) 478
RELEASE SAVEPOINT 480
RENAME 481
REVOKE (Distinct Type Privileges) 483
REVOKE (Function or Procedure Privileges) . . . 485
REVOKE (Package Privileges) 489
REVOKE (Table and View Privileges) 491
ROLLBACK 494
SAVEPOINT. 496
SELECT 498
SELECT INTO 499
SET CONNECTION 501
SET PATH 503
SET transition-variable 506
UPDATE 508
VALUES 514
VALUES INTO 515
WHENEVER 517

Chapter 6. SQL control statements 519
References to SQL parameters and SQL variables 520
SQL-procedure-statement 521
assignment-statement. 522
CALL statement 523
CASE statement 525
compound-statement 527
GET DIAGNOSTICS statement 534
GOTO statement 536
IF statement 537
LEAVE statement 539
LOOP statement 540
REPEAT statement 541
RESIGNAL statement. 543
RETURN statement 545
SIGNAL statement 547
WHILE statement 549

Contents v

Appendix A. SQL limits 551

Appendix B. Characteristics of SQL
statements 557
Actions allowed on SQL statements 558
SQL statement data access classification for
routines 560
Considerations for using distributed relational
database 562

Appendix C. SQLCA (SQL
communication area) 567
Field descriptions 567
INCLUDE SQLCA declarations 569

For C 569
For COBOL 569

Appendix D. SQLDA (SQL descriptor
area) 571
Field descriptions in an SQLDA header. 572

Determining how many occurrences of SQLVAR
entries are needed 573

Field descriptions in an occurrence of SQLVAR . . 574
Fields in an occurrence of a base SQLVAR . . . 574
Fields in an occurrence of a secondary SQLVAR 574

SQLTYPE and SQLLEN 575
CCSID values in SQLDATA and SQLNAME . . . 577
INCLUDE SQLDA declarations 578

For C 578
For COBOL 580

Appendix E. SQLSTATE
values—common return codes 581
Using SQLSTATE values. 581

Appendix F. CCSID values 617

Appendix G. CONNECT (Type 1) and
CONNECT (Type 2) differences 633
Determining the CONNECT rules that apply . . . 633
Connecting to application servers that only support
remote unit of work 634

Appendix H. Coding SQL statements
in C applications 635
Defining the SQL communications area in C . . . 635
Defining SQL descriptor areas in C 635
Embedding SQL statements in C 637

Comments 637
Continuation for SQL statements 637
Cursors 637
Including code 637
Margins 638
Names 638
NULLs and NULs 638
Statement labels 638
Preprocessor considerations 638
Trigraphs 638

Handling SQL errors and warnings in C . . . 639
Using host variables in C 639

Declaring host variables in C 639
Declaring host structures in C 645
Using pointer data types in C 648

Determining equivalent SQL and C data types . . 648

Appendix I. Coding SQL statements in
COBOL applications 651
Defining the SQL communications area in COBOL 651
Defining SQL descriptor areas in COBOL 651
Embedding SQL statements in COBOL 652

Comments 652
Continuation for SQL statements 653
Cursors 653
Including code 653
Margins 653
Names 653
Statement labels 653
Handling SQL errors and warnings in COBOL 654

Using host variables in COBOL 654
Declaring host variables in COBOL 654
Declaring host structures in COBOL 662

Determining equivalent SQL and COBOL data
types 665

Notes on COBOL variable declaration and usage 667

Appendix J. Coding SQL statements
in Java applications 669
Defining the SQL communications area in Java . . 669
Defining SQL descriptor areas in Java 669
Embedding SQL statements in Java 669

Comments 670
Connecting to, and using a data source. 671

Declaring a connection context 671
Initiating and using a connection 672

Using host variables and expressions in Java . . . 673
Using SQLJ iterators to retrieve rows from a result
table 674

Declaring iterators. 675
Using positioned iterators to retrieve rows from
a result table 677
Using named iterators to retrieve rows from a
result table 678

Using iterators for positioned update and delete
operations 679
Handling SQL errors and warnings in Java . . . 680
Determining equivalent SQL and Java data types 682
Example 684

Appendix K. Coding SQL statements
in REXX applications 687
Defining the SQL communications area in REXX 688
Defining SQL descriptor areas in REXX. 688
Embedding SQL statements in REXX 690

Comments 690
Continuation of SQL statements 690
Including code 690
Margins 690
Names 691

vi DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Nulls 691
Statement labels 691
Handling SQL errors and warnings in REXX 691
Isolation level 691

Using host variables in REXX 692
Determining data types of input host variables 692
The format of output host variables 693
Avoiding REXX conversion 693
Indicator variables in REXX 693
Example 694

Appendix L. Coding programs for use
by external routines 697
Parameter passing for external routines. 697

Parameter passing for external functions written
in C or COBOL. 697
Parameter passing for external functions written
in Java 701
Parameter passing for external procedures
written in C or COBOL 702
Parameter passing for external procedures
written in Java 705
Attributes of the arguments of a routine
program 706

Database information in external routines
(DBINFO) 708

CCSID information in DBINFO 710
Table function column list information in
DBINFO 710
DBINFO structure for C 711
DBINFO structure for COBOL. 712

Scratch pad in external functions 713

Appendix M. Sample tables 715
ACT 715

CL_SCHED 716
DEPARTMENT 716
EMP_PHOTO 716
EMP_RESUME 717
EMPLOYEE 717
EMPPROJACT 720
IN_TRAY 722
ORG 722
PROJACT 723
PROJECT. 724
SALES. 726
STAFF 727
Sample files with BLOB and CLOB data type. . . 728

Quintana photo 728
Quintana resume 729
Nicholls photo 730
Nicholls resume 731
Adamson photo 732
Adamson resume 733
Walker photo 734
Walker resume 735

Appendix N. Terminology differences 737

Appendix O. Reserved schema names
and reserved words 739
Reserved schema names 739
Reserved words 739

Notices 743
Programming interface information 745
Trademarks 745

Index 747

Contents vii

viii DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

About this book

This book defines IBM DB2 Universal Database Structured Query Language (DB2
UDB SQL). It describes the rules and limits for preparing portable programs. This
book is a reference rather than a tutorial and assumes a familiarity with SQL
programming concepts.

Who should read this book
This book is intended for programmers who want to write portable applications
using SQL that is common to the DB2 UDB relational database products and the
SQL 1999 Core standard.1 DB2 UDB SQL is consistent with the SQL 1999 Core
standard. DB2 UDB SQL also provides functional extensions to the SQL 1999 Core
standard. For example, many of the scalar functions defined in this book are
extensions to the SQL 1999 Core standard.

How to use this book
This book defines the DB2 UDB SQL language elements that are common to the
IBM DB2 Universal Database Family of relational database products across the
following environments:

Environment IBM Relational Database Product Short Name

z/OS and OS/390 DB2 Universal Database for z/OS and OS/390 Version 7 DB2 UDB for z/OS and
OS/390

OS/400 DB2 Universal Database for iSeries Version 5 Release 2 DB2 UDB for iSeries

UNIX

v AIX

v HP-UX Version 10

v HP-UX Version 11

v Linux

v Solaris
Windows for 32-bit operating systems
OS/2

DB2 Universal Database for the Linux, UNIX and Windows
Platforms Version 8

DB2 UDB for LUW

The DB2 Universal Database relational database products have product books that
also describe product-specific elements and explain how to prepare and run a
program in a particular environment. The information in this book is a subset of
the information in the product books, and the rules and limits described in this
book might not apply to all products. The limits in this book are those required to
assist program portability across the applicable IBM environments. See “Related
documentation” on page xiii for a list of the product books needed in addition to
this book.

The SQL described in this book assumes that default environment options,
including:
v precompile options

1. In this book, the term “SQL 1999 Core standard” is used to describe the ANSI/ISO Core Level SQL standard of 1999 and related
industry standards. See “Related documentation” on page xiii for a list of documentation that describes these industry standards.

© Copyright IBM Corp. 1982, 2003 ix

v bind options
v registry variables

are set to default values, unless specifically mentioned.

Since each DB2 Universal Database product does not ship on the same schedule, at
any point in time there will naturally be some elements that are only available on a
subset of the DB2 Universal Database products. Some elements might be
implemented by all products, but differ slightly in their semantics (how they
behave when the program is run). In many cases, these semantic difference are the
result of the underlying operating system support. These conditions are identified
in this book as shown in the next paragraph.

The DB2 UDB SQL definition is described in this book. If the implementation of an
element in a product differs from the DB2 UDB SQL definition in its syntax or
semantics, the difference is highlighted with a symbol in the left margin as is this
sentence.

Assumptions relating to examples of SQL statements
The examples of SQL statements shown in this guide are based on the sample
tables in Appendix M, “Sample tables”, on page 715 and assume the following:
v SQL keywords are highlighted.
v Table names used in the examples are the sample tables.

Code disclaimer information
This document contains programming examples.

IBM grants you a nonexclusive copyright license to use all programming code
examples from which you can generate similar function tailored to your own
specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs.

All programs contained herein are provided to you ″AS IS″ without any warranties
of any kind. The implied warranties of non-infringement, merchantability and
fitness for a particular purpose are expressly disclaimed.

How to read the syntax diagrams
The following rules apply to the syntax diagrams used in this book:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ��─── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the next
line.
The �─── symbol indicates that a statement is continued from the previous line.
The ───�� symbol indicates the end of a statement.
Diagrams of syntactical units other than complete statements start with the ├───
symbol and end with the ───┤ symbol.

v Required items appear on the horizontal line (the main path).

About this book

x DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
G
G

�� required_item ��

v Optional items appear below the main path.

�� required_item
optional_item

��

If an item appears above the main path, that item is optional, and has no effect
on the execution of the statement and is used only for readability.

�� required_item
optional_item

��

v If more than one item can be chosen, they appear vertically, in a stack.
If one of the items must be chosen, one item of the stack appears on the main
path.

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

�� required_item
optional_choice1
optional_choice2

��

If one of the items is the default, it will appear above the main path and the
remaining choices will be shown below.

�� required_item
default_choice

optional_choice
optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

�� required_item � repeatable_item ��

If the repeat arrow contains a comma, repeated items must be separated with a
comma.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that the items in the stack can be
repeated.

v Keywords appear in uppercase (for example, FROM). They must be spelled exactly
as shown. Variables appear in all lowercase letters (for example, column-name).
They represent user-supplied names or values.

About this book

About this book xi

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, they must be entered as part of the syntax.

v The syntax diagrams only contain the preferred or standard keywords. If
non-standard synonyms are supported in addition to the standard keywords,
they are described the Notes sections instead of the syntax diagrams. For
maximum portability, use the preferred or standard keywords.

v Sometimes a single variable represents a larger fragment of the syntax. For
example, in the following diagram, the variable parameter-block represents the
whole syntax fragment that is labeled parameter-block:

�� required_item parameter-block ��

parameter-block:

parameter1
parameter2 parameter3

parameter4

Conventions used in this manual
This section specifies some conventions which are used throughout this manual.

Highlighting conventions
The following conventions are used in this book.

Bold Indicates SQL keywords used in examples and when introducing
descriptions involving the keyword.

Italics Indicates one of the following:

v Variables that represent items from a syntax diagram.

v The introduction of a new term.

v A reference to another source of information.

Conventions for describing mixed data values
When mixed data values are shown in the examples, the following conventions
apply2 :

2. Hexadecimal values are for EBCDIC characters.

About this book

xii DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Representation

“shift-out” control character (X'0E'), used only for EBCDIC data

“shift-in” control character (X'0F'), used only for EBCDIC data

SBCS string of zero or more single-byte characters

DBCS string of zero or more double-byte characters

DBCS apostrophe

DBCS uppercase G

Convention

sbcs-string

dbcs-string

G

S
O

S

SQL accessibility
IBM is committed to providing interfaces and documentation that are easily
accessible to the disabled community. For general information on IBM’s
Accessibility support visit the Accessibility Center at www.ibm.com/able/.

SQL accessibility support falls in two main categories.
v The DB2 Universal Database products provide Windows graphical user

interfaces to DB2 Universal Databases. For information about the Accessibility
features supported in Windows graphical user interfaces, see Accessibility in the
Windows Help Index.

v Online documentation, online help, and prompted SQL interfaces can be
accessed by a Windows Reader program such as the IBM Home Page Reader.
For information on the IBM Home Page Reader visit
www.ibm.com/able/hpr.html.

The IBM Home Page Reader can be used to access all descriptive text in this book.

Related documentation
The following documentation for DB2 Universal Database is available on the
internet at:

www.ibm.com/software/data/db2/

DB2 Universal Database for z/OS and OS/390
v DB2 Universal Database for OS/390 and z/OS SQL Reference

v DB2 Universal Database for OS/390 and z/OS Application Programming and SQL
Guide

v DB2 Universal Database for OS/390 and z/OS V7 Application Programming Guide and
Reference for Java™

DB2 Universal Database for iSeries
v DB2 Universal Database for iSeries SQL Reference

v DB2 Universal Database for iSeries SQL Programming Concepts

v DB2 Universal Database for iSeries SQL Programming with Host Languages

v IBM Developer Kit for Java topic in the iSeries Information Center

Highlighting conventions

About this book xiii

v iSeries Information Center, at
http://publib.boulder.ibm.com/html/as400/infocenter.html

DB2 Universal Database for the Linux, UNIX and Windows
Platforms
v IBM DB2 Universal Database SQL Reference, Volumes 1 and 2
v IBM DB2 Universal Database Application Development Guide

v IBM DB2 Universal Database Application Building Guide

Distributed relational database architecture
v Application Programming Guide, SC26-4773
v Connectivity Guide, SC26-4783
v Open Group Publications: DRDA Vol. 1: Distributed Relational Database Architecture

(DRDA), at www.opengroup.org/publications/catalog/c812.htm.
v Open Group Publications: DRDA Vol. 2: Formatted Data Object Content Architecture

(FD:OCA), at www.opengroup.org/publications/catalog/c813.htm.
v Open Group Publications: DRDA Vol. 3: Distributed Data Management (DDM)

Architecture, at www.opengroup.org/publications/catalog/c814.htm.

Character data representation architecture
v Character Data Representation Architecture Reference and Registry, SC09-2190

Industry standards
v Information technology - Database languages - SQL - Part 1: Framework

(SQL/Framework) ISO/IEC 9075-1:1999

v Information technology - Database languages - SQL - Part 2: Foundation
(SQL/Foundation) ISO/IEC 9075-2:1999

v Information technology - Database languages - SQL - Part 4: Persistent Stored Modules
(SQL/PSM) ISO/IEC 9075-4:1999

v Information technology - Database languages - SQL - Part 5: Host Language Bindings
(SQL/Bindings) ISO/IEC 9075-5:1999

v Information technology - Database languages - SQL - Part 10: Object Language
Bindings (SQL/OLB) ISO/IEC 9075-10:2000

v Information technology - Database languages - SQL - Part 13: SQL Routines and Types
Using the Java™ Programming Language (SQL/JRT) ISO/IEC 9075-13:2002

v ANSI (American National Standards Institute) X3.135-1999, Database Language SQL

Highlighting conventions

xiv DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Chapter 1. Concepts

This chapter provides a high-level view of concepts that are important to
understand when using Structured Query Language (SQL). The reference material
contained in the rest of this manual provides a more detailed view.

Relational database
A relational database is a database that can be perceived as a set of tables and can be
manipulated in accordance with the relational model of data. The relational
database contains a set of objects used to store, access, and manage data. The set of
objects includes tables, views, indexes, aliases, distinct types, functions, procedures,
and packages. Any number of relational databases can be created on a given
physical machine.

Structured query language
Structured Query Language (SQL) is a standardized language for defining and
manipulating data in a relational database. In accordance with the relational model
of data, the database is perceived as a set of tables, relationships are represented by
values in tables, and data is retrieved by specifying a result table that can be
derived from one or more base tables.

SQL statements are executed by a database manager. One of the functions of the
database manager is to transform the specification of a result table into a sequence
of internal operations that optimize data retrieval. This transformation occurs when
the SQL statement is prepared. This transformation is also known as binding.

All executable SQL statements must be prepared before they can be executed. The
result of preparation is the executable or operational form of the statement. The
method of preparing an SQL statement and the persistence of its operational form
distinguish static SQL from dynamic SQL.

Static SQL
The source form of a static SQL statement is embedded within an application
program written in one of the supported host languages; COBOL, C (C also covers
C++ in this documentation, unless otherwise mentioned explicitly) or Java. The
statement is prepared before the program is executed and the operational form of
the statement persists beyond the execution of the program.

A source program containing static SQL statements must be processed by an SQL
precompiler before it is compiled. The precompiler checks the syntax of the SQL
statements, turns them into host language comments, and generates host language
statements to invoke the database manager.

The preparation of an SQL application program includes precompilation, the
preparation of its static SQL statements, and compilation of the modified source
program. The exact steps required are product-specific.

Dynamic SQL
Programs containing embedded dynamic SQL statements must be precompiled like
those containing static SQL, but unlike static SQL, the dynamic SQL statements are

© Copyright IBM Corp. 1982, 2003 1

G

constructed and prepared at run time. The source form of a dynamic statement is a
character string that is passed to the database manager by the program using the
static SQL PREPARE or EXECUTE IMMEDIATE statement. A statement prepared
using the PREPARE statement can be referenced in a DECLARE CURSOR,
DESCRIBE, or EXECUTE statement. The operational form of the statement persists
for the duration of the connection. For DB2 UDB for z/OS and OS/390 it only
persists for the duration of the transaction.

SQL statements embedded in a REXX application are dynamic SQL statements.
SQL statements submitted to an interactive SQL facility and to the Call Level
Interface (CLI) are also dynamic SQL statements.

Interactive SQL
An interactive SQL facility is associated with every database manager. Essentially,
every interactive SQL facility is an SQL application program that reads statements
from a workstation, prepares and executes them dynamically, and displays the
results to the user. Such SQL statements are said to be issued interactively.

For example, the following facilities provide interactive capabilities:
v SPUFI for DB2 UDB for z/OS and OS/390
v Operations Navigator, Interactive SQL, or Query Manager for DB2 UDB for

iSeries.
v Command Line Processor or Command Center for DB2 UDB for LUW.

SQL call level interface and open database connectivity
The DB2 Call Level Interface (CLI) is an application programming interface in
which functions are provided to application programs to process dynamic SQL
statements. DB2 CLI allows users to access SQL functions directly through a call
interface. CLI programs can also be compiled using an Open Database
Connectivity (ODBC) Software Developer’s Kit, available from Microsoft or other
vendors, enabling access to ODBC data sources. Unlike using embedded SQL, no
precompilation is required. Applications developed using this interface may be
executed on a variety of databases without being compiled against each of the
databases. Through the interface, applications use procedure calls at execution time
to connect to databases, to issue SQL statements, and to get returned data and
status information.

For a complete description of all the available functions, see the product books.

Java database connectivity and embedded SQL for Java
programs

DB2 provides two standards-based Java programming APIs: Java Database
Connectivity (JDBC) and embedded SQL for Java (SQLJ). Both can be used to
create Java applications and applets that access DB2.

Static SQL cannot be used by JDBC. SQLJ applications use JDBC as a foundation
for such tasks as connecting to databases and handling SQL errors, but can also
contain embedded static SQL statements in the SQLJ source files. An SQLJ source
file has to be translated with the SQLJ translator before the resulting Java source
code can be compiled.

For more information about JDBC and SQLJ applications, see the product books.

Concepts

2 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

Schemas
The objects in a relational database are organized into sets called schemas. A
schema provides a logical classification of objects in the database. The
schema-name is used as the qualifier of SQL object names such as tables, views,
indexes, and triggers.

Each database manager supports a set of schemas that are reserved for use by the
database manager. Such schemas are called system schemas. User objects must not
be created in system schemas.

The schema SESSION and all schemas that start with ’SYS’ and ’Q’ are system
schemas. SESSION is always used as the schema name for declared temporary
tables.

Tables
Tables are logical structures maintained by the database manager. Tables are made
up of columns and rows. There is no inherent order of the rows within a table. At
the intersection of every column and row is a specific data item called a value. A
column is a set of values of the same type. A row is a sequence of values such that
the nth value is a value of the nth column of the table.

A base table is created with the CREATE TABLE statement and is used to hold
persistent user data. A result table is a set of rows that the database manager selects
or selects or generates, directly or indirectly, from one or more base tables. For
more information about creating tables, see “CREATE TABLE” on page 379.

A declared temporary table is created with a DECLARE GLOBAL TEMPORARY
TABLE statement and is used to hold temporary data on behalf of a single
application. This table is dropped implicitly when the application disconnects from
the database.

Keys
A key is one or more columns that are identified as such in the description of an
index, a unique constraint, or a referential constraint. The same column can be part
of more than one key.

A composite key is an ordered set of two or more columns of the same base table.
The ordering of the columns is not constrained by their ordering within the base
table. The term value when used with respect to a composite key denotes a
composite value. Thus, a rule such as “the value of the foreign key must be equal
to the value of the primary key” means that each component of the value of the
foreign key must be equal to the corresponding component of the value of the
primary key.

Constraints
A constraint is a rule that the database manager enforces. There are three types of
constraints:
v A unique constraint is a rule that forbids duplicate values in one or more columns

within a table. Unique and primary keys are the supported unique constraints.
For example, a unique constraint can be defined on the supplier identifier in the
supplier table to ensure that the same supplier identifier is not given to two
suppliers.

Concepts

Chapter 1. Concepts 3

v A referential constraint is a logical rule about values in one or more columns in
one or more tables. For example, a set of tables shares information about a
corporation’s suppliers. Occasionally, a supplier’s ID changes. You can define a
referential constraint stating that the ID of the supplier in a table must match a
supplier ID in the supplier information. This constraint prevents insert, update,
or delete operations that would otherwise result in missing supplier information.

v A check constraint sets restrictions on data added to a specific table. For example,
a check constraint can ensure that the salary level for an employee is at least
$20,000 whenever salary data is added or updated in a table containing
personnel information.

Unique constraints
A unique constraint is the rule that the values of a key are valid only if they are
unique. A key that is constrained to have unique values is called a unique key and
can be defined by using the CREATE UNIQUE INDEX statement. The resulting
unique index is used by the database manager to enforce the uniqueness of the
values of the key during the execution of INSERT and UPDATE statements.
Alternatively:
v Unique keys can be defined as a primary key using a CREATE TABLE or ALTER

TABLE statement. A base table cannot have more than one primary key and the
columns of the key must be defined as NOT NULL. A unique index on a
primary key is called a primary index.

v Unique keys can be defined using the UNIQUE clause of the CREATE TABLE
statement. A base table can have more than one set of UNIQUE keys. The
columns of a UNIQUE key must be defined as NOT NULL.

A unique key that is referenced by the foreign key of a referential constraint is
called the parent key. A parent key is either a primary key or a UNIQUE key. When
a base table is defined as a parent in a referential constraint, the default parent key
is its primary key.

For more information on defining unique constraints, see “ALTER TABLE” on
page 281 or “CREATE TABLE” on page 379.

Referential constraints
Referential integrity is the state of a database in which all values of all foreign keys
are valid. A foreign key is a key that is part of the definition of a referential
constraint. A referential constraint is the rule that the values of the foreign key are
valid only if:
v They appear as values of a parent key, or
v Some component of the foreign key is null.

The base table containing the parent key is called the parent table of the referential
constraint, and the base table containing the foreign key is said to be a dependent of
that table.

Referential constraints are optional and can be defined in CREATE TABLE
statements and ALTER TABLE statements. Referential constraints are enforced by
the database manager during the execution of INSERT, UPDATE, and DELETE
statements.

The rules of referential integrity involve the following concepts and terminology:

Parent key A primary key or unique key of a referential
constraint.

Concepts

4 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Parent row A row that has at least one dependent row.

Parent table A base table that is a parent in at least one
referential constraint. A base table can be defined
as a parent in an arbitrary number of referential
constraints.

Dependent table A base table that is a dependent in at least one
referential constraint. A base table can be defined
as a dependent in an arbitrary number of
referential constraints. A dependent table can also
be a parent table.

Descendent table A base table is a descendent of base table T if it is
a dependent of T or a descendent of a dependent
of T.

Dependent row A row that has at least one parent row.

Descendent row A row is a descendent of row p if it is a dependent
of p or a descendent of a dependent of p.

Referential cycle A set of referential constraints such that each base
table in the set is a descendent of itself.

Self-referencing row A row that is a parent of itself.

Self-referencing table A base table that is a parent and a dependent in
the same referential constraint. The constraint is
called a self-referencing constraint.

The insert rule of a referential constraint is that a nonnull insert value of the
foreign key must match some value of the parent key of the parent table. The
value of a composite foreign key is null if any component of the value is null.

The update rule of a referential constraint is that a nonnull update value of the
foreign key must match some value of the parent key of the parent table. The
value of a composite foreign key is treated as null if any component of the value is
null.

The delete rule of a referential constraint is specified when the referential
constraint is defined. The choices are RESTRICT, NO ACTION, CASCADE, or SET
NULL. SET NULL can be specified only if some column of the foreign key allows
null values.

The delete rule of a referential constraint applies when a row of the parent table is
deleted. More precisely, the rule applies when a row of the parent table is the
object of a delete or propagated delete operation (defined below) and that row has
dependents in the dependent table of the referential constraint. Let P denote the
parent table, let D denote the dependent table, and let p denote a parent row that
is the object of a delete or propagated delete operation. If the delete rule is:
v RESTRICT or NO ACTION, an error is returned and no rows are deleted.
v CASCADE, the delete operation is propagated to the dependents of p in D.
v SET NULL, each nullable column of the foreign key of each dependent of p in D

is set to null.

Each referential constraint in which a table is a parent has its own delete rule, and
all applicable delete rules are used to determine the result of a delete operation.
Thus, a row cannot be deleted if it has dependents in a referential constraint with a

Concepts

Chapter 1. Concepts 5

delete rule of RESTRICT or NO ACTION or if the deletion cascades to any of its
descendents that are dependents in a referential constraint with the delete rule of
RESTRICT or NO ACTION.

The deletion of a row from parent table P involves other base tables and may affect
rows of these tables:
v If D is a dependent of P and the delete rule is RESTRICT or NO ACTION, D is

involved in the operation but is not affected by the operation.
v If D is a dependent of P and the delete rule is SET NULL, D is involved in the

operation, and rows of D may be updated during the operation.
v If D is a dependent of P and the delete rule is CASCADE, D is involved in the

operation and rows of D may be deleted during the operation.
If rows of D are deleted, the delete operation on P is is said to be propagated to
D. If D is also a parent table, the actions described in this list apply, in turn, to
the dependents of D.

Any base table that may be involved in a delete operation on P is said to be
delete-connected to P. Thus, a base table is delete-connected to base table P if it is a
dependent of P or a dependent of a base table to which delete operations from P
cascade.

For more information on defining referential constraints, see“ALTER TABLE” on
page 281 or “CREATE TABLE” on page 379.

Check constraints
A check constraint is a rule that specifies which values are allowed in every row of a
base table. The definition of a check constraint contains a search condition that
must not be FALSE for any row of the base table. Each column referenced in the
search condition of a check constraint on a table T must identify a column of T. For
more information on search conditions, see “Search conditions” on page 129.

A base table can have more than one check constraint. Each check constraint
defined on a base table is enforced by the database manager when either of the
following occur:
v A row is inserted into that base table.
v A row of that base table is updated.

A check constraint is enforced by applying its search condition to each row that is
inserted or updated in that base table. An error is returned if the result of the
search condition is FALSE for any row.

For more information on defining check constraints, see “ALTER TABLE” on
page 281 or “CREATE TABLE” on page 379.

Indexes
An index is an ordered set of pointers to rows of a base table. Each index is based
on the values of data in one or more base table columns. An index is an object that
is separate from the data in the base table. When an index is created, the database
manager builds this structure and maintains it automatically.

Indexes are used by the database manager to:
v Improve performance. In most cases, access to data is faster than without an

index.

Concepts

6 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

v Ensure uniqueness. A base table with a unique index cannot have rows with
identical keys.

An index is created with the CREATE INDEX statement. For more information
about creating indexes, see “CREATE INDEX” on page 364.

Triggers
A trigger defines a set of actions that are executed automatically whenever a delete,
insert, or update operation occurs on a specified base table. When such an SQL
operation is executed, the trigger is said to be activated.

Triggers can be used along with referential constraints and check constraints to
enforce data integrity rules. Triggers are more powerful than constraints because
they can also be used to cause updates to other tables, automatically generate or
transform values for inserted or updated rows, or invoke functions that perform
operations both inside and outside of DB2. For example, instead of preventing an
update to a column if the new value exceeds a certain amount, a trigger can
substitute a valid value and send a notice to an administrator about the invalid
update.

Triggers are a useful mechanism to define and enforce transitional business rules
that involve different states of the data (for example, salary cannot be increased by
more than 10 percent). Such a limit requires comparing the value of a salary before
and after an increase. For rules that do not involve more than one state of the data,
consider using referential and check constraints.

Triggers also move the application logic that is required to enforce business rules
into the database, which can result in faster application development and easier
maintenance because the business rule is no longer repeated in several
applications, but one version is centralized to the trigger. With the logic in the
database, for example, the previously mentioned limit on increases to the salary
column of a table, DB2 checks the validity of the changes that any application
makes to the salary column. In addition, the application programs do not need to
be changed when the logic changes.

For more information about creating triggers, see “CREATE TRIGGER” on
page 398.

There are a number of criteria that are defined when creating a trigger which are
used to determine when a trigger should be activated.
v The subject table defines the base table for which the trigger is defined.
v The trigger event defines a specific SQL operation that modifies the subject table.

The operation could be delete, insert, or update.
v The trigger activation time defines whether the trigger should be activated before

or after the trigger event is performed on the subject table.

The statement that causes a trigger to be activated will include a set of affected rows.
These are the rows of the subject table that are being deleted, inserted or updated.
The trigger granularity defines whether the actions of the trigger will be performed
once for the statement or once for each of the rows in the set of affected rows.

The trigger action consists of an optional search condition and a set of SQL
statements that are executed whenever the trigger is activated. The SQL statements
are only executed if no search condition is specified or the specified search
condition evaluates to true.

Concepts

Chapter 1. Concepts 7

The triggered action may refer to the values in the set of affected rows. This is
supported through the use of transition variables. Transition variables use the names
of the columns in the subject table qualified by a specified name that identifies
whether the reference is to the old value (prior to the update) or the new value
(after the update). The new value can also be changed using the SET
transition-variable statement in before update or insert triggers. Another means of
referring to the values in the set of affected rows is using transition tables.
Transition tables also use the names of the columns of the subject table but have a
name specified that allows the complete set of affected rows to be treated as a
table. Transition tables can only be used in after triggers. Separate transition tables
can be defined for old and new values.

Multiple triggers can be specified for a combination of table, event, or activation
time. The order in which the triggers are activated is the same as the order in
which they were created. Thus, the most recently created trigger will be the last
trigger activated.

The activation of a trigger may cause trigger cascading. This is the result of the
activation of one trigger that executes SQL statements that cause the activation of
other triggers or even the same trigger again. The triggered actions may also cause
updates as a result of the original modification, which may result in the activation
of additional triggers. With trigger cascading, a significant chain of triggers may be
activated causing significant change to the database as a result of a single delete,
insert or update statement.

The actions performed in the trigger are considered to be part of the operation that
caused the trigger to be executed.
v The database manager ensures that the operation and the triggers executed as a

result of that operation either all complete or are backed out. Operations that
occurred prior to the triggering operation are not affected.

v The database manager effectively checks all constraints (except for a constraint
with a RESTRICT delete rule) after the operation and the associated triggers
have been executed.

Views
A view provides an alternative way of looking at the data in one or more tables.

A view is a named specification of a result table. The specification is a SELECT
statement that is effectively executed whenever the view is referenced in an SQL
statement. Thus, a view can be thought of as having columns and rows just like a
base table. For retrieval, all views can be used just like base tables. Whether a view
can be used in an insert, update, or delete operation depends on its definition.

An index cannot be created for a view. However, an index created for a table on
which a view is based may improve the performance of operations on the view.

When the column of a view is directly derived from a column of a base table, that
column inherits any constraints that apply to the column of the base table. For
example, if a view includes a foreign key of its base table, INSERT and UPDATE
operations using that view are subject to the same referential constraint as the base
table. Likewise, if the base table of a view is a parent table, DELETE operations
using that view are subject to the same rules as DELETE operations on the base
table.

Concepts

8 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

A view is created with the CREATE VIEW statement. For more information about
creating views, see “CREATE VIEW” on page 406.

Aliases
An alias is an alternate name for a table or view. An alias can be used to reference
a table or view in cases where an existing table or view can be referenced.
However, the option of referencing a table or view by an alias is not explicitly
shown in the syntax diagrams or mentioned in the description of SQL statements.
Like tables and views, an alias may be created, dropped, and have a comment
associated with it. No authority is necessary to use an alias. Access to the tables
and views that are referred to by the alias, however, still requires the appropriate
authorization for the current statement.

An alias is created with the CREATE ALIAS statement. For more information about
creating aliases, see “CREATE ALIAS” on page 318.

Packages and access plans
A package is an object that contains control structures used to execute SQL
statements. Packages are produced during program preparation. The control
structures can be thought of as the bound or operational form of SQL statements.
All control structures in a package are derived from the SQL statements embedded
in a single source program.

In this book, the term access plan is used in general for packages, procedures,
functions, triggers, and other product-specific objects that contain control structures
used to execute SQL statements. For example, the description of the DROP
statement says that dropping an object also invalidates any access plans that
reference the object (see “DROP” on page 433). This means that any packages,
procedures, functions, triggers, and any product-specific objects containing control
structures referencing the dropped object are invalidated.

In some cases, an invalidated access plan may be automatically rebuilt the next time
its associated SQL statement is executed. For example, if an index is dropped that
is used in an access plan for a SELECT INTO statement, the next time that SELECT
INTO statement is executed, the access plan will be rebuilt.

Routines
A routine is an executable SQL object. There are two types of routines.

Functions
A function is a routine that can be invoked from within other SQL statements and
returns a value, or a table. For more information, see “Functions” on page 93.

A function is created with the CREATE FUNCTION statement. For more
information about creating functions, see “CREATE FUNCTION” on page 325.

Procedures
A procedure (sometimes called a stored procedure) is a routine that can be called to
perform operations that can include both host language statements and SQL
statements.

Concepts

Chapter 1. Concepts 9

Procedures are classified as either SQL procedures or external procedures. SQL
procedures contain only SQL statements. External procedures reference a host
language program which may or may not contain SQL statements.

A procedure is created with the CREATE PROCEDURE statement. For more
information about creating procedures, see “CREATE PROCEDURE” on page 366.

Procedures in SQL provide the same benefits as procedures in a host language.
That is, a common piece of code need only be written and maintained once and
can be called from several programs. Host languages can easily call procedures
that exist on the local system. SQL can also easily call a procedure that exists on a
remote system. In fact, the major benefit of procedures in SQL is that they can be
used to enhance the performance characteristics of distributed applications.

Assume several SQL statements must be executed at a remote system. There are
two ways this can be done. Without procedures, when the first SQL statement is
executed, the application requester will send a request to an application server to
perform the operation. It then waits for a reply that indicates whether the
statement executed successfully or not and optionally returns results. When the
second and each subsequent SQL statement is executed, the application requester
will send another request and wait for another reply.

If the same SQL statements are stored in a procedure at an application server, a
CALL statement can be executed that references the remote procedure. When the
CALL statement is executed, the application requester will send a single request to
the current server to call the procedure. It then waits for a single reply that
indicates whether the CALL statement executed successfully or not and optionally
returns results.

The following two figures illustrate the way procedures can be used in a
distributed application to eliminate some of the remote requests. Figure 1 on
page 11 shows a program making many remote requests.

Concepts

10 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Figure 2 shows how a call to a remote package can reduce the number of remote
requests.

Authorization, privileges and object ownership
Users (identified by an authorization ID) can successfully execute SQL statements
only if they have the authority to perform the specified function. To create a table,
a user must be authorized to create tables; to alter a table, a user must be
authorized to alter the table; and so forth.

There are two forms of authorization:

┌──────────────────┐ ┌──────────────────┐
│ │ │ │
│ ┌────────────┐ │ │ ┌────────────┐ │
│ │ Program │ │ │ │ Package │ │
│ │ │ │ │ │ │ │
│ │ │ │ Request to execute UPDATE │ │ │ │
│ │ UPDATE ... │--------------------------------�│ UPDATE ... │ │
│ │ │�--------------------------------│ │ │
│ │ │ │ Results from UPDATE │ │ │ │
│ │ │ │ │ │ │ │
│ │ │ │ Request to execute INSERT │ │ │ │
│ │ INSERT ... │--------------------------------�│ INSERT ... │ │
│ │ │�--------------------------------│ │ │
│ │ │ │ Results from INSERT │ │ │ │
│ │ │ │ │ │ │ │
│ │ │ │ Request to execute SELECT │ │ │ │
│ │ SELECT ... │--------------------------------�│ SELECT ... │ │
│ │ │�--------------------------------│ │ │
│ │ │ │ Results from SELECT │ │ │ │
│ └────────────┘ │ │ └────────────┘ │
│ │ │ │
└──────────────────┘ └──────────────────┘

Application Application
Requester Server

Figure 1. Application without remote procedure

┌──────────────────┐ ┌──────────────────────────────────┐
│ │ │ │
│ ┌────────────┐ │ │ ┌────────────┐ ┌────────────┐ │
│ │ Program │ │ │ │ Package │ │ Program x │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ │ Request to execute CALL │ │ │ │ │ │
│ │ CALL x │--------------------------------�│ CALL x │-�│ UPDATE ... │ │
│ │ │�--------------------------------│ │�-│ │ │
│ │ │ │ Results from CALL │ │ │ │ │ │
│ │ │ │ │ │ │ │ INSERT ... │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ SELECT ... │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │
│ └────────────┘ │ │ └────────────┘ └────────────┘ │
│ │ │ │
└──────────────────┘ └──────────────────────────────────┘

Application Application
Requester Server

Figure 2. Application with remote procedure

Concepts

Chapter 1. Concepts 11

administrative authority
The person or persons holding administrative authority are charged with the
task of controlling the database manager and are responsible for the safety
and integrity of the data. Those with administrative authority implicitly have
all privileges on all objects and control who will have access to the
database manager and the extent of this access.

For further information about administrative authority, see the product
references.

privileges
Privileges are those activities that a user is allowed to perform. Authorized
users can create objects, have access to objects they own, and can pass on
privileges on their own objects to other users by using the GRANT
statement.

Privileges may be granted to specific users or to PUBLIC. PUBLIC specifies
that a privilege is granted to a set of users (authorization IDs).
v In DB2 UDB for z/OS and OS/390 and DB2 UDB for LUW, the set

consists of all users (including future users), including those with
privately granted privileges on the table or view.

v In DB2 UDB for iSeries, the set consists of those users (including future
users) that do not have privately granted privileges on the table or view.
This affects private grants. For example, if SELECT has been granted to
PUBLIC, and UPDATE is then granted to HERNANDZ, this private
grant prevents HERNANDZ from having the SELECT privilege. Thus, if
HERNANDZ needs both the SELECT and UPDATE privileges, both
privileges must be granted.

The REVOKE statement can be used to REVOKE previously granted
privileges.
v In DB2 UDB for z/OS and OS/390 a revoke of a privilege from an

authorization ID only revokes the privilege granted by a specific
authorization ID. For example, assume that the SELECT has been
granted to CHRIS by CLAIRE and also by BOBBY. If CLAIRE revokes
the SELECT privilege from CHRIS, CHRIS still has the SELECT privilege
that was granted by BOBBY.
Revoking a privilege from an authorization ID will also revoke that
same privilege from all other authorization IDs that were granted the
privilege by that authorization ID. For example, assume CLAIRE grants
SELECT WITH GRANT OPTION to RICK, and RICK then grants
SELECT to BOBBY and CHRIS. If CLAIRE revokes the SELECT privilege
from RICK, the SELECT privilege is also revoked from both BOBBY and
CHRIS.

v In DB2 UDB for iSeries, and DB2 UDB for LUW, a revoke of a privilege
from an authorization ID revokes the privilege granted by all
authorization IDs.
Revoking a privilege from an authorization ID will not revoke that same
privilege from any other authorization IDs that were granted the
privilege by that authorization ID. For example, assume CLAIRE grants
SELECT WITH GRANT OPTION to RICK, and RICK then grants
SELECT to BOBBY and CHRIS. If CLAIRE revokes the SELECT privilege
from RICK, BOBBY and CHRIS still retain the SELECT privilege.

Concepts

12 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
G

G
G
G
G
G
G
G

G
G
G
G
G
G

G
G
G
G
G
G
G

G
G
G

G
G
G
G
G
G

When an object is created, the authorization ID of the statement must have the
privilege to create objects in the implicitly or explicitly specified schema. The
authorization ID of a statement has the privilege to create objects in the schema if:
v it is the owner of the schema, or
v it has a product-specific privilege.

When an object is created, one authorization ID is assigned ownership of the object.
Ownership means the user is authorized to reference the object in any SQL
statement. The privileges on the object can be granted by the owner, and cannot be
revoked from the owner.

When an object is created, the authorization ID of the statement is the owner of an
object if:
v the object name in the CREATE statement is not qualified, or
v the explicitly specified schema name is the same as the authorization ID of the

statement.

Otherwise, the owner of the object is product-specific and the privileges held by
the authorization ID of the statement must include administrative authority.

Catalog
The database manager maintains a set of tables and views containing information
about objects in the database. These tables and views are collectively known as the
catalog. The catalog tables and catalog views contain information about objects such as
tables, views, indexes, packages, and constraints.

Tables and views in the catalog are similar to any other database tables and views.
Any user that has the SELECT privilege on a catalog table or view can read data in
the catalog table or view. A user cannot directly modify a catalog table or view,
however. The database manager ensures that the catalog contains accurate
descriptions of the objects in the database at all times.

For further information about the catalog, see the product books.

Application processes, concurrency, and recovery
All SQL programs execute as part of an application process. An application process
involves the execution of one or more programs, and is the unit to which the
database manager allocates resources and locks. Different application processes
may involve the execution of different programs, or different executions of the
same program. The means of starting and ending an application process are
dependent on the environment.

Locking, commit, and rollback
More than one application process may request access to the same data at the same
time. Locking is used to maintain data integrity under such conditions, by
preventing, for example, two application processes from updating the same row of
data simultaneously.

The locking facilities of the database managers are similar but not identical. One of
the common properties is that each of the database managers can acquire locks in
order to prevent uncommitted changes made by one application process from
being perceived by any other. The database manager will release all locks it has

Concepts

Chapter 1. Concepts 13

G

G
G

G

G
G

G

acquired on behalf of an application process when that process ends, but an
application process itself can also explicitly request that locks be released sooner.
This operation is called commit.

In DB2 UDB for z/OS and OS/390 and DB2 UDB for iSeries, a lock that protects
the current row of a cursor from updates or deletes by concurrent application
processes also protects the row from Positioned UPDATEs and Positioned
DELETEs that reference another cursor of the same application process. 3 In DB2
UDB for LUW this protection does not apply.

Unit of work
Like the locking facilities, the recovery facilities of the database managers are
similar but not identical. One common property is that each of the database
managers provides a means of backing out uncommitted changes made by an
application process. This might be necessary in the event of a failure on the part of
an application process, or in a deadlock situation. An application process itself,
however, can explicitly request that its database changes be backed out. This
operation is called rollback.

A unit of work (also called a transaction, logical unit of work, or unit of recovery) is
a recoverable sequence of operations within an application process. At any time, an
application process has at most a single unit of work, but the life of an application
process may involve many units of work as a result of commit or rollback
operations.

Note: In addition to relational databases, the environment in which an SQL
program executes may also include other types of recoverable resources. If
this is the case, the scope and acceptability of the SQL COMMIT and
ROLLBACK statements depend on the environment.

A unit of work is started when the first SQL statement in the an application
process or the first SQL statement after a commit or rollback is executed. A unit of
work is ended by a commit operation, a rollback operation, or the end of an
application process. A commit or rollback operation affects only the database
changes made within the unit of work it ends. While these changes remain
uncommitted, other application processes are unable to perceive them and they can
be backed out. 4 Once committed, these database changes are accessible by other
application processes and can no longer be backed out by a rollback.

The start and end of a unit of work define points of consistency within an
application process. For example, a banking transaction might involve the transfer
of funds from one account to another. Such a transaction would require that these
funds be subtracted from the first account, and added to the second. Following the
subtraction step, the data is inconsistent. Only after the funds have been added to
the second account is consistency reestablished. When both steps are complete, the
commit operation can be used to end the unit of work, thereby making the
changes available to other application processes.

3. In DB2 UDB for iSeries, Searched UPDATEs and Searched DELETEs are also included.

4. Except for isolation level uncommitted read, described in “Uncommitted read” on page 18.

Concepts

14 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
G
G
G

G
G

G
G
G
G

If a failure occurs before the unit of work ends, the database manager will back
out uncommitted changes to restore the data consistency that existed when the
unit of work was started.

Rolling back work
The database manager can back out all changes made in a unit of work or only
selected changes. Only backing out all changes results in a point of consistency.

Rolling back all changes
The SQL ROLLBACK statement without the TO SAVEPOINT clause causes a full
rollback operation. If such a rollback operation is successfully executed, the
database manager backs out uncommitted changes to restore the data consistency
that existed when the unit of work was initiated. That is, the database manager
undoes the work, as shown in the diagram below:

Figure 3. Unit of work with a commit operation

Figure 4. Rolling back changes from a unit of work

Concepts

Chapter 1. Concepts 15

Rolling back selected changes using savepoints
A savepoint represents the state of data at some particular time during a unit of
work. An application process can set savepoints within a unit of work, and then as
logic dictates, roll back only the changes that were made after a savepoint was set.
For example, part of a reservation transaction might involve booking an airline
flight and then a hotel room. If a flight gets reserved but a hotel room cannot be
reserved, the application process might want to undo the flight reservation without
undoing any database changes made in the transaction prior to making the flight
reservation. SQL programs can use the SQL SAVEPOINT statement to set
savepoints, the SQL ROLLBACK statement with the TO SAVEPOINT clause to
undo changes to a specific savepoint or the last savepoint that was set, and the
RELEASE SAVEPOINT statement to delete a savepoint.

Isolation level
The isolation level used during the execution of SQL statement determines the
degree to which the application process is isolated from concurrently executing
application processes. Thus, when application process P executes an SQL
statement, the isolation level determines:
v The degree to which rows retrieved by P are available to other concurrently

executing application processes.
v The degree to which database changes made by concurrently executing

application processes can affect P.

The isolation level can be explicitly specified on a DELETE, INSERT, SELECT
INTO, UPDATE, or select-statement. If the isolation level is not explicitly specified,
the isolation level used when the SQL statement is executed is the default isolation
level.

Each product provides a product-specific means of explicitly specifying a default
isolation level:
v For static SQL statements, the default isolation level is the isolation level specified

when the containing package, procedure, function, or trigger was created.
v For dynamic SQL statements, the default isolation level is isolation level specified

for the application process.

Figure 5. Unit of work with a ROLLBACK statement and a SAVEPOINT statement

Concepts

16 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G

Products support these isolation levels by automatically locking the appropriate
data. Depending on the type of lock, this limits or prevents access to the data by
concurrent application processes. Each database manager supports at least two
types of locks:

Share Limits concurrent application processes to read-only operations on
the data.

Exclusive Prevents concurrent application processes from accessing the data
in any way except for application processes with an isolation level
of uncommitted read, which can read but not modify the data. (See
“Uncommitted read” on page 18.)

The following descriptions of isolation levels refer to locking data in row units.
Individual implementations can lock data in larger physical units than base table
rows. However, logically, locking occurs at the base table row level across all
products. Similarly, a database manager can escalate a lock to a higher level. An
application process is guaranteed at least the minimum requested lock level.

Regardless of the isolation level, every database manager places exclusive locks on
every row that is inserted, updated, or deleted. Thus, all isolation levels ensure
that any row that is changed during a unit of work is not changed by any other
application processes until the unit of work is complete. The isolation levels are:

Repeatable read
The Repeatable Read (RR) isolation level ensures that:
v Any row read during a unit of work is not changed by other application

processes until the unit of work is complete. 5

v Any row changed by another application process cannot be read until it is
committed by that application process.

In addition to any exclusive locks, an application process running at level RR
acquires at least share locks on all the rows it reads. Furthermore, the locking is
performed so that the application process is completely isolated from the effects of
concurrent application processes.

In the SQL 1999 Core standard, Repeatable Read is called Serializable.

Read stability
Like level RR, the Read Stability (RS) isolation level ensures that:
v Any row read during a unit of work is not changed by other application

processes until the unit of work is complete. 5

v Any row changed by another application process cannot be read until it is
committed by that application process.

Unlike RR, RS does not completely isolate the application process from the effects
of concurrent application processes. At level RS, application processes that issue
the same query more than once in the same unit of work might see additional
rows. These additional rows are called phantom rows.

For example, a phantom row can occur in the following situation:

5. For WITH HOLD cursors, these rules apply to when the rows were actually read. For read-only WITH HOLD cursors, the rows
may have actually been read in a prior unit of work.

Concepts

Chapter 1. Concepts 17

1. Application process P1 reads the set of rows n that satisfy some search
condition.

2. Application process P2 then INSERTs one or more rows that satisfy the search
condition and COMMITs those INSERTs.

3. P1 reads the set of rows again with the same search condition and obtains both
the original rows and the rows inserted by P2.

In addition to any exclusive locks, an application process running at level RS
acquires at least share locks on all the rows it reads.

In the SQL 1999 Core standard, Read Stability is called Repeatable Read.

Cursor stability
Like levels RR and RS, the Cursor Stability (CS) isolation level ensures that any
row changed by another application process cannot be read until it is committed
by that application process. Unlike RR and RS, level CS only ensures that the
current row of every updatable cursor is not changed by other application
processes. Thus, the rows read during a unit of work can be changed by other
application processes. In addition to any exclusive locks, an application process
running at level CS has at least a share lock for the current row of every one of its
open cursors.

In the SQL 1999 Core standard, Cursor Stability is called Read Committed.

Uncommitted read
For a SELECT INTO, FETCH with a read-only cursor, subquery, or subselect used
in an INSERT statement, the Uncommitted Read (UR) isolation level allows:
v Any row read during the unit of work to be changed by other application

processes.
v Any row changed by another application process to be read even if the change

has not been committed by that application process.

For other operations, the rules of level CS apply. In DB2 UDB for z/OS and
OS/390, UR is escalated to CS for a subquery used in a DELETE or UPDATE
statement, or for a subselect used in an INSERT statement.

In the SQL 1999 Core standard, Uncommitted Read is called Read Uncommitted.

Comparison of isolation levels
The following table summarizes information about isolation levels.

UR CS RS RR

Can the application see uncommitted changes
made by other application processes?

Yes No No No

Can the application update uncommitted
changes made by other application processes?

No No No No

Can the re-execution of a statement be affected
by other application processes? See phenomenon
P3 (phantom) below.

Yes Yes Yes No

Can “updated” rows be updated by other
application processes?

No No No No

Concepts

18 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
G

Can “updated” rows be read by other
application processes that are running at an
isolation level other than UR?

No No No No

Can “updated” rows be read by other
application processes that are running at the UR
isolation level?

Yes Yes Yes Yes

Can “accessed” rows be updated by other
application processes?

For RS, “accessed rows” typically means rows
selected. For RR, see the product-specific
documentation. See phenomenon P2 (nonrepeatable
read) below.

Yes Yes No No

Can “accessed” rows be read by other
application processes?

Yes Yes Yes Yes

Can “current” row be updated or deleted by
other application processes? See phenomenon P1
(dirty-read) below.

See Note
below

See Note
below

No No

Note: This depends on whether the cursor that is positioned on the “current” row is
updatable:

v If the cursor is updatable, the current row cannot be updated or deleted by other
application processes

v If the cursor is not updatable,

– For UR, the current row can be updated or deleted by other application processes.

– For CS, the current row may be updatable in some circumstances.

Examples of Phenomena:

P1 Dirty Read. Unit of work UW1 modifies a row. Unit of work UW2 reads that row
before UW1 performs a COMMIT. UW1 then performs a ROLLBACK. UW2 has
read a nonexistent row.

P2 Nonrepeatable Read. Unit of work UW1 reads a row. Unit of work UW2 modifies
that row and performs a COMMIT. UW1 then re-reads the row and obtains the
modified data value.

P3 Phantom. Unit of work UW1 reads the set of n rows that satisfies some search
condition. Unit of work UW2 then INSERTs one or more rows that satisfies the
search condition. UW1 then repeats the initial read with the same search condition
and obtains the original rows plus the inserted rows.

Storage structures
Storage structures (spaces for tables and indexes for example) differ between each
DB2 relational database product. For detailed information about storage structures,
see the product references.

Concepts

Chapter 1. Concepts 19

G
G
G

Character conversion
A string is a sequence of bytes that may represent characters. Within a string, all
the characters are represented by a common coding representation. In some cases,
it might be necessary to convert these characters to a different coding
representation. The process of conversion is known as character conversion. 6

Character conversion can occur when an SQL statement is executed remotely.
Consider, for example, these two cases:
v The values of host variables sent from the application requester to the current

server.
v The values of result columns sent from the current server to the application

requester.

In either case, the string could have a different representation at the sending and
receiving systems. Conversion can also occur during string operations on the same
system.

Note that SQL statements are character strings and are therefore subject to
character conversion.

The following list defines some of the terms used when discussing character
conversion.

character set A defined set of characters. For example, the
following character set appears in several code
pages:
v 26 nonaccented letters A through Z
v 26 nonaccented letters a through z
v digits 0 through 9
v . , : ; ? () ' " / − _ & + % * = < >

code page A set of assignments of characters to code points.
In EBCDIC, for example, "A" is assigned code point
X'C1' and "B" is assigned code point X'C2'. Within a
code page, each code point has only one specific
meaning.

code point A unique bit pattern that represents a character
within a code page.

coded character set A set of unambiguous rules that establishes a
character set and the one-to-one relationships
between the characters of the set and their coded
representations.

encoding scheme A set of rules used to represent character data. For
example:
v Single-byte EBCDIC
v Single-byte ASCII 7

v Double-byte EBCDIC

6. Character conversion, when required, is automatic and is transparent to the application when it is successful. A knowledge of
conversion is therefore unnecessary when all the strings involved in a statement’s execution are represented in the same way.
Thus, for many readers, character conversion may be irrelevant.

7. The term ASCII is used throughout this book to refer to several encodings such as IBM-PC, ISO 8, or ISO 7 data.

Concepts

20 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

v Mixed single- and double-byte ASCII
v Unicode (UTF-8, UTF-16, and UCS-2 universal

coded character sets).

substitution character A unique character that is substituted during
character conversion for any characters in the
source coding representation that do not have a
match in the target coding representation.

Character sets and code pages
The following example shows how a typical character set might map to different
code points in two different code pages.

Even with the same encoding scheme, there are many different coded character
sets, and the same code point can represent a different character in different coded
character sets. Furthermore, a byte in a character string does not necessarily
represent a character from a single-byte character set (SBCS). Character strings are
also used for mixed data (that is a mixture of single-byte characters and
double-byte characters) and for data that is not associated with any character set
(called bit data). Note that this is not the case with graphic strings; the database
manager assumes that every pair of bytes in every graphic string represents a
character from a double-byte character set (DBCS).

A coded character set identifier (CCSID) of a native encoding scheme identifies one
of the coded character sets in which data can be stored at that site. A CCSID of a

FE

Ä

Ã

Á

Å

Â

À

Ö

®

5
8

2 3 4 50

0

1

1

2

3

4

5

E

F

%

/

0

1

2

3

4

5

@

A

B

C

D

E

N

0

>.

*

P

Q

R

S

T

U

code page: pp1 (ASCII)

character set ss1
(in code page pp1)

code point: 2F

0

1

2

3

4

5

E

F

FE0 1 A B

s

t

u

v

#

$

%

*

(

S

T

U

V

Â

C D

0

1

2

3

4

5

}

{ÁÀ ¢

! :

;

A

B

C

D

E

J

K

L

M

N

code page: pp2 (EBCDIC)

character set ss1
(in code page pp2)

"

Concepts

Chapter 1. Concepts 21

foreign encoding scheme identifies one of the coded character sets in which data
cannot be stored at that site. For example, DB2 UDB for iSeries can store data in a
coded character set with an EBCDIC or Unicode encoding scheme, but not in an
ASCII encoding scheme.

A host variable containing data in a foreign encoding scheme is always converted
to a CCSID in the native encoding scheme when the host variable is used in a
function or in the select list. A host variable containing data in a foreign encoding
scheme is also effectively converted to a CCSID in the native encoding scheme
when used in comparison or in an operation that combines strings. Which CCSID
in the native encoding scheme the data is converted to is based on the foreign
CCSID and the default CCSID. The rules are product-specific.

For details on character conversion, see:
v “Conversion rules for assignments” on page 63
v “Conversion rules for comparison” on page 68
v “Conversion rules for operations that combine strings” on page 73
v “Considerations for using distributed relational database” on page 562.

Coded character sets and CCSIDs
IBM’s Character Data Representation Architecture (CDRA) deals with the
differences in string representation and encoding. The Coded Character Set Identifier
(CCSID) is a key element of this architecture. A CCSID is a 2-byte (unsigned)
binary number that uniquely identifies an encoding scheme and one or two pairs
of character sets and code pages.

A CCSID is an attribute of strings, just as a length is an attribute of strings. All
values of the same string column have the same CCSID. In DB2 UDB for LUW,
support for CCSIDs is limited to DRDA. CCSIDs are mapped into code page
identifiers when receiving DRDA flows and code page identifiers are mapped into
CCSIDs when sending DRDA flows.8

In each database manager, character conversion involves the use of a CCSID
Conversion Selection Table. 9 The Conversion Selection Table contains a list of valid
source and target combinations. For each pair of CCSIDs, the Conversion Selection
Table contains information used to perform the conversion from one coded
character set to the other. This information includes an indication of whether
conversion is required. (In some cases, no conversion is necessary even though the
strings involved have different CCSIDs.)

Different types of conversions may be supported by each database manager.
Round-trip conversions attempt to preserve characters in one CCSID that are not
defined in the target CCSID so that if the data is subsequently converted back to
the original CCSID, the same original characters result. Enforced subset match
conversions do not attempt to preserve such characters. Which type of conversion
is used for a specific source and target CCSID is product-specific. For more
information, see IBM’s Character Data Representation Architecture (CDRA).

8. DB2 UDB for LUW operating outside DRDA does support conversions between the client and the server based on code page.

9. In some implementations, the Conversion Selection Table is part of the operating system and is accessed indirectly by the
database manager. In other implementations, it is a catalog table, or a combination of both.

Concepts

22 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G

G
G
G
G

G
G

Default CCSID
Every application server and application requester has a default CCSID (or default
CCSIDs in installations that support DBCS data). The method of specifying the
default CCSID(s) is product-specific. The CCSID of the following types of strings is
determined at the current server:
v String constants (including string constants that represent datetime values)
v Special registers with string values (such as USER and CURRENT SERVER)
v CAST specifications where the result is a character or graphic string
v The result of the CHAR, CLOB, DBCLOB, DIGITS, HEX, GRAPHIC, SPACE,

VARCHAR, and VARGRAPHIC scalar functions
v String columns defined by CREATE TABLE and ALTER TABLE statements.

In a distributed application, the default CCSID of host variables is determined by
the application requester. In a nondistributed application, the default CCSID of
host variables is determined by the application server.

Distributed relational database
A distributed relational database consists of a set of tables and other objects that are
spread across different but interconnected computer systems. Each computer
system has a relational database manager to manage the tables in its environment.
The database managers communicate and cooperate with each other in a way that
allows a given database manager to execute SQL statements on another computer
system.

Distributed relational databases are built on formal requester-server protocols and
functions. An application requester supports the application end of a connection. It
transforms a database request from the application into communication protocols
suitable for use in the distributed database network. These requests are received
and processed by an application server at the other end of the connection. Working
together, the application requester and application server handle the
communication and location considerations so that the application is isolated from
these considerations and can operate as if it were accessing a local database. A
simple distributed relational database environment is illustrated in Figure 6.

For more information on Distributed Relational Database Architecture (DRDA)
communication protocols, see Open Group Publications: DRDA Vol. 1: Distributed
Relational Database Architecture (DRDA)

ROCHESTER TORONTO

Program SQL
Package

Application Requester Application Server

Figure 6. A distributed relational database environment

Concepts

Chapter 1. Concepts 23

G
G

Application servers
An application process must be connected to the application server facility of a
database manager before SQL statements that reference tables or views can be
executed.

A connection is an association between an application process and a local or remote
application server. Connections are managed by the application. The CONNECT
statement can be used to establish a connection to an application server and make
that application server the current server of the application process.

An application server can be local to, or remote from, the environment where the
process is started. (An application server is present, even when not using
distributed relational databases.) This environment includes a local directory that
describes the application servers that can be identified in a CONNECT statement.
The format and maintenance of this directory are product-specific.

To execute a static SQL statement that references tables or views, an application
server uses the bound form of the statement. This bound statement is taken from a
package that the database manager previously created through a bind operation.

A DB2 relational database product may support a feature that is not supported by
the version of the DB2 UDB product that is connecting to the application server.
Some of these features are product-specific, and some are shared by more than one
product.

For the most part, an application can use the statements and clauses that are
supported by the database manager of the application server to which it is
currently connected, even though that application might be running via the
application requester of a database manager that does not support some of those
statements and clauses. Restrictions are listed in “Considerations for using
distributed relational database” on page 562.

CONNECT (Type 1) and CONNECT (Type 2)
There are two types of CONNECT statements with the same syntax but different
semantics:
v CONNECT (Type 1) is used for remote unit of work. See “CONNECT (Type 1)”

on page 311.
v CONNECT (Type 2) is used for application-directed distributed unit of work.

See “CONNECT (Type 2)” on page 315.

See Appendix G, “CONNECT (Type 1) and CONNECT (Type 2) differences”, on
page 633 for a summary of the differences.

Remote unit of work
The remote unit of work facility provides for the remote preparation and execution of
SQL statements. An application process at computer system A can connect to an
application server at computer system B and, within one or more units of work,
execute any number of static or dynamic SQL statements that reference objects at
B. After ending a unit of work at B, the application process can connect to an
application server at computer system C, and so on.

Most SQL statements can be remotely prepared and executed with the following
restrictions:

Concepts

24 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G

v All objects referenced in a single SQL statement must be managed by the same
application server.

v All of the SQL statements in a unit of work must be executed by the same
application server.

Remote unit of work connection management
An application process is in one of three states at any time:

Connectable and connected
Unconnectable and connected
Connectable and unconnected.

The following diagram shows the state transitions:

The initial state of an application process is connectable and connected. The
application server to which the application process is connected is determined by a
product-specific option that may involve an implicit CONNECT operation. An
implicit CONNECT operation cannot occur if an implicit or explicit CONNECT
operation has already successfully or unsuccessfully occurred. Thus, an application
process cannot be implicitly connected to an application server more than once.
The other rules for implicit CONNECT operations are product-specific.

The connectable and connected state: An application process is connected to an
application server and CONNECT statements can be executed. The process enters
this state when it completes a rollback or successful commit from the
unconnectable and connected state, or a CONNECT statement is successfully
executed from the connectable and unconnected state.

The unconnectable and connected state: An application process is connected to
an application server, but a CONNECT statement cannot be successfully executed

Begin process

│
│
3

┌───────────────┐ ┌───────────────┐
┌──┤ │ Successful CONNECT │ │
│ │ Connectable │�────────────────────────────────┤ Connectable │

CONNECT │ │ and │ │ and │
└─�│ Connected ├────────────────────────────────�│ Unconnected │

│ │ │ │
└────────────┬──┘ └───────────────┘

6 │ CONNECT with system failure or 6
│ │ COMMIT with the connection in │
│ │ the release-pending state. │
│ │ │ System

ROLLBACK or │ │ SQL statement other than CONNECT, │ failure
successful │ │ COMMIT, or ROLLBACK │ with
COMMIT │ │ │ rollback

│ │ │
│ │ ┌─────────────────┐ │
│ │ │ │ │
│ └──────────�│ Unconnectable │ │
│ │ and ├───────────────┘
└─────────────────────┤ Connected │

│ │
└─────────────────┘

Figure 7. State transitions for an application process connection in a remote unit of work

Concepts

Chapter 1. Concepts 25

G
G
G

G

to change application servers. The process enters this state from the connectable
and connected state when it executes any SQL statement other than CONNECT,
COMMIT or ROLLBACK.

The connectable and unconnected state: An application process is not connected
to an application server. The only SQL statement that can be executed is
CONNECT.

The application process enters this state when:
v The connection was in a connectable state, but the CONNECT statement was

unsuccessful.
v The connection was in a release-pending state, and a COMMIT operation is

performed.

The other reasons for entering this state are product-specific.

In DB2 UDB for z/OS and OS/390, an application process can also be in the
unconnectable and unconnected state. An application process enters this state as a
result of a system failure that has caused a rollback at the application server. An
application process in this state must execute a rollback operation.

Consecutive CONNECT statements can be executed successfully because
CONNECT does not remove the application process from the connectable state. A
CONNECT to the application server to which the application process is currently
connected is executed like any other CONNECT statement. CONNECT cannot
execute successfully when it is preceded by any SQL statement other than
CONNECT, COMMIT, RELEASE, ROLLBACK, or SET CONNECTION. To avoid
an error, execute a commit or rollback operation before a CONNECT statement is
executed.

Application-directed distributed unit of work
The application-directed distributed unit of work 10 facility also provides for the remote
preparation and execution of SQL statements in the same fashion as remote unit of
work. Like remote unit of work, an application process at computer system A can
connect to an application server at computer system B and execute any number of
static or dynamic SQL statements that reference objects at B before ending the unit
of work. All objects referenced in a single SQL statement must be managed by the
same application server. However, unlike remote unit of work, any number of
application servers can participate in the same unit of work. A commit or rollback
operation ends the unit of work.

Application-directed distributed unit of work connection
management
At any time:
v An application process is in the connected or unconnected state and has a set of

zero or more connections. Each connection of an application process is uniquely
identified by the name of the application server of the connection.

v A connection is in one of the following states:
– Current and held
– Current and release-pending
– Dormant and held
– Dormant and release-pending.

10. For DB2 UDB for z/OS and OS/390, the term used is DRDA access where the application issues explicit CONNECT statements.

Concepts

26 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G

G
G
G
G

Initial state of an application process: An application process is initially in the
connected state and has exactly one connection. The initial states of a connection
are current and held.

The following diagram shows the state transitions:

Connection states
If an application process successfully executes a CONNECT statement:
v The current connection is placed in the dormant and held state, and
v The server name is added to the set of connections and the new connection is

placed in the current and held state.

If the server name is already in the set of existing connections of the application
process, an error is returned.

A connection in the dormant state is placed in the current state using the SET
CONNECTION statement. 11 When a connection is placed in the current state, the

11. Some products provide a product-specific option that allows the CONNECT statement to place a connection in the dormant
state.

Begin process
│
│ ┌──────────────────────── SQL Connection States ────────────────────────┐
│ │ │
│ │ Successful CONNECT │
│ │ or SET CONNECTION specifying │
│ │ ┌─────────────┐ another SQL connection ┌─────────────┐ │
│ │ │ ├───────────────────────────�│ │ │
├─────────────�│ Current │ │ Dormant │ │
│ │ │ │�───────────────────────────┤ │ │
│ │ └─────────────┘ Successful CONNECT or └─────────────┘ │
│ │ SET CONNECTION specifying │
│ │ an existing dormant connection │
│ │ │
│ │ │
│ │ ┌─────────────┐ ┌─────────────┐ │
│ │ │ │ RELEASE │ │ │
├─────────────�│ Held ├───────────────────────────�│ Release- │ │
│ │ │ │ │ pending │ │
│ │ └─────────────┘ └─────────────┘ │
│ │ │
│ └───┘
│
│
│ ┌────────────── Application Process Connection States ───────────────┐
│ │ │
│ │ The current connection │
│ │ is intentionally ended, or │
│ │ a failure occurs causing the │
│ │ ┌─────────────┐ loss of the connection ┌─────────────┐ │
│ │ │ ├───────────────────────────�│ │ │
└─────────────�│ Connected │ │ Unconnected │ │

│ │ │�───────────────────────────┤ │ │
│ └─────────────┘ Successful CONNECT or └─────────────┘ │
│ SET CONNECTION │
│ │
└───┘

Figure 8. State transitions for an application process connection in an application-directed
distributed unit of work

Concepts

Chapter 1. Concepts 27

previous current connection, if any, is placed in the dormant state. No more than
one connection in the set of existing connections of an application process can be
current at any time. Changing the state of a connection from current to dormant or
from dormant to current has no effect on its held or release-pending state.

A connection is placed in the release-pending state by the RELEASE statement.
When an application process executes a commit operation, every release-pending
connection of the process is ended. Changing the state of a connection from held to
release-pending has no effect on its current or dormant state. Thus, a connection in
the release-pending state can still be used until the next commit operation. There is
no way to change the state of a connection from release-pending to held.

Application process connection states
A different application server can be established by the explicit or implicit
execution of a CONNECT statement. The following rules apply:
v An application process cannot have more than one connection to the same

application server at the same time.
v When an application process executes a SET CONNECTION statement, the

specified location name must be an existing connection in the set of connections
of the application process.

v When an application process executes a CONNECT statement, the specified
server name must not be an existing connection in the set of connections of the
application process. 12

If an application process has a current connection, the application process is in
the connected state. The CURRENT SERVER special register contains the name of
the application server of the current connection. The application process can
execute SQL statements that refer to objects managed by that application server.

An application process in the unconnected state enters the connected state when it
successfully executes a CONNECT or SET CONNECTION statement.

If an application process does not have a current connection, the application
process is in the unconnected state. The CURRENT SERVER special register contents
are equal to blanks. The only SQL statements that can be executed are CONNECT,
SET CONNECTION, RELEASE, COMMIT, and ROLLBACK.

An application process in the connected state enters the unconnected state when its
current connection is intentionally ended or the execution of an SQL statement is
unsuccessful because of a failure that causes a rollback operation at the current
server and loss of the connection. Connections are intentionally ended when an
application process successfully executes a commit operation and the connection is
in the release-pending state.

When a connection is ended
When a connection is ended, all resources that were acquired by the application
process through the connection and all resources that were used to create and
maintain the connection are deallocated. For example, if application process P has
placed the connection to application server X in the release-pending state, all
cursors of P at X will be closed and deallocated when the connection is ended
during the next commit operation.

12. In DB2 UDB for z/OS and OS/390, this rule is enforced only if the SQLRULES(STD) bind option is specified.

Concepts

28 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

A connection can also be ended as a result of a communications failure in which
case the application process is placed in the unconnected state. All connections of
an application process are ended when the application process ends.

Data representation considerations
Different systems represent data in different ways. When data is moved from one
system to another, data conversion must sometimes be performed. Products
supporting DRDA will automatically perform any necessary conversions at the
receiving system.

With numeric data, the information needed to perform the conversion is the data
type of the data and the environment type of the sending system. For example,
when a floating-point variable from a DB2 UDB for iSeries application requester is
assigned to a column of a table at an DB2 UDB for z/OS and OS/390 application
server, DB2 UDB for z/OS and OS/390, knowing the data type and the sending
system, converts the number from IEEE format to S/370 format.

With character and graphic data, the data type and the environment type of the
sending system are not sufficient. Additional information is needed to convert
character and graphic strings. String conversion depends on both the coded
character set of the data and the operation that is to be performed with that data.
Strings are converted in accordance with the IBM Character Data Representation
Architecture (CDRA). For more information on character conversion, refer to
Character Data Representation Architecture Level 1 Reference, SC09-2190.

Concepts

Chapter 1. Concepts 29

30 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Chapter 2. Language elements

This chapter defines the basic syntax of SQL and language elements that are
common to many SQL statements.

Characters
The basic symbols of keywords and operators in the SQL language are single-byte
characters that are part of all character sets supported by the IBM relational
database products. Characters of the language are classified as letters, digits, or
special characters.

A letter is any of the 26 uppercase (A through Z) and 26 lowercase (a through z)
letters of the English alphabet.

A digit is any of the characters 0 through 9.

A special character is any of the characters listed below:

space or blank − minus sign
" quotation mark or double-quote or

double quotation mark
. period

% percent / slash
& ampersand : colon
' apostrophe or single quote or single

quotation mark
; semicolon

(left parenthesis < less than
) right parenthesis = equals
* asterisk > greater than
+ plus sign ? question mark
, comma _ underline or underscore
| vertical bar13 ^ caret
! exclamation mark [left bracket
{ left brace] right bracket
} right brace

13. Using the vertical bar (|) character might inhibit code portability between IBM relational database products. Use the CONCAT
operator in place of the || operator.

© Copyright IBM Corp. 1982, 2003 31

Tokens
The basic syntactic units of the language are called tokens. A token consists of one
or more characters, excluding the blank character and characters within a string
constant or delimited identifier. (These terms are defined later.)

Tokens are classified as ordinary or delimiter tokens.
v An ordinary token is a numeric constant, an ordinary identifier, a host identifier,

or a keyword.
Examples

1 .1 +2 SELECT E 3

v A delimiter token is a string constant, a delimited identifier, an operator symbol,
or any of the special characters shown in the syntax diagrams. A question mark
(?) is also a delimiter token when it serves as a parameter marker, as explained
under “PREPARE” on page 471.
Examples

, ’Myst Island’ "fld1" = .

Spaces: A space is a sequence of one or more blank characters. Tokens, other than
string constants and delimited identifiers, must not include a space. Any token can
be followed by a space. Every ordinary token must be followed by a delimiter
token or a space. If the syntax does not allow an ordinary token to be followed by
a delimiter token, that ordinary token must be followed by a space.

Comments: Static SQL statements may include host language comments or SQL
comments. For more information on host language comments see the Host
Language Appendices. Either type of comment may be specified wherever a space
may be specified, except within a delimiter token or between the keywords EXEC
and SQL. In Java, SQL comments are not allowed within embedded Java
expressions. See Appendix J, “Coding SQL statements in Java applications”, on
page 669. SQL comments are introduced by two consecutive hyphens (--) and
ended by the end of the line. For more information, see “SQL comments” on
page 280.14

Uppercase and lowercase: Any token in an SQL statement may include lowercase
letters, but a lowercase letter in an ordinary token is folded to uppercase, except
for host variables in the C and Java language, which has case-sensitive identifiers.
Delimiter tokens are never folded to uppercase. Thus, the statement:

select * from EMPLOYEE where lastname = ’Smith’;

is equivalent, after folding, to:
SELECT * FROM EMPLOYEE WHERE LASTNAME = ’Smith’;

14. In DB2 UDB for z/OS and OS/390, the precompiler option STDSQL(YES) must be used to allow SQL comments.

Tokens

32 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Identifiers
An identifier is a token used to form a name. An identifier in an SQL statement is
either an SQL identifier or a host identifier.

SQL identifiers
There are two types of SQL identifiers: ordinary identifiers and delimited identifiers.
v An ordinary identifier is an uppercase letter followed by zero or more characters,

each of which is an uppercase letter, a digit, or the underscore character. An
ordinary identifier should not be a reserved word. See “Reserved words” on
page 739 for a list of reserved words. If a reserved word is used as an identifier
in SQL, it must be specified in uppercase and must be a delimited identifier or
specified in a host variable.

v A delimited identifier is a sequence of characters enclosed within quotation marks
("). The sequence must consist of one or more characters of the SQL language.
Leading blanks in the sequence are significant. Trailing blanks in the sequence
are not significant. The length of a delimited identifier does not include the two
quotation marks.

Examples
WKLYSAL WKLY_SAL "WKLY_SAL" "UNION" "wkly_sal"

See Table 1 on page 39 for information on the maximum length of identifiers.

Host identifiers
A host-identifier is a name declared in the host program. The rules for forming a
host identifier are the rules of the host language except that DBCS characters
cannot be used. In non-Java programs, do not use names beginning with 'DB2',
'SQ'15, 'SQL', 'sql', 'RDI', or 'DSN' because precompilers generate host variable
names that begin with these characters. In Java, do not use names beginning with
'__sJT_'.

See Table 1 on page 39 for the limits on the maximum size of the host identifier
name imposed by each product.

15. 'SQ' is allowed in C, COBOL, and REXX.

Identifiers

Chapter 2. Language elements 33

Naming conventions
The rules for forming a name depend on the type of the object designated by the
name. Many database objects have a schema qualified name. A schema qualified name
may consist of a single SQL identifier (in which case the schema-name is implicit) or
a schema-name followed by a period and an SQL identifier. The following list
defines these terms.

alias-name A qualified or unqualified name that designates an
alias. The unqualified form of alias-name is an SQL
identifier. An unqualified alias-name in an SQL
statement is implicitly qualified by the default
schema. The qualified form is a schema-name
followed by a period and an SQL identifier.

authorization-name An SQL identifier that designates a user or group
of users. An authorization-name must not be a
delimited identifier that includes lowercase letters
or special characters. See “Authorization IDs and
authorization names” on page 43 for the distinction
between an authorization-name and an
authorization ID.

column-name A qualified or unqualified name that designates a
column of a table or view. The unqualified form of
column-name is an SQL identifier. The qualified
form is a qualifier followed by a period and an
SQL identifier. The qualifier is a qualified or
unqualified table or view name, or a correlation
name.

condition-name An SQL identifier that designates a condition in an
SQL procedure. A condition-name must not be a
delimited identifier that includes lowercase letters
or special characters.

constraint-name An SQL identifier that designates a check, primary
key, referential, or unique constraint on a table.

correlation-name An SQL identifier that designates a table, a view, or
individual rows of a table or view.

cursor-name An SQL identifier that designates an SQL cursor. In
SQLJ, cursor name is a host variable (with no
indicator variable) that identifies an instance of an
iterator.

descriptor-name A host variable name that designates an SQL
descriptor area (SQLDA). See “References to host
variables” on page 87 for a description of a host
variable. Note that descriptor-name never includes
an indicator variable. In C, the descriptor-name must
be a pointer. For more information, see “Using
pointer data types in C” on page 648.

distinct-type-name A qualified or unqualified name that designates a
distinct type. The unqualified form of
distinct-type-name is an SQL identifier. An
unqualified distinct-type-name in an SQL statement
is implicitly qualified. The implicit qualifier is a

Naming conventions

34 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

schema name, which is determined by the context
in which the distinct-type-name appears as described
by the rules in “Unqualified distinct type, function,
procedure, and specific names” on page 40. The
qualified form is a schema-name followed by a
period and an SQL identifier.

external-program-name There are two distinct forms of an external-
program-name that designate an external program.
v In C and COBOL, external-program-name is an

SQL identifier.
v In Java, external-program-name is a character

string. The format of the character string is an
optional jar-name, followed by a class identifier,
followed by an exclamation point or period,
followed by a method identifier
(’class-id!method-id’ or ’class-id.method-id’).

��
jar-name :

�

� class-id ! method-id
.

��

jar-name
A case-sensitive string that designates a
JAR.

class-id

The class-id identifies the class identifier
of the Java object. If the class is part of a
Java package, the class identifier must
include the complete Java package
prefix. For example, if the class identifier
is ’myPackage.StoredProcs’, the Java
virtual machine will look in the
myPackage/ directory for the
StoredProcs classes.

For details regarding the location or
installation of Java classes, see the
product documentation.

method-id

The method-id identifies the method
name of the public, static Java method to
be invoked.

This form is only valid for Java procedures and
Java functions.

function-name A qualified or unqualified name that designates a
function. The unqualified form of function-name is
an SQL identifier. An unqualified function-name in
an SQL statement is implicitly qualified. The
implicit qualifier is a schema name, which is
determined by the context in which the function

Naming conventions

Chapter 2. Language elements 35

appears as described by the rules in “Unqualified
distinct type, function, procedure, and specific
names” on page 40. The qualified form is a
schema-name followed by a period and an SQL
identifier.

host-label A token that designates a label in a host program.

host-variable A sequence of tokens that designates a host
variable. A host-variable includes at least one
host-identifier, as explained in “References to host
variables” on page 87.

index-name A qualified or unqualified name that designates an
index. The unqualified form of an index-name is an
SQL identifier. An unqualified index-name in an
SQL statement is implicitly qualified by the default
schema. The qualified form is a schema-name
followed by a period and an SQL identifier.

label An SQL identifier that designates a label in an SQL
procedure. A label must not be a delimited
identifier that includes lowercase letters or special
characters.

package-name A qualified or unqualified name that designates a
package. The unqualified form of package-name is
an SQL identifier. A package-name must not be a
delimited identifier that includes lowercase letters
or special characters. An unqualified package-name
in an SQL statement is implicitly qualified by the
default schema. The qualified form is a
schema-name followed by a period and an SQL
identifier.

In DB2 UDB for z/OS and OS/390, a
package-name in an SQL statement must be
qualified.

parameter-name An SQL identifier that designates a parameter in
an SQL procedure or SQL function. A
parameter-name must not be a delimited identifier
that includes lowercase letters or special characters.

procedure-name A qualified or unqualified name that designates a
procedure. The unqualified form of procedure-name
is an SQL identifier. The implicit qualifier is a
schema name, which is determined by the context
in which the function appears as described by the
rules in “Unqualified distinct type, function,
procedure, and specific names” on page 40. The
qualified form is a schema-name followed by a
period and an SQL identifier.

savepoint-name An unqualified SQL identifier that designates a
savepoint.

schema-name An SQL identifier that provides a logical grouping
for SQL objects. A schema-name is used as the
qualifier of the name of SQL objects (see “Reserved
schema names” on page 739).

Naming conventions

36 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
G

In DB2 UDB for iSeries, a blank is not allowed in a
delimited schema name.

server-name An SQL identifier that designates an application
server. The identifier must start with a letter and
must not include lowercase letters or special
characters.

specific-name A qualified or unqualified name that designates a
function or procedure. The unqualified form of
specific-name is an SQL identifier. The implicit
qualifier is a schema name, which is determined by
the context in which the specific name appears as
described by the rules in “Unqualified distinct
type, function, procedure, and specific names” on
page 40. The qualified form is a schema-name
followed by a period and an SQL identifier.

SQL-label An SQL identifier that designates a label in an SQL
procedure. An SQL-label must not be a delimited
identifier that includes lowercase letters or special
characters.

SQL-parameter-name A qualified or unqualified name that designates a
parameter in the SQL routine body of an SQL
procedure or SQL function. The unqualified form
of an SQL parameter name is an SQL identifier. An
SQL-parameter-name must not be a delimited
identifier that includes lowercase letters or special
characters. The qualified form is a function-name or
procedure-name followed by a period and an SQL
identifier.

SQL-variable-name A qualified or unqualified name that designates a
variable in the SQL routine body of an SQL
procedure. The unqualified form of an SQL
variable name is an SQL identifier. An
SQL-variable-name must not be a delimited
identifier that includes lowercase letters or special
characters. The qualified form is an SQL label
followed by a period and an SQL identifier.

statement-name An SQL identifier that designates a prepared SQL
statement.

table-name A qualified or unqualified name that designates a
table. The unqualified form of table-name is an SQL
identifier. An unqualified table-name in an SQL
statement is implicitly qualified by the default
schema. The qualified form is a schema-name
followed by a period and an SQL identifier.

trigger-name A qualified or unqualified name that designates a
trigger on a table. The unqualified form of
trigger-name is an SQL identifier. An unqualified
trigger-name in an SQL statement is implicitly
qualified by the default schema. The qualified form
is a schema-name followed by a period and an SQL
identifier.

Naming conventions

Chapter 2. Language elements 37

G
G

view-name A qualified or unqualified name that designates a
view. The unqualified form of view-name is an SQL
identifier. An unqualified view-name in an SQL
statement is implicitly qualified by the default
schema. The qualified form is a schema-name
followed by a period and an SQL identifier.

Naming conventions

38 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 1. Identifier Length Limits (in bytes)

Identifier Limits DB2 UDB for
z/OS and OS/390

DB2 UDB for
iSeries

DB2 UDB for
LUW

DB2 UDB SQL

Longest authorization name 8 10 30 8

Longest condition name 64 128 64 64

Longest constraint name 887 128 18 887

Longest correlation name 18 128 128 18

Longest cursor name 18 18 18 18

Longest external program name
(unqualified form)

8 10 18 8

Longest external program name
(string form)

1305 279 254 254

Longest host identifier84 64 64 255 64

Longest savepoint name 128 128 128 128

Longest schema name 883 10 885 8

Longest server name 16 18 8 18

Longest statement name 18 18 18 18

Longest SQL label 64 128 64 64

Longest unqualified alias name 18 128 128 18

Longest unqualified column name 18 30 30 18

Longest unqualified distinct type
name

18 128 18 18

Longest unqualified function name 18 128 18 18

Longest unqualified index name 18 128 18 18

Longest unqualified package name 8 10 8 8

Longest unqualified procedure name 18 128 128 18

Longest unqualified specific name 18 128 128 18

Longest unqualified SQL parameter
name

18 128 6486 18

Longest unqualified SQL variable
name

18 128 64 18

Longest unqualified table and view
name

18 128 128 18

Longest unqualified trigger name 8 128 18 18

Naming conventions

Chapter 2. Language elements 39

SQL path
The SQL path is an ordered list of schema names. The database manager uses the
SQL path to resolve the schema name for unqualified data type names (both
built-in types and distinct types), function names, and procedure names that
appear in any context other than as the main object of a CREATE, DROP,
COMMENT, GRANT or REVOKE statement. Searching through the SQL path from
left to right, the database manager implicitly qualifies the object name with the
first schema name in the SQL path that contains the same object with the same
unqualified name. For functions, the database manager uses a process called
function resolution in conjunction with the SQL path to determine which function
to choose because several functions with the same name and number of
parameters but different parameter data types may be defined in the same schema
or other schemas on the SQL path. For details, see “Function resolution” on
page 94.

For example in DB2 UDB for iSeries, if the SQL path is SMITH, XGRAPHIC, QSYS,
QSYS2 and an unqualified distinct type name MYTYPE was specified, the database
manager looks for MYTYPE first in schema SMITH, then XGRAPHIC, and then
QSYS and QSYS2.

The SQL path used depends on the SQL statement:
v For static SQL statements, the SQL path used is the SQL path specified when the

containing package, procedure, function, trigger, or view was created. The way
the SQL path is specified is product-specific.

v For dynamic SQL statements, the SQL path is the value of the CURRENT PATH
special register. CURRENT PATH can be set by the SET PATH statement. For
more information, see “SET PATH” on page 503.

If the SQL path is not explicitly specified, the SQL path is the system path
followed by the authorization ID of the statement.

For more information on the SQL path for dynamic SQL, see “CURRENT PATH”
on page 78.

Qualification of unqualified object names
Unqualified object names are implicitly qualified. The rules for qualifying a name
differ depending on the type of object that the name identifies.

Unqualified alias, index, package, table, trigger, and view names
Unqualified alias, index, package, table, trigger, and view names are implicitly
qualified by the default schema. Each product provides a product-specific means of
explicitly specifying a default schema:
v For static SQL statements, the default schema is the default schema specified

when the containing function, package, procedure, or trigger was created.
v For dynamic SQL statements, the default schema is the default schema specified

for the application process.

If the default schema is not explicitly specified, the default schema is the
authorization ID of the statement.

Unqualified distinct type, function, procedure, and specific
names
The qualification of data type (both built-in types and distinct types), function,
procedure, and specific names depends on the SQL statement in which the
unqualified name appears:

SQL Path

40 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

G

v If an unqualified name is the main object of a CREATE, COMMENT, DROP,
GRANT, or REVOKE statement, the name is implicitly qualified using the same
rules as for qualifying unqualified table names (See “Unqualified alias, index,
package, table, trigger, and view names” on page 40).

v Otherwise, the implicit schema name is determined as follows:
– For distinct type names, the database manager searches the SQL path and

selects the first schema in the SQL path such that the data type exists in the
schema.

– For procedure names, the database manager searches the SQL path and
selects the first schema in the SQL path such that the schema contains a
procedure with the same name and the same number of parameters.

– For function names, the database manager uses the SQL path in conjunction
with function resolution, as described under “Function resolution” on page 94.

– For specific names specified for sourced functions, see “CREATE FUNCTION
(Sourced)” on page 350.

SQL Path

Chapter 2. Language elements 41

Aliases
An alias can be thought of as an alternative name for a table or view. A table or
view in an SQL statement can be referenced by its name or by an alias. An alias
can only refer to a table or view within the same relational database.

An alias can be used wherever a table or view name can be used. However, do not
use an alias name where a new table or view name is expected, such as in the
CREATE TABLE or CREATE VIEW statements. For example, if an alias name of
PERSONNEL is created, then a subsequent statement such as CREATE TABLE
PERSONNEL will cause an error.

An alias can be created even though the object that the alias refers to does not
exist. However, the object must exist when a statement that references the alias is
executed. A warning is returned if the object does not exist when an alias is
created. An alias cannot refer to another alias.

The option of referring to a table or view by an alias name is not explicitly shown
in the syntax diagrams or mentioned in the description of the SQL statements.

A new alias cannot have the same fully-qualified name as an existing table, view,
index, or alias.

The effect of using an alias in an SQL statement is similar to that of text
substitution. The alias, which must be defined before the SQL statement is
executed, is replaced at statement preparation time by the qualified base table or
view name. For example, if PBIRD.SALES is an alias for
DSPN014.DIST4_SALES_148, then at statement run time:

SELECT * FROM PBIRD.SALES

effectively becomes
SELECT * FROM DSPN014.DIST4_SALES_148

The effect of dropping an alias and recreating it to refer to another table depends
on the statement that references the alias.
v SQL data statements or SQL data change statements that refer to that alias will

be implicitly rebound when they are next run.
v Indexes that reference the alias are not affected.
v The effect on any views, routines, or triggers that reference the alias is

product-specific.

Aliases

42 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

Authorization IDs and authorization names
An authorization ID is a character string that is obtained by the database manager
when a connection is established between the database manager and either an
application process or a program preparation process. It designates a set of
privileges. It may also designate a user or a group of users, but this property is not
controlled by the database manager.

Authorization IDs are used by the database manager to provide authorization
checking of SQL statements.

An authorization ID applies to every SQL statement. The authorization ID that
applies to a static SQL statement is the authorization ID that is used during
program preparation. The authorization ID that applies to a dynamic SQL
statement is the authorization ID that was obtained by the database manager when
a connection was established between the database manager and the process.16

This is called the run-time authorization ID.

An authorization-name specified in an SQL statement should not be confused with
the authorization ID of the statement. An authorization-name is an identifier that is
used in GRANT and REVOKE statements to designate a target of the grant or
revoke. The premise of a grant of privileges to X is that X will subsequently be the
authorization ID of statements which require those privileges.

Example
Assume SMITH is the user ID and the authorization ID that the database manager
obtained when the connection was established with the application process. The
following statement is executed interactively:

GRANT SELECT ON TDEPT TO KEENE

SMITH is the authorization ID of the statement. Thus, the authority to execute the
statement is checked against SMITH and SMITH is the default schema.

KEENE is an authorization name specified in the statement. KEENE is given the
SELECT privilege on SMITH.TDEPT.

16. In DB2 UDB for z/OS and OS/390 and DB2 UDB for LUW the DYNAMICRULES bind option setting can impact the
authorization ID that applies to a dynamic SQL statement. For details, refer to product specific documentation.

Authorization IDs and names

Chapter 2. Language elements 43

Data types
The smallest unit of data that can be manipulated in SQL is called a value. How
values are interpreted depends on the attributes of their source, which includes the
data type, length, precision, scale and CCSID. The sources of values are:

Columns
Constants
Expressions
Functions
Special registers
Variables (such as host variables, SQL variables, parameter markers and
parameters of routines)

The DB2 UDB relational database products support both both built-in data types
and user-defined data types. This section describes the built-in data types. For a
description of distinct types, see “User-defined types” on page 53.

Figure 9 illustrates the various data types supported by the DB2 UDB relational
database products:

In DB2 UDB for z/OS and OS/390, and DB2 UDB for LUW, zoned decimal is not
supported as a native data type and NUMERIC is treated as a synonym for
DECIMAL. Zoned decimal numbers received through DRDA protocols are
converted to packed decimal.

SMALLINT INTEGER

REALBLOB DOUBLE

TIME

GRAPHIC

VARGRAPHICVARCHAR CLOB DBCLOB

CHAR

TIMESTAMP DATE

built-in
data
types

stringdatetime signed
numeric

time timestamp date exact approximate

floating
point

single
precision

double
precision

character graphic varying
length
binary

fixed
length

fixed
length

varying
length

varying
length

decimal

packed

DECIMAL NUMERIC

zoned

binary
integer

16 bit 32 bit

Figure 9. Data Types Supported by the DB2 UDB Relational Database Products

Data types

44 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
G
G

Nulls
All data types include the null value. Distinct from all non-null values, the null
value is a special value that denotes the absence of a (non-null) value. Although all
data types include the null value, some sources of values cannot provide the null
value. For example, constants, columns that are defined as NOT NULL, and special
registers cannot contain null values; the COUNT and COUNT_BIG functions
cannot return a null value.

Numbers
The numeric data types are binary integer, floating-point, and decimal. Binary
integer includes small integer, and large integer. Floating-point includes single
precision and double precision. Binary numbers are exact representations of
integers. Decimal numbers are exact representations of real numbers. Binary and
decimal numbers are considered exact numeric types. Floating-point numbers are
approximations of real numbers and are considered approximate numeric types.

All numbers have a sign, a precision, and a scale. If a column value is zero, the sign
is positive. The precision is the total number of binary or decimal digits excluding
the sign. The scale is the total number of binary or decimal digits to the right of
the decimal point. If there is no decimal point, the scale is zero.

Small integer
A small integer is a binary number composed of 2 bytes with a precision of 5 digits
and a scale of zero. The range of small integers is −32 768 to +32 767.

Large integer
A large integer is a binary number composed of 4 bytes with a precision of 10 digits
and a scale of zero. The range of large integers is −2 147 483 648 to +2 147 483 647.

Floating-point
A single-precision floating-point number is a 32-bit approximate representation of a
real number. The number can be zero or can range from −3.4x1038 to −1.17x10−37,
or from +1.17x10−37 to +3.4x1038.

A double-precision floating-point number is a 64-bit approximate representation of a
real number. The number can be zero or can range from −7.2x1075 to −5.4x10−79, or
from +5.4x10−79 to +7.2x1075.

See Table 39 on page 552 for more information.

Decimal
A decimal value is a packed decimal or zoned decimal number with an implicit
decimal point. The position of the decimal point is determined by the precision
and the scale of the number. The scale, which is the number of digits in the
fractional part of the number, cannot be negative or greater than the precision. The
maximum precision is 31 digits.

All values of a decimal column have the same precision and scale. The range of a
decimal variable or the numbers in a decimal column is -n to +n, where the
absolute value of n is the largest number that can be represented with the
applicable precision and scale.

The maximum range is −1031 + 1 to 1031 - 1.

Data types

Chapter 2. Language elements 45

Numeric host variables
Binary integer variables can be declared in all host languages. Decimal variables
can be declared in all host languages except C.

String Representations of numeric values
When a decimal or floating-point number is cast to a string (for example, using a
CAST specification) the implicit decimal point is replaced by the default decimal
separator character in effect when the statement was prepared. When a string is
cast to a decimal or floating-point value (for example, using a CAST specification),
the default decimal separator character in effect when the statement was prepared
is used to interpret the string. The mechanism to specify the default decimal
separator character is product-specific.

Character strings
A character string is a sequence of bytes. The length of the string is the number of
bytes in the sequence. If the length is zero, the value is called the empty string. The
empty string should not be confused with the null value.

Fixed-length character strings
When fixed-length character string distinct types, columns, and variables are
defined, the length attribute is specified and all values have the same length. For a
fixed-length character string, the length attribute must be between 1 and 254
inclusive. See Table 39 on page 552 for more information.

Varying-length caracter strings
The types of varying-length character strings are:
v VARCHAR
v CLOB

A Character Large OBject (CLOB) column is useful for storing large amounts of
character data, such as documents written using a single character set.

Distinct types, columns, and variables all have length attributes. When
varying-length character string distinct types, columns, and variables are defined,
the maximum length is specified and this becomes the length attribute. Actual
values may have a smaller length. For a varying-length character string, the length
attribute must be between 1 and 32 672 inclusive. For a CLOB string, the length
attribute must be between 1 and 2 147 483 647 inclusive. See Table 39 on page 552
for more information.

For the restrictions that apply to the use of VARCHAR strings longer than 255, see
“Limitations on use of strings” on page 50.

Character-string variables
v Fixed-length character-string variables can be declared in all host languages

except REXX and Java. (In C, fixed-length character string variables are limited
to a length of 1.)

v Varying-length character-string variables can be used in all host languages
except CLOBs cannot be used in REXX.

For information on how to code in a host language, refer to the host language
appendices.

Character encoding schemes
Each character string is further defined as one of:

Data types

46 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

Bit data Data that is not associated with a coded character set and is
therefore never converted. The CCSID for bit data is X'FFFF'
(65535). In DB2 UDB for LUW, the CCSID for bit data is X’0000’
(zero).

SBCS data Data in which every character is represented by a single byte. Each
SBCS string has an associated CCSID. If necessary, an SBCS string
is converted before it is used in an operation with a character
string that has a different CCSID.

Mixed data Data that may contain a mixture of characters from a single-byte
character set (SBCS) and a double-byte character set (DBCS). Each
mixed string has an associated CCSID. If necessary, a mixed string
is converted before an operation with a character string that has a
different CCSID. If a mixed data string contains a DBCS character,
it cannot be converted to SBCS data.

Unicode data Data that contains characters represented by one or more bytes.
Each Unicode character string is encoded using UTF-8. Each
Unicode string has an associated CCSID.

In DB2 UDB for LUW, support for CCSIDs is limited to DRDA. CCSIDs are
mapped into code page identifiers when receiving DRDA flows and code page
identifiers are mapped into CCSIDs when sending DRDA flows.

The method of representing DBCS characters within a mixed string differs between
ASCII and EBCDIC.
v ASCII reserves a set of code points for SBCS characters and another set as the

first half of DBCS characters. Upon encountering the first half of a DBCS
character, the system knows that it is to read the next byte in order to obtain the
complete character.

v EBCDIC makes use of two special code points:
– A shift-out character (X'0E') to introduce a string of DBCS characters.
– A shift-in character (X'0F') to end a string of DBCS characters.

The default encoding scheme is specific to the relational database. Because of the
shift characters, EBCDIC mixed data requires more storage than ASCII mixed data.

Examples
gen ki needs CHAR(9) in ASCII.

s s
0

s
0

s
gen ki needs CHAR(13) in EBCDIC.

To minimize the effects of these differences, use varying-length strings with an
appropriate declared length in applications that require mixed data and operate on
both ASCII and EBCDIC systems.

Graphic strings
A graphic string is a sequence of double-byte characters. The length of the string is
the number of double-byte characters in the sequence. Like character strings,
graphic strings can be empty.

Fixed-length graphic strings
When fixed-length graphic string distinct types, columns, and variables are
defined, the length attribute is specified and all values have the same length. For a

Data types

Chapter 2. Language elements 47

G
G

G
G
G

G

fixed-length graphic string, the length attribute must be between 1 and 127
inclusive. See Table 39 on page 552 for more information.

Varying-length graphic strings
The types of varying-length graphic strings are:
v VARGRAPHIC
v DBCLOB

A Double-Byte Character Large OBject (DBCLOB) column is useful for storing large
amounts of double-byte character data, such as documents written using a
double-byte character set.

distinct types, columns, and variables all have length attributes. When
varying-length graphic string distinct types, columns, and variables are defined,
the maximum length is specified and this becomes the length attribute. Actual
values may have a smaller length. For a varying-length graphic string, the length
attribute must be between 1 and 16 336 inclusive. For a DBCLOB string, the length
attribute must be between 1 and 1 073 741 823 inclusive. See Table 39 on page 552
for more information.

For the restrictions that apply to the use of VARGRAPHIC strings longer than 127,
see “Limitations on use of strings” on page 50.

Graphic-string variables
v Fixed-length graphic-string variables can be declared in all host languages except

REXX and Java. (In C, fixed-length graphic-string variables are limited to a
length of 1.)

v Varying-length graphic-string variables can be declared in all host languages
except DBCLOBs cannot be used in REXX.

For information on how to code in a host language, refer to the host language
appendices.

Graphic encoding schemes
Each graphic string is further defined as one of:

DBCS data Data in which every character is represented by a character from
the double-byte character set (DBCS). Every DBCS graphic string
has a CCSID that identifies a double-byte coded character set. If
necessary, a DBCS graphic string is converted before it is used in
an operation with a DBCS graphic string that has a different DBCS
CCSID.

Unicode data Data that contains characters represented by two or four bytes.
Each Unicode graphic string is encoded using either UCS-2 or
UTF-16. Each Unicode string has an associated CCSID.

Binary strings
A binary string is a sequence of bytes. The length of a binary string (BLOB string) is
the number of bytes in the sequence. A Binary Large OBject (BLOB) column is
useful for storing large amounts of non-character data, such as pictures, voice and
mixed media. Another use is to hold structured data for exploitation by distinct
types and user-defined functions.

Distinct types, columns, and variables all have length attributes. When varying
length distinct types, columns, and variables are defined, the maximum length is

Data types

48 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

specified and this becomes the length attribute. Actual values may have a smaller
length. For a BLOB string, the length attribute must be between 1 and 2 147 483 647
bytes inclusive. See Table 39 on page 552 for more information.

A host variable with a BLOB string type can be defined in all host languages
except REXX.

Although BLOB strings and FOR BIT DATA character strings might be used for
similar purposes, the two data types are not compatible. The BLOB function can be
used to to change a FOR BIT DATA character string into a BLOB string.

Large objects
The term large object and the generic acronym LOB are used to refer to any CLOB,
DBCLOB, or BLOB data type.

Manipulating large objects with locators
Since LOB values can be very large, the transfer of these values from the database
server to client application program host variables can be time consuming. Also,
application programs typically process LOB values a piece at a time, rather than as
a whole. For these cases, the application can reference a LOB value via a large
object locator (LOB locator). 17

A large object locator or LOB locator is a host variable with a value that represents a
single LOB value in the database server. LOB locators were developed to provide
users with a mechanism by which they could easily manipulate very large objects
in application programs without requiring them to store the entire LOB value on
the client machine where the application program may be running.

For example, when selecting a LOB value, an application program could select the
entire LOB value and place it into an equally large host variable (which is
acceptable if the application program is going to process the entire LOB value at
once), or it could instead select the LOB value into a LOB locator. Then, using the
LOB locator, the application program can issue subsequent database operations on
the LOB value (such as using it as a parameter to the scalar functions SUBSTR,
CONCAT, COALESCE, LENGTH, doing an assignment, searching the LOB value
with LIKE or POSSTR, or using it as a parameter to a user-defined function) by
supplying the LOB locator value as input. The resulting output of the LOB locator
operation, for example the amount of data assigned to a client host variable, would
then typically be a small subset of the input LOB value.

LOB locators may also represent more than just base values; they can also
represent the value associated with a LOB expression. For example, a LOB locator
might represent the value associated with:

SUBSTR(lob_value_1 CONCAT lob_value_2 CONCAT lob_value_3, 42, 6000000)

For normal host variables in an application program, when a null value is selected
into that host variable, the indicator variable is set to -1, signifying that the value is
null. In the case of LOB locators, however, the meaning of indicator variables is
slightly different. Since a LOB locator host variable itself can never be null, a
negative indicator variable value indicates that the LOB value represented by the

17. There is no ability within a Java application to distinguish between a CLOB or BLOB that is represented by a LOB locator and
one that is not.

Data types

Chapter 2. Language elements 49

LOB locator is null. The null information is kept local to the client by virtue of the
indicator variable value — the server does not track null values with valid LOB
locators.

It is important to understand that a LOB locator represents a value, not a row or
location in the database. Once a value is selected into a LOB locator, there is no
operation that one can perform on the original row or table that will affect the
value which is referenced by the LOB locator. The value associated with a LOB
locator is valid until the transaction ends, or until the LOB locator is explicitly
freed, whichever comes first.

A LOB locator is only a mechanism used to refer to a LOB value during a
transaction; it does not persist beyond the transaction in which it was created.
Also, it is not a database type; it is never stored in the database and, as a result,
cannot participate in views or check constraints. However, there are SQLTYPEs for
LOB locators so that they can be described within an SQLDA structure that is used
by FETCH, OPEN, CALL and EXECUTE statements.

For the restrictions that apply to the use of LOB strings, see “Limitations on use of
strings”.

Limitations on use of strings
The following varying-length string data types cannot be referenced in certain
contexts:
v for character strings, a VARCHAR string with a maximum length that is greater

than 255 bytes or any CLOB string
v for graphic strings, a VARGRAPHIC string with a maximum length that is

greater than 127 characters or any DBCLOB string
v for binary strings, any BLOB string.

Table 2. Contexts for limitations on use of varying-length strings

Context of usage VARCHAR (>255) or
VARGRAPHIC (>127)

LOB (CLOB, DBCLOB, or
BLOB)

A GROUP BY clause Not allowed Not allowed

An ORDER BY clause Not allowed Not allowed

A CREATE INDEX statement Not allowed Not allowed

A SELECT DISTINCT
statement

Not allowed Not allowed

A subselect of a UNION
without the ALL keyword

Not allowed Not allowed

Predicates Cannot be used in any
predicate except EXISTS and
LIKE

Cannot be used in any
predicate except EXISTS,
LIKE, and NULL

A result-expression in a CASE
expression

Not allowed Not allowed

The definition of primary,
unique, and foreign keys

Not allowed Not allowed

Check constraints See Predicates Not allowed

Data types

50 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 2. Contexts for limitations on use of varying-length strings (continued)

Context of usage VARCHAR (>255) or
VARGRAPHIC (>127)

LOB (CLOB, DBCLOB, or
BLOB)

Parameters of built-in
functions

Some functions that allow varying-length character strings,
varying-length graphic strings, or both types of strings as
input arguments do not support VARCHAR strings longer
than 255 or VARGRAPHIC strings longer than 127, CLOB or
DBCLOB strings, or both as input. See the description of the
individual functions in Chapter 3, “Built-in functions”, on
page 131 for the data types that are allowed as input to each
function.

Datetime values
Although datetime values can be used in certain arithmetic and string operations
and are compatible with certain strings, they are neither strings nor numbers.
However, strings can represent datetime values; see “String representations of
datetime values” on page 52.

Date
A date is a three-part value (year, month, and day) designating a point in time
under the Gregorian calendar, which is assumed to have been in effect from the
year 1 A.D. 18 The range of the year part is 0001 to 9999. The range of the month
part is 1 to 12. The range of the day part is 1 to x, where x is 28, 29, 30, or 31,
depending on the month and year.

The length of a DATE column as described in the SQLDA is 10 bytes, which is the
appropriate length for a character-string representation of the value.

A character-string representation must have an actual length that is not greater
than 255 bytes and must not be a CLOB.

Time
A time is a three-part value (hour, minute, and second) designating a time of day
using a 24-hour clock. The range of the hour part is 0 to 24, while the range of the
minute and second parts is 0 to 59. If the hour is 24, the minute and second
specifications are both zero.

The length of a TIME column as described in the SQLDA is 8 bytes, which is the
appropriate length for a character-string representation of the value.

A character-string representation must have an actual length that is not greater
than 255 bytes and must not be a CLOB.

Timestamp
A timestamp is a seven-part value (year, month, day, hour, minute, second, and
microsecond) that designates a date and time as defined previously, except that the
time includes a fractional specification of microseconds.

The length of a TIMESTAMP column as described in the SQLDA is 26 bytes, which
is the appropriate length for the character-string representation of the value.

18. Note that historical dates do not always follow the Gregorian calendar. For example, dates between 1582-10-04 and 1582-10-15
are accepted as valid dates although they never existed in the Gregorian calendar.

Data types

Chapter 2. Language elements 51

A character-string representation must have an actual length that is not greater
than 255 bytes and must not be a CLOB.

Datetime host variables
Character string host variables are normally used to contain date, time, and
timestamp values. However, date, time, and timestamp host variables can also be
specified in Java as java.sql.Date, java.sql.Time, and java.sql.Timestamp
respectively.

String representations of datetime values
Values whose data types are DATE, TIME, or TIMESTAMP are represented in an
internal form that is transparent to the user of SQL. Dates, times, and timestamps,
however, can also be represented by character strings. These representations
directly concern the user of SQL since for many host languages there are no
constants or variables whose data types are DATE, TIME, or TIMESTAMP. Thus, to
be retrieved, a datetime value must be assigned to a character-string variable. The
format of the resulting string will depend on the default date format and the default
time format in effect when the statement was prepared. The mechanism to specify
the default date format and default time format is product-specific.

When a valid string representation of a datetime value is used in an operation with
an internal datetime value, the string representation is converted to the internal
form of the date, time, or timestamp before the operation is performed. The default
date format and default time format specifies the date and time format that will be
used to interpret the string. If the CCSID of the string is not the same as the
default CCSID for SBCS data, the string is first converted to the coded character set
identified by the default CCSID before the string is converted to the internal form
of the datetime value.

The following sections define the valid string representations of datetime values.

Date strings: A string representation of a date is a character string that starts with
a digit and has a length of at least 8 characters. Trailing blanks can be included.
Leading zeros can be omitted from the month and day portions. Valid string
formats for dates are listed in Table 3. Each format is identified by name and
includes an associated abbreviation (for use by the CHAR function) and an
example of its use.

Table 3. Formats for String Representations of Dates

Format Name Abbreviation Date Format Example

International Standards Organization ISO yyyy-mm-dd 1987-10-12

IBM USA standard USA mm/dd/yyyy 10/12/1987

IBM European standard EUR dd.mm.yyyy 12.10.1987

Japanese industrial standard Christian era JIS yyyy-mm-dd 1987-10-12

Time strings: A string representation of a time is a character string that starts
with a digit and has a length of at least 4 characters. Trailing blanks can be
included; a leading zero can be omitted from the hour part of the time and
seconds can be omitted entirely. If seconds are omitted, an implicit specification of
0 seconds is assumed. Thus, 13:30 is equivalent to 13:30:00. Although all products
accept times of 24:00:00, the handling of such times during arithmetic operations is
product-specific.

Data types

52 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

G
G
G

Valid string formats for times are listed in Table 4. Each format is identified by
name and includes an associated abbreviation (for use by the CHAR function) and
an example of its use.

Table 4. Formats for String Representations of Times

Format Name Abbreviation Time Format Example

International Standards Organization ISO hh.mm.ss 19 13.30.05

IBM USA standard USA hh:mm AM or PM 1:30 PM

IBM European standard EUR hh.mm.ss 13.30.05

Japanese industrial standard Christian era JIS hh:mm:ss 13:30:05

In the USA time format, the hour must not be greater than 12 and cannot be 0
except for the special case of 00:00 AM. Using the ISO format of the 24-hour clock,
the correspondence between the USA format and the 24-hour clock is as follows:

USA Format 24-Hour Clock

12:01 AM through 12:59 AM 00:01:00 through 00:59:00
01:00 AM through 11:59 AM 01:00:00 through 11:59:00
12:00 PM (noon) through 11:59 PM 12:00:00 through 23:59:00
12:00 AM (midnight) 24:00:00
00:00 AM (midnight) 00:00:00

In the USA format, a single space character exists between the minutes portion of
the time of day and the AM or PM.

Timestamp strings: A string representation of a timestamp is a character string
that starts with a digit and has a length of at least 16 characters. The complete
string representation of a timestamp has the form yyyy-mm-dd-hh.mm.ss.nnnnnn.
Trailing blanks can be included. Leading zeros can be omitted from the month,
day, and hour part of the timestamp. Trailing zeros can be truncated or omitted
entirely from microseconds. If any trailing digit of the microseconds portion is
omitted, an implicit specification of 0 is assumed. Thus, 1990-3-2-8.30.00.10 is
equivalent to 1990-03-02-08.30.00.100000. Although all products accept timestamps
whose time part is 24.00.00.000000, the handling of such timestamps during
arithmetic operations is product-specific.

User-defined types

Distinct types
A distinct type is a user-defined data type that shares its internal representation
with a built-in type (its source type), but is considered to be a separate and
incompatible type for most operations. For example, the semantics for a picture
type, a text type, and an audio type that all use the built-in data type BLOB for
their internal representation are quite different. A distinct type is created using
“CREATE DISTINCT TYPE” on page 319.

For example, the following statement creates a distinct type named AUDIO:
CREATE DISTINCT TYPE AUDIO AS BLOB (1M)

19. This is an earlier version of the International Standards Organization format. The JIS format is equivalent to the current
International Standards Organization format.

Data types

Chapter 2. Language elements 53

G
G
G

Although AUDIO has the same representation as the built-in data type BLOB, it is
considered to be a separate type that is not comparable to a BLOB or to any other
type. This inability to compare AUDIO to other types allows functions to be
created specifically for AUDIO and assures that these functions cannot be applied
to other types (such as pictures or text).

The name of a distinct type is qualified with a schema name. The implicit schema
name for an unqualified name depends upon the context in which the distinct type
appears. If an unqualified distinct type name is used:
v In a CREATE DISTINCT TYPE or the object of a DROP, COMMENT, GRANT, or

REVOKE statement, the normal process of qualification by authorization ID is
used to determine the schema name.

v In any other context, the SQL path is used to determine the schema name. The
schemas in the SQL path are searched, in sequence, and the first schema in the
SQL path is selected such that the distinct type exists in the schema and the user
has authorization to use the type. For a description of the SQL path, see “SQL
path” on page 40.

A distinct type does not automatically acquire the functions and operators of its
source type because they might not be meaningful. (For example, it might make
sense for a “length” function of the AUDIO type to return the length in seconds
rather than in bytes.) Instead, distinct types support strong typing. Strong typing
ensures that only the functions and operators that are explicitly defined on a
distinct type can be applied to that distinct type. However, a function or operator
of the source type can be applied to the distinct type by creating an appropriate
user-defined function. The user-defined function must be sourced on the existing
function that has the source type as a parameter. For example, the following series
of SQL statements shows how to create a distinct type named MONEY based on
data type DECIMAL(9,2), how to define the + operator for the distinct type, and
how the operator might be applied to the distinct type:
CREATE DISTINCT TYPE AUDIO AS BLOB (1M)

CREATE DISTINCT TYPE MONEY AS DECIMAL(9,2) WITH COMPARISONS
CREATE FUNCTION "+"(MONEY,MONEY)

RETURNS MONEY
SOURCE "+"(DECIMAL(9,2),DECIMAL(9,2))

CREATE TABLE SALARY_TABLE
(SALARY MONEY,
COMMISSION MONEY)

SELECT "+"(SALARY, COMMISSION) FROM SALARY_TABLE

A distinct type is subject to the same restrictions as its source type.

The comparison operators are automatically generated for distinct types, except
those that are sourced on a CLOB, DBCLOB, or BLOB. In addition, functions are
generated for every distinct type that support casting from the source type to the
distinct type and from the distinct type to the source type. For example, for the
AUDIO type created above, these are the generated cast functions:

Name of generated cast
function

Parameter list Returns data type

schema-name.BLOB schema-name.AUDIO BLOB
schema-name.AUDIO BLOB schema-name.AUDIO

Data types

54 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Promotion of data types
Data types can be classified into groups of related data types. Within such groups,
a precedence order exists where one data type is considered to precede another
data type. This precedence enables the database manager to support the promotion
of one data type to another data type that appears later in the precedence ordering.
For example, the data type CHAR can be promoted to VARCHAR; INTEGER can
be promoted to DOUBLE PRECISION; but CLOB is NOT promotable to
VARCHAR.

The database manager considers the promotion of data types when:
v performing function resolution (see “Function resolution” on page 94)
v casting distinct types (see “Casting between data types” on page 56)
v assigning built-in data types to distinct types(see “Distinct type assignments” on

page 65).

For each data type, Table 5 shows the precedence list (in order) that the database
manager uses to determine the data types to which a given data type can be
promoted. The table indicates that the best choice is the same data type and not
promotion to another data type. Note that the table also shows data types that are
considered equivalent during the promotion process. For example, CHARACTER
and GRAPHIC are considered to be equivalent data types.

Table 5. Data Type Precedence Table

Data Type Data Type Precedence List (in best-to-worst order)

SMALLINT SMALLINT, INTEGER, decimal, real, double

INTEGER INTEGER, decimal, real, double

decimal decimal, real, double

real real, double

double double

CHAR or
GRAPHIC

CHAR or GRAPHIC, VARCHAR or VARGRAPHIC, CLOB or DBCLOB

VARCHAR or
VARGRAPHIC

VARCHAR or VARGRAPHIC, CLOB or DBCLOB

CLOB or
DBCLOB

CLOB or DBCLOB

BLOB BLOB

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

udt same udt

Promotion of data types

Chapter 2. Language elements 55

Table 5. Data Type Precedence Table (continued)

Data Type Data Type Precedence List (in best-to-worst order)

Note:

The lower case types above are defined as follows:

decimal
= DECIMAL(p,s) or NUMERIC(p,s)

real = REAL or FLOAT(n) where n is a specification for single precision floating point

double = DOUBLE, DOUBLE PRECISION, FLOAT or FLOAT(n) where n is a specification
for double precision floating point

udt = a user-defined type

Shorter and longer form synonyms of the data types listed are considered to be the same as
the synonym listed.

Character and graphic strings are only compatible for Unicode data.

Casting between data types
There are many occasions when a value with a given data type needs to be cast
(changed) to a different data type or to the same data type with a different length,
precision or scale. Data type promotion (as defined in “Promotion of data types”
on page 55) is one example when a value with one data type needs to be cast to a

new data type. A data type that can be changed to another data type is castable
from the source data type to the target data type.

The casting of one data type to another can occur implicitly or explicitly. The cast
functions or CAST specification (see “CAST specification” on page 112) can be used
to explicitly change a data type. The database manager might implicitly cast data
types during assignments that involve a distinct type (see “Distinct type
assignments” on page 65). In addition, when a sourced user-defined function is
created, the data types of the parameters of the source function must be castable to
the data types of the function that is being created (see “CREATE FUNCTION
(Sourced)” on page 350).

If truncation occurs when a character or graphic string is cast to another data type,
a warning occurs if any non-blank characters are truncated. This truncation
behavior is similar to retrieval assignment of character or graphic strings (see
“Retrieval assignment” on page 63).

If truncation occurs when casting to a binary string, an error is returned.

For casts that involve a distinct type as either the data type to be cast to or from,
Table 6 shows the supported casts. For casts between built-in data types, Table 7 on
page 58 shows the supported casts.

Table 6. Supported casts when a distinct type is involved

Data type ... Is castable to data type ...

Distinct type DT Source data type of distinct type DT

Source data type of distinct type DT Distinct type DT

Distinct type DT Distinct type DT

Promotion of data types

56 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 6. Supported casts when a distinct type is involved (continued)

Data type ... Is castable to data type ...

Data type A Distinct type DT where A is promotable to the source data type of distinct
type DT (see “Promotion of data types” on page 55)

INTEGER Distinct type DT if DT’s source data type is SMALLINT

DOUBLE Distinct type DT if DT’s source data type is REAL

VARCHAR Distinct type DT if DT’s source data type is CHAR or GRAPHIC

VARGRAPHIC Distinct type DT if DT’s source data type is GRAPHIC or CHAR

Character and graphic strings are only compatible for Unicode data.

When a distinct type is involved in a cast, a cast function that was generated when
the distinct type was created is used. How the database manager chooses the
function depends on whether function notation or the CAST specification syntax is
used. For more information, see “Function resolution” on page 94, and “CAST
specification” on page 112. Function resolution is used for both. However, in a
CAST specification, when an unqualified distinct type is specified as the target
data type, the database manager resolves the schema name of the distinct type and
then uses that schema name to locate the cast function.

The following table describes the supported casts between built-in data types.

Casting between data types

Chapter 2. Language elements 57

Table 7. Supported Casts between Built-in Data Types

Target Data Type →

Source Data Type ↓

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

D
E
C
I

M
A
L

N
U
M
E
R
I
C

R
E
A
L

D
O
U
B
L
E

C
H
A
R

V
A
R
C
H
A
R

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

D
B
C
L
O
B

B
L
O
B

D
A
T
E

T
I

M
E

T
I

M
E
S
T
A
M
P

SMALLINT Y Y Y Y Y Y Y - - - - - - - - -

INTEGER Y Y Y Y Y Y Y - - - - - - - - -

DECIMAL Y Y Y Y Y Y Y - - - - - - - - -

NUMERIC Y Y Y Y Y Y Y - - - - - - - - -

REAL Y Y Y Y Y Y - - - - - - - - - -

DOUBLE Y Y Y Y Y Y - - - - - - - - - -

CHAR Y Y Y Y - - Y Y Y Y1 Y1 - Y Y Y Y

VARCHAR Y Y Y Y - - Y Y Y Y1 Y1 - Y Y Y Y

CLOB - - - - - - Y Y Y - - Y1 Y - - -

GRAPHIC - - - - - - Y1 Y1 - Y Y Y Y - - -

VARGRAPHIC - - - - - - Y1 Y1 - Y Y Y Y - - -

DBCLOB - - - - - - - - - Y Y Y Y - - -

BLOB - - - - - - - - - - - - Y - - -

DATE - - - - - - Y Y - - - - - Y - -

TIME - - - - - - Y Y - - - - - - Y -

TIMESTAMP - - - - - - Y Y - - - - - Y Y Y

Notes

1 The cast is only allowed if the encoding scheme of the data type is Unicode.

The following table indicates where to find the rules that apply for each cast:

Table 8. Rules for Casting to a Data Type

Target Data Type Rules

SMALLINT See “SMALLINT” on page 218.

INTEGER See “INTEGER or INT” on page 187.

DECIMAL See “DECIMAL or DEC” on page 171.

NUMERIC See “DECIMAL or DEC” on page 171.

REAL See “REAL” on page 210.

DOUBLE See “DOUBLE_PRECISION or DOUBLE” on page 175.

CHAR See “CHAR” on page 153.

VARCHAR See “VARCHAR” on page 236.

CLOB See “CLOB” on page 158.

Casting between data types

58 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 8. Rules for Casting to a Data Type (continued)

Target Data Type Rules

GRAPHIC
See the rules for string assignment to a host variable in “Assignments and comparisons”
on page 60.

VARGRAPHIC
See the rules for string assignment to a host variable in “Assignments and comparisons”
on page 60.

DBCLOB See “DBCLOB” on page 170.

BLOB See “BLOB” on page 151.

DATE See “DATE” on page 163.

TIME See “TIME” on page 226.

TIMESTAMP
If the source data type is a character string, see “TIMESTAMP” on page 227, where one
operand is specified.

Casting between data types

Chapter 2. Language elements 59

Assignments and comparisons
The basic operations of SQL are assignment and comparison. Assignment
operations are performed during the execution of statements such as CALL,
INSERT, UPDATE, FETCH, SELECT INTO, and VALUES INTO. Comparison
operations are performed during the execution of statements that include
predicates and other language elements such as MAX, MIN, DISTINCT, GROUP
BY, and ORDER BY.

The basic rule for both operations is that the data type of the operands involved
must be compatible. The compatibility rule also applies to UNION and functions
such as COALESCE and CONCAT. The compatibility matrix is as follows:

Operands Binary
Integer

Decimal
Number

Floating
Point

Character
String

Graphic
String

Binary
String

Date Time Time-
stamp

Distinct
Type

Binary
Integer

Yes Yes Yes No No No No No No 4

Decimal
Number

Yes Yes Yes No No No No No No 4

Floating
Point

Yes Yes Yes No No No No No No 4

Character
String

No No No Yes 1 2 3 3 3 4

Graphic
String

No No No 1 Yes No No No No 4

Binary
String

No No No 2 No Yes No No No 4

Date No No No 3 No No Yes No No 4

Time No No No 3 No No No Yes No 4

Time-
stamp

No No No 3 No No No No Yes 4

Distinct
Type

4 4 4 4 4 4 4 4 4 4

Notes:

1. Bit data and graphic strings are not compatible. For DB2 UDB for LUW, character strings and graphic strings are
compatible only in a Unicode database.

2. No character strings, even those that are defined with the FOR BIT DATA attribute, are compatible with binary
strings.

3. The compatibility of datetime values and character strings is limited to assignment and comparison:

v Datetime values can be assigned to character-string columns and to character-string variables as explained in
“Datetime assignments” on page 64.

v A valid string representation of a date can be assigned to a date column or compared with a date.

v A valid string representation of a time can be assigned to a time column or compared with a time.

v A valid string representation of a timestamp can be assigned to a timestamp column or compared with a
timestamp.

4. A value with a distinct type is comparable only to a value that is defined with the same distinct type. In general,
the database manager supports assignments between a distinct type value and its source data type. For additional
information, see “Distinct type assignments” on page 65.

A basic rule for assignment operations is that a null value cannot be assigned to:
v a column that cannot contain null values

Assignments and comparisons

60 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

v a host variable that does not have an associated indicator variable
v a Java host variable that is a primitive type.

See “References to host variables” on page 87 for a discussion of indicator
variables.

For any comparison that involves null values, see the description of the
comparison operation for information about the specific handling of null values.

Numeric assignments
The basic rule for numeric assignments is that the whole part of a decimal or
integer number cannot be truncated. If necessary, the fractional part of a decimal
number is truncated. 20

Decimal or integer to floating-point
Floating-point numbers are approximations of real numbers. Therefore, when a
decimal or integer number is assigned to a floating-point column or variable, the
result may not be identical to the original number.

Floating-point or decimal to integer
When a floating-point or decimal number is assigned to an integer column or
variable, the fractional part of the number is lost.

Decimal to decimal
When a decimal number is assigned to a decimal column or variable, the number
is converted, if necessary, to the precision and the scale of the target. The necessary
number of leading zeros is added or eliminated, and the necessary number of
trailing zeros in the fractional part of the number is added or eliminated.

Integer to decimal
When an integer is assigned to a decimal column or variable, the number is
converted first to a temporary decimal number and then, if necessary, to the
precision and scale of the target. The precision and scale of the temporary decimal
number is 5,0 for a small integer or 11,0 for a large integer.

Floating-point to decimal
When a floating-point number is assigned to a decimal column or variable, the
number is converted first to a temporary decimal number and then, if necessary, to
the precision and scale of the target. The conversion from floating point to decimal
involves rounding and the selection of a suitable precision and scale for the
decimal number. The precision is product-specific and dependent on whether the
floating-point number is a single- or double-precision number. The scale is given
the largest possible value that allows the whole part of the number to be
represented without loss of significance.

Assignments to COBOL integers
Assignment to COBOL integer variables uses the full size of the integer. Thus, the
value placed in the COBOL data item field may be out of the range of values.

Examples:

v In COBOL, assume that COL1 contains a value of 12345. The following SQL
statement results in the value 12345 being placed in A, even though A has been
defined with only 4 digits:

20. If truncation happens on assignment to a host variable with an indicator variable, the indicator variable may be set to -2. See
“References to host variables” on page 87 for more information.

Assignments and comparisons

Chapter 2. Language elements 61

G
G

01 A PIC S9999 BINARY.
EXEC SQL SELECT COL1

INTO :A
FROM TABLEX

END-EXEC.

v Notice, however, that the following COBOL statement results in 2345 (and not
12345) being placed in A:

MOVE 12345 TO A.

String assignments
There are two types of string assignments:
v Storage assignment is when a value is assigned to a column or a parameter of a

function or procedure.
v Retrieval assignment is when a value is assigned to a host variable.

Binary string assignments

Storage assignment: The basic rule is that the length of a string assigned to a
column or parameter of a function or procedure must not be greater than the
length attribute of the column or parameter. If the string is longer than the length
attribute of that column or parameter, an error is returned.

Retrieval assignment: The length of a string assigned to a host variable can be
greater than the length attribute of the host variable. When a string is assigned to a
variable and the string is longer than the length attribute of the variable, the string
is truncated on the right by the necessary number of characters. When this occurs,
a warning is returned (SQLSTATE 01004) and the value ’W’ is assigned to the
SQLWARN1 field of the SQLCA. For a description of the SQLCA, see Appendix C,
“SQLCA (SQL communication area)”, on page 567.

When a string of length n is assigned to a varying-length string variable with a
maximum length greater than n, the bytes after the nth byte of the variable are
undefined.

Character and graphic string assignments
The following rules apply when both the source and the target are strings. When a
datetime data type is involved, see “Datetime assignments” on page 64. For the
special considerations that apply when a distinct type is involved in an
assignment, especially to a host variable, see “Distinct type assignments” on
page 65.

Storage assignment: The basic rule is that the length of a string assigned to a
column or parameter of a function or procedure must not be greater than the
length attribute of the column or the parameter. Trailing blanks are included in the
length of the string. When the length of the string is greater than the length
attribute of the column or the parameter, one of the following occurs:
v the string is assigned and trailing blanks are truncated to fit the length attribute

of the target column or parameter. For DB2 UDB for z/OS and OS/390, for OUT
parameters , if the length of the string including trailing blanks is greater than
the length attribute of the parameter, then an error is returned.

v the string is not assigned and an error is returned because truncation to fit the
length attribute of the column or parameter would remove non-blank characters.

When a string is assigned to a fixed-length column or parameter and the length of
the string is less than the length attribute of the target, the string is padded on the

Assignments and comparisons

62 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
G

right with the necessary number of blanks. The pad character is always a blank,
even for columns defined with the FOR BIT DATA attribute.

Retrieval assignment: The length of a string assigned to a host variable can be
greater than the length attribute of the host variable. When a string is assigned to a
host variable and the length of the string is greater than the length attribute of the
host variable, the string is truncated on the right by the necessary number of
characters. When this occurs, a warning is returned and the value ’W’ is assigned
to the SQLWARN1 field of the SQLCA. Furthermore, if an indicator variable is
provided and the source of the value is not a LOB, the indicator variable is set to
the original length of the string. The truncation result of an improperly formed
mixed string is unpredictable.

When a character string is assigned to a fixed-length variable and the length of the
string is less than the length attribute of the target, the string is padded to the right
with the necessary number of blanks. The pad character is always a blank, even for
strings defined with the FOR BIT DATA attribute.

When a string of length n is assigned to a varying-length string variable with a
maximum length greater than n, the characters after the nth character of the
variable are undefined.

Assignments to mixed strings: Assignment of a character string to a host variable
can result in truncation of the mixed data string. Truncation removes complete
characters from the right side of the mixed data string. Removal of a character that
is longer than a single byte may cause the length of the result string to be less than
the length attribute of the host variable. If padding is then required, the single-byte
blank character is used.

Assignments to C NUL-terminated strings: When a fixed-length or
varying-length string of length n is assigned to a C NUL-terminated string variable
with a length greater than n+1, the string is padded on the right with x-n-1 blanks,
where x is the length of the variable. The padded string is then assigned to the
variable, and a NUL is placed in the next character position. 21

In DB2 UDB for z/OS and OS/390, if a varying-length string is assigned to a C
NUL-terminated string, the value of a varying-length string column is assigned to
the first n character positions of the variable, and a NUL is placed in the next
character position.

Conversion rules for assignments: A string assigned to a column, variable, or
parameter is first converted, if necessary, to the coded character set of the target.
Character conversion is necessary only if all of the following conditions are true:
v The CCSIDs are different.
v Neither CCSID identifies bit data.
v The string is neither null nor empty.
v The CCSID conversion selection table (“Coded character sets and CCSIDs” on

page 22) indicates that conversion is necessary.

An error is returned if:

21. In DB2 UDB for iSeries and DB2 UDB for LUW, a program preparation option must be used for the padding and NUL
placement to occur as described. For DB2 UDB for iSeries use the program preparation option *CNULRQD. For DB2 UDB for
LUW, use the program preparation option LANGLEVEL SQL92E.

Assignments and comparisons

Chapter 2. Language elements 63

G
G
G
G

v The CCSID Conversion Selection Table does not contain any information about
the pair of CCSIDs.

v A character of the string cannot be converted, and the operation is an
assignment to a column or assignment to a host variable without an indicator
variable. For example, a DBCS character cannot be converted to a host variable
with an SBCS CCSID.

A warning occurs if:
v A character of the string is converted to the substitution character.
v A character of the string cannot be converted, and the operation is assignment to

a host variable with an indicator variable. For example, a DBCS character cannot
be converted to a host variable with an SBCS CCSID. In this case, the string is
not assigned to the host variable and the indicator variable is set to -2.

In DB2 UDB for LUW, if a character of the string cannot be converted, an error is
returned regardless of whether an indicator variable is provided.

In a DB2 UDB for LUW application server in DRDA, input host variables are
converted to the code page of the application server, even if they are assigned,
compared, or combined with a column that is defined as FOR BIT DATA. If the
SQLDA has been modified to identify the input host variable as FOR BIT DATA,
conversion is not performed.

Datetime assignments
A value assigned to a DATE column, a DATE variable, or a DATE parameter must
be a date or a valid string representation of a date. A date can be assigned only to
a DATE column, a character-string column, or a character-string variable. A value
assigned to a TIME column, a TIME variable, or a TIME parameter must be a time
or a valid string representation of a time. A time can be assigned only to a TIME
column, a character-string column, or a character-string variable. A value assigned
to a TIMESTAMP column, a TIMESTAMP variable, or a TIMESTAMP parameter
must be a timestamp or a valid string representation of a timestamp. A timestamp
can be assigned only to a TIMESTAMP column, a character-string column, or a
character-string variable.

When a datetime value is assigned to a character-string variable or column, it is
converted to its string representation. Leading zeros are not omitted from any part
of the date, time, or timestamp. The required length of the target varies depending
on the format of the string representation. If the length of the target is greater than
required, it is padded on the right with blanks. If the length of the target is less
than required, the result depends on the type of datetime value involved, and on
the type of target.
v If the target is a character column, truncation is not allowed. The length attribute

of the column must be at least 10 for a date, 8 for a time, and 26 for a
timestamp.

v When the target is a host variable, the following rules apply:
DATE

The length of the variable must not be less than 10.

TIME

If the USA format is used, the length of the variable must not be less than 8.
This format does not include seconds.

Assignments and comparisons

64 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

G
G
G
G
G

If the ISO, EUR, or JIS format is used, the length of the variable must not be
less than 5. If the length is 5, 6, or 7:
- The seconds part of the time is omitted from the result.
- SQLWARN1 is set to 'W'.
- If an indicator variable is provided, the seconds part of the time is

assigned to the indicator variable.
- If the length is 6 or 7, blank padding occurs so that the value is a valid

string representation of a time.

TIMESTAMP

The length of the variable must not be less than 19. If the length is between
19 and 25, the timestamp is truncated like a string, causing the omission of
one or more digits of the microsecond part. If the length is 20, the trailing
decimal point is replaced by a blank so that the value is a valid string
representation of a timestamp.

Distinct type assignments
The rules that apply to the assignments of distinct types to host variables are
different than the rules for all other assignments that involve distinct types.

Assignments to host variables
The assignment of a distinct type to a host variable is based on the source data
type of the distinct type. Therefore, the value of a distinct type is assignable to a
host variable only if the source data type of the distinct type is assignable to the
host variable.

Example: Assume that distinct type AGE was created with the following SQL
statement:

CREATE DISTINCT TYPE AGE AS SMALLINT WITH COMPARISONS

When the statement is executed, the following cast functions are also generated:
AGE (SMALLINT) RETURNS AGE
AGE (INTEGER) RETURNS AGE
SMALLINT (AGE) RETURNS SMALLINT

Next, assume that column STU_AGE was defined in table STUDENTS with distinct
type AGE. Now, consider this valid assignment of a student’s age to host variable
HV_AGE, which has an INTEGER data type:

SELECT STU_AGE INTO :HV_AGE FROM STUDENTS WHERE STU_NUMBER = 200

The distinct type value is assignable to host variable HV_AGE because the source
data type of the distinct type (SMALLINT) is assignable to the host variable
(INTEGER). If distinct type AGE had been sourced on a character data type such
as CHAR(5), the preceding assignment would be invalid because a character type
cannot be assigned to an integer type.

Assignments other than to host variables
A distinct type can be either the source or target of an assignment. Assignment is
based on whether the data type of the value to be assigned is castable to the data
type of the target. “Casting between data types” on page 56 shows which casts are
supported when a distinct type is involved. Therefore, a distinct type value can be
assigned to any target other than a host variable when:
v the target of the assignment has the same distinct type, or
v the distinct type is castable to the data type of the target.

Assignments and comparisons

Chapter 2. Language elements 65

Any value can be assigned to a distinct type when:
v the value to be assigned has the same distinct type as the target, or
v the data type of the assigned value is castable to the target distinct type.

Example: Assume that the source data type for distinct type AGE is SMALLINT:
CREATE DISTINCT TYPE AGE AS SMALLINT WITH COMPARISONS

Next, assume that two tables TABLE1 and TABLE2 were created with four
identical column descriptions:

AGECOL AGE
SMINTCOL SMALLINT
INTCOL INTEGER
DECCOL DECIMAL(6,2)

Using the following SQL statement and substituting various values for X and Y to
insert values into various columns of TABLE1 from TABLE2, Table 9 shows
whether the assignments are valid. The database manager uses assignment rules in
this INSERT statement to determine if X can be assigned to Y.

INSERT INTO TABLE1(Y)
SELECT X FROM TABLE2;

Table 9. Assessment of various assignments for the example INSERT statement

TABLE2.X TABLE1.Y Valid Reason

AGECOL AGECOL Yes Source and target are the same
distinct type.

SMINTCOL AGECOL Yes SMALLINT can be cast to AGE.

INTCOL AGECOL Yes INTEGER can be cast to AGE
(because AGE’s source type is
SMALLINT).

DECCOL AGECOL No DECIMAL cannot be cast to AGE.

AGECOL SMINTCOL Yes AGECOL can be cast to its source
type of SMALLINT.

AGECOL INTCOL No AGE cannot be cast to INTEGER.

AGECOL DECCOL No AGE cannot be cast to DECIMAL.

Assignments to LOB locators
When a LOB locator is used, it can only refer to LOB data. If a LOB locator is used
for the first fetch of a cursor, LOB locators must be used for all subsequent fetches.

Numeric comparisons
Numbers are compared algebraically; that is, with regard to sign. For example, −2
is less than +1.

If one number is an integer and the other number is decimal, the comparison is
made with a temporary copy of the integer that has been converted to decimal.

When decimal numbers with different scales are compared, the comparison is
made as if one of the numbers has been extended with trailing zeros so that its
fractional part has the same number of digits as the other number.

If one number is floating point and the other is integer, decimal, or single-precision
floating point, the comparison is made with a temporary copy of the other number

Assignments and comparisons

66 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

that has been converted to double-precision floating point. However, if a
single-precision floating-point number is compared to a floating-point constant, the
comparison is made with a single-precision form of the constant.

Two floating-point numbers are equal only if the bit configurations of their
normalized forms are identical.

String comparisons

Binary string comparisons
In general, comparisons that involve binary strings (BLOBs) are not supported,
with the exception of the LIKE, EXISTS, and NULL predicates.

Character and graphic string comparisons
Two character or graphic strings are compared by comparing the corresponding
bytes of each character or graphic string. If the strings do not have the same
length, the comparison is made with a temporary copy of the shorter string that
has been padded on the right with blanks so that it has the same length as the
other string. The pad character is always a blank, even for bit data.

The relationship between two unequal strings is determined by the comparison of
the first pair of unequal bytes from the left end of the string. 22

Note that the encoding scheme used for the data determines the sort sequence,
which impacts the resulting order. 23

In an application that will run in multiple environments, the same sort sequence
(which depends on the CCSIDs of the environments) must be used to ensure
identical results. The following table illustrates the differences between EBCDIC,
ASCII, and the DB2 UDB for LUW default sort sequence for United States English
by showing a list that is sorted according to each one.

Table 10. Sort sequence differences
ASCII and Unicode EBCDIC DB2 UDB for LUW Default

0000 @@@@ 0000
9999 co-op 9999
@@@@ coop @@@@
COOP piano forte co-op
PIANO-FORTE piano-forte COOP
co-op COOP coop
coop PIANO-FORTE piano forte
piano forte 0000 PIANO-FORTE
piano-forte 9999 piano-forte

Two varying-length strings with different lengths are equal if they differ only in
the number of trailing blanks. In operations that select one value from a set of such
values, the value selected is arbitrary. The operations that can involve such an
arbitrary selection are DISTINCT, MAX, MIN, UNION, and references to a
grouping column. See “group-by-clause” on page 257 for more information about
the arbitrary selection involved in references to a grouping column.

22. In DB2 UDB for LUW, this statement is true only if a sort sequence with unique weights is chosen when the database is created.

23. In DB2 UDB for LUW, to get this behavior, specify the IDENTITY collation on CREATE DATABASE. Product-specific options are
available on DB2 UDB for iSeries and DB2 UDB for LUW to change the sort sequence independent of the encoding scheme.

Assignments and comparisons

Chapter 2. Language elements 67

Conversion rules for comparison
When two strings are compared, one of the strings is first converted, if necessary,
to the coded character set of the other string. Character conversion is necessary
only if all of the following conditions are true:
v The CCSIDs of the two strings are different.
v Neither CCSID is X'FFFF'.
v The string selected for conversion is neither null nor empty.
v The CCSID Conversion Selection Table (“Coded character sets and CCSIDs” on

page 22) indicates that conversion is necessary.

If a Unicode string and a non-Unicode string are compared, any necessary
conversion applies to the non-Unicode string. If an SBCS string and a MIXED
string are compared, any necessary conversion applies to the SBCS string.
Otherwise, the string selected for conversion depends on the type of each operand.
The following table shows which operand is selected for conversion, given the
operand types.

Table 11. Selecting the operand for character conversion

First Operand Second Operand

Column
Value

Derived
Value24

Constant Special
Register

Host
Variable

Column Value second second second second second

Derived Value24 first second second second second

Constant first first second second second

Special Register first first second second second

Host Variable first first first first second

A host variable that contains data in a foreign encoding scheme is always
effectively converted to the native encoding scheme before it is used in any
operation. The preceding rules are based on the assumption that this conversion
has already occurred.

An error is returned if a character of the string cannot be converted or if the
CCSID Conversion Selection Table (“Coded character sets and CCSIDs” on page 22)
is used but does not contain any information about the pair of CCSIDs. A warning
occurs if a character of the string is converted to the substitution character.

Datetime comparisons
A DATE, TIME, or TIMESTAMP value can be compared either with another value
of the same data type or with a string representation of a value of that data type.
All comparisons are chronological, which means the further a point in time is from
January 1, 0001, the greater the value of that point in time.

Comparisons that involve TIME values and string representations of time values
always include seconds. If the string representation omits seconds, zero seconds
are implied.

Comparisons that involve TIMESTAMP values are chronological without regard to
representations that might be considered equivalent. Thus, the following predicate
is true:

24. In DB2 UDB for z/OS and OS/390, derived values are converted before constants and special registers.

Assignments and comparisons

68 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

TIMESTAMP(’1990-02-23-00.00.00’) > ’1990-02-22-24.00.00’

Distinct type comparisons
A value with a distinct type can be compared only to another value with exactly
the same distinct type.

For example, assume that distinct type YOUTH and table CAMP_DB2_ROSTER
table were created with the following SQL statements:

CREATE DISTINCT TYPE YOUTH AS INTEGER WITH COMPARISONS

CREATE TABLE CAMP_DB2_ROSTER
(NAME VARCHAR(20),
ATTENDEE_NUMBER INTEGER NOT NULL,
AGE YOUTH,
HIGH_SCHOOL_LEVEL YOUTH)

The following comparison is valid because AGE and HIGH_SCHOOL_LEVEL have
the same distinct type:

SELECT * FROM CAMP_DB2_ROSTER
WHERE AGE > HIGH_SCHOOL_LEVEL

The following comparison is not valid:
┌───────────┐

SELECT * FROM CAMP_DB2_ROSTER │ INCORRECT │
WHERE AGE > ATTENDEE_NUMBER └───────────┘

However, AGE can be compared to ATTENDEE_NUMBER by using a cast function
or CAST specification to convert between the distinct type and the source type. All
of the following comparisons are valid:

SELECT * FROM CAMP_DB2_ROSTER
WHERE AGE > YOUTH(ATTENDEE_NUMBER)

SELECT * FROM CAMP_DB2_ROSTER
WHERE AGE > CAST(ATTENDEE_NUMBER AS YOUTH)

SELECT * FROM CAMP_DB2_ROSTER
WHERE INTEGER(AGE) > ATTENDEE_NUMBER

SELECT * FROM CAMP_DB2_ROSTER
WHERE CAST(AGE AS INTEGER) > ATTENDEE_NUMBER

Assignments and comparisons

Chapter 2. Language elements 69

Rules for result data types
The data types of a result are determined by rules which are applied to the
operands in an operation. This section explains those rules.

These rules apply to:
v Corresponding columns in UNION or UNION ALL operations
v Result expressions of a CASE expression
v Arguments of the scalar function COALESCE
v Expression values of the IN list of an IN predicate

For the result data type of expressions that involve the operators /, *, + and -, see
“With arithmetic operators” on page 99. For the result data type of expressions that
involve the CONCAT operator, see “With the concatenation operator” on page 101.

The data type of the result is determined by the data type of the operands. The
data types of the first two operands determine an intermediate result data type,
this data type and the data type of the next operand determine a new intermediate
result data type, and so on. The last intermediate result data type and the data
type of the last operand determine the data type of the result. For each pair of data
types, the result data type is determined by the sequential application of the rules
summarized in the tables that follow.

If neither operand column allows nulls, the result does not allow nulls. Otherwise,
the result allows nulls.

If the data type and attributes of any operand column are not the same as those of
the result, the operand column values are converted to conform to the data type
and attributes of the result. The conversion operation is exactly the same as if the
values were assigned to the result. For example,
v If one operand column is CHAR(10), and the other operand column is CHAR(5),

the result is CHAR(10), and the values derived from the CHAR(5) column are
padded on the right with five blanks.

v If the whole part of a number cannot be preserved then an error is returned.

Numeric operands
Numeric types are compatible only with other numeric types.

If one operand is... And the other operand
is...

The data type of the result is...

SMALLINT SMALLINT SMALLINT

INTEGER SMALLINT INTEGER

INTEGER INTEGER INTEGER

DECIMAL(w,x) SMALLINT DECIMAL(p,x) where
p = min(31,x+max(w-x,5))

DECIMAL(w,x) INTEGER DECIMAL(p,x) where
p = min(31,x+max(w-x,11))

DECIMAL(w,x) DECIMAL(y,z) or
NUMERIC(y,z)

DECIMAL(p,s) where
p = min(31,max(x,z)+max(w-x,y-z)) and
s = max(x,z)

NUMERIC(w,x) SMALLINT NUMERIC(p,x) where
p = min(31,x+max(w-x,5))

Assignments and comparisons

70 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

If one operand is... And the other operand
is...

The data type of the result is...

NUMERIC(w,x) INTEGER NUMERIC(p,x) where
p = min(31,x+max(w-x,11))

NUMERIC(w,x) NUMERIC(y,z) NUMERIC(p,s) where
p = min(31,max(x,z)+max(w-x,y-z)) and
s = max(x,z)

REAL REAL REAL

REAL DECIMAL, NUMERIC,
INTEGER, or SMALLINT

DOUBLE

DOUBLE any numeric DOUBLE

Character string operands
Character strings are compatible with other character strings.

If one operand is... And the other operand
is...

The data type of the result is...

CHAR(x) CHAR(y) CHAR(z) where z = max(x,y)

VARCHAR(x) CHAR(y) or
VARCHAR(y)

VARCHAR(z) where z = max(x,y)

CLOB(x) CHAR(y), VARCHAR(y),
or CLOB(y)

CLOB(z) where z = max(x,y)

The CCSID of the result character string will be derived based on the “Conversion
rules for operations that combine strings” on page 73.

Graphic string operands
Graphic strings are compatible with other graphic strings.

If one operand is... And the other operand
is...

The data type of the result is...

GRAPHIC(x) GRAPHIC(y) GRAPHIC(z) where z = max(x,y)

VARGRAPHIC(x) GRAPHIC(y) OR
VARGRAPHIC(y)

VARGRAPHIC(z) where z = max(x,y)

DBCLOB(x) GRAPHIC(y),
VARGRAPHIC(y), or
DBCLOB(y)

DBCLOB(z) where z = max (x,y)

The CCSID of the result graphic string will be derived based on the “Conversion
rules for operations that combine strings” on page 73.

Binary string operands
Binary strings (BLOBs) are compatible only with other binary strings (BLOBs). The
data type of the result is a BLOB. Other data types can be treated as a BLOB data
type by using the BLOB scalar function to cast the data type to a BLOB. The length
of the result BLOB is the largest length of all the data types.

Assignments and comparisons

Chapter 2. Language elements 71

If one operand is... And the other operand
is...

The data type of the result is...

BLOB(x) BLOB(y) BLOB(z) where z = max(x,y)

Datetime operands
A DATE type is compatible with another DATE type or any character string
expression that contains a valid string representation of a date. A string
representation must not be a CLOB and must have an actual length that is not
greater than 255 bytes. The data type of the result is DATE.

A TIME type is compatible with another TIME type, or any character string
expression that contains a valid string representation of a time. A string
representation must not be a CLOB and must have an actual length that is not
greater than 255 bytes. The data type of the result is TIME.

A TIMESTAMP type is compatible with another TIMESTAMP type, or any
character string expression that contains a valid string representation of a
timestamp. A string representation must not be a CLOB and must have an actual
length that is not greater than 255 bytes. The data type of the result is
TIMESTAMP.

If one operand is... And the other operand
is...

The data type of the result is...

DATE DATE, CHAR(y) or
VARCHAR(y)

DATE

TIME TIME, CHAR(y) or
VARCHAR(y)

TIME

TIMESTAMP TIMESTAMP, CHAR(y)
or VARCHAR(y)

TIMESTAMP

Distinct type operands
A user-defined distinct type is compatible only with the same user-defined distinct
type. The data type of the result is the user-defined distinct type.

If one operand is... And the other operand
is...

The data type of the result is...

Distinct type Distinct type Distinct type

Assignments and comparisons

72 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Conversion rules for operations that combine strings
The operations that combine strings are concatenation, UNION, and UNION ALL.
These rules also apply to CASE expressions, the IN predicate, and the COALESCE
and CONCAT scalar functions. In each case, the CCSID of the result is determined
at bind time, and the execution of the operation may involve conversion of strings
to the coded character set identified by that CCSID.

The CCSID of the result is determined by the CCSIDs of the operands. The CCSIDs
of the first two operands determine an intermediate result CCSID, this CCSID and
the CCSID of the next operand determine a new intermediate result CCSID, and so
on. The last intermediate result CCSID and the CCSID of the last operand
determine the CCSID of the result string or column. For each pair of CCSIDs, the
result CCSID is determined by the sequential application of the following rules:
v If the CCSIDs are equal, the result is that CCSID.
v If either CCSID is X'FFFF', the result is X'FFFF'. 25

v If one CCSID denotes Unicode data and the other denotes non-Unicode data, the
result is the CCSID for Unicode data.

v If one CCSID denotes SBCS data and the other denotes mixed data, the result is
the CCSID for mixed data.

v Otherwise, the result CCSID is determined by the following table:

Table 12. Selecting the CCSID of the intermediate result

First Operand Second Operand

Column
Value

Derived
Value

Constant Special
Register

Host
Variable

Column Value first first first first first

Derived Value second first first first first

Constant second second first first first

Special Register second second first first first

Host Variable second second second second first

In DB2 UDB for z/OS and OS/390, derived values are converted before
constants and special registers.

A host variable containing data in a foreign encoding scheme is effectively
converted to the native encoding scheme before it is used in any operation. The
above rules are based on the assumption that this conversion has already
occurred.

Note that an intermediate result is considered to be a derived value operand.
For example, assume COLA, COLB, and COLC are columns with CCSIDs 37,
278, and 500, respectively. The result CCSID of COLA CONCAT COLB CONCAT
COLC would be determined as follows:
– The result CCSID of COLA CONCAT COLB is first determined to be 37,

because both operands are columns, so the CCSID of the first operand is
chosen.

25. Both operands must not be a CLOB or DBCLOB.

Assignments and comparisons

Chapter 2. Language elements 73

G
G

– The result CCSID of “intermediate result” CONCAT COLC is determined to
be 500, because the first operand is a derived value and the second operand
is a column, so the CCSID of the second operand is chosen.

An operand of concatenation, or the result expression of the CASE expression, or
the operands of the IN predicate, or the selected argument of the COALESCE and
CONCAT scalar functions is converted, if necessary, to the coded character set of
the result string. Each string of an operand of UNION or UNION ALL is
converted, if necessary, to the coded character set of the result column. Character
conversion is necessary only if all of the following are true:
v The CCSIDs are different.
v Neither CCSID is X'FFFF'.
v The string is neither null nor empty.
v The CCSID Conversion Selection Table (“Coded character sets and CCSIDs” on

page 22) indicates that conversion is necessary.

An error is returned if a character of a string cannot be converted or if the CCSID
Conversion Selection Table is used but does not contain any information about the
pair of CCSIDs. A warning occurs if a character of a string is converted to the
substitution character.

Assignments and comparisons

74 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Constants
A constant (also called a literal) specifies a value. Constants are classified as string
constants or numeric constants. String constants are further classified as character
or graphic. Numeric constants are further classified as integer, floating-point, or
decimal.

All constants have the attribute NOT NULL. A negative sign in a numeric constant
with a value of zero is ignored.

Integer constants
An integer constant specifies an integer as a signed or unsigned number with a
maximum of 10 digits that does not include a decimal point. The data type of an
integer constant is large integer, and its value must be within the range of a large
integer.

Examples
62 -15 +100 32767 720176

In syntax diagrams, the term integer is used for an integer constant that must not
include a sign.

Floating-point constants
A floating-point constant specifies a double-precision floating-point number as two
numbers separated by an E. The first number can include a sign and a decimal
point; the second number can include a sign but not a decimal point. The value of
the constant is the product of the first number and the power of 10 specified by
the second number; it must be within the range of floating-point numbers. The
number of characters in the constant must not exceed 24. Excluding leading zeros,
the number of digits in the first number must not exceed 17 and the number of
digits in the second must not exceed 2.

Examples
15E1 2.E5 2.2E-1 +5.E+2

Decimal constants
A decimal constant is a signed or unsigned number that consists of no more than 31
digits and either includes a decimal point or is not within the range of binary
integers. The precision is the total number of digits (including leading and trailing
zeros); the scale is the number of digits to the right of the decimal point (including
trailing zeros).

Examples
25.5 1000. -15. +37589.3333333333

Character-string constants
A character-string constant specifies a varying-length character string. The two forms
of character-string constant follow:
v It is a sequence of characters enclosed between apostrophes. The number of

bytes between the apostrophes cannot be greater than 255. See Table 39 on
page 552 for more information. Two consecutive apostrophes are used to
represent one apostrophe within the character string, but these count as one byte
when calculating lengths of character constants. Two consecutive apostrophes
that are not contained within a string represent an empty string.

Constants

Chapter 2. Language elements 75

v An X followed by a sequence of characters that starts and ends with an
apostrophe. The characters between the apostrophes must be an even number of
hexadecimal digits. The number of hexadecimal digits must not exceed 254. See
Table 39 on page 552 for more information. A hexadecimal digit is a digit or any
of the letters A through F (uppercase or lowercase). Under the conventions of
hexadecimal notation, each pair of hexadecimal digits represents a character.
This form of string constant allows you to specify characters that do not have a
keyboard representation.

At installations that have mixed data, a character-string constant is classified as
mixed data if it includes a DBCS substring. In all other cases, a character-string
constant is classified as SBCS data. In DB2 UDB for LUW, in a DBCS environment,
all character string constants are classified as mixed data. The CCSID assigned to
the constant is the appropriate default CCSID of the application server at bind
time. A mixed data constant can be continued from one line to the next only if the
break occurs between single-byte characters.

Character-string constants are used to represent constant datetime values in
assignments and comparisons. For more information see“String representations of
datetime values” on page 52.

Examples
’Peggy’ ’14.12.1990’ ’32’ ’DON’’T CHANGE’ ’’ X’FFFF’

Graphic-string constants
A graphic-string constant specifies a varying-length graphic string. The length of the
specified string cannot be greater than 124. See Table 39 on page 552 for more
information.

In EBCDIC environments, the forms of graphic-string constants are :

dbcs-stringG GG' '

G ''

g ' '

g ''

dbcs-string ' '

''

' '

' '

N

N

n

n

' '

''

' '

N

Graphic String Constant Empty String Example

In ASCII environments, the form of the constant is:
G'dbcs-string' or N'dbcs-string'

The CCSID assigned to the constant is the appropriate default CCSID of the
application server at bind time.

In SQL statements and in host language statements in a source program, graphic
strings cannot be continued from one line to another.

Constants

76 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

Decimal point
The default decimal point can be specified:
v To interpret numeric constants
v To determine the decimal point character to use when casting a character string

to a number (for example, in the DECIMAL, DOUBLE_PRECISION, and FLOAT
scalar functions and the CAST specification)

v to determine the decimal point character to use in the result when casting a
number to a string (for example, in the CHAR scalar function and the CAST
specification)

Each product provides a product-specific means of explicitly specifying a default
decimal point.

Constants

Chapter 2. Language elements 77

G

Special registers
A special register is a storage area that is defined for an application process by the
database manager and is used to store information that can be referenced in SQL
statements. A reference to a special register is a reference to a value provided by
the current server. If the value is a string, its CCSID is a default CCSID of the
current server. The special registers can be referenced as follows:

�� CURRENT DATE
(1)

CURRENT_DATE
CURRENT PATH

(1)
CURRENT_PATH

CURRENT SERVER
CURRENT TIME

(1)
CURRENT_TIME
CURRENT TIMESTAMP

(1)
CURRENT_TIMESTAMP
CURRENT TIMEZONE
USER

��

Notes:

1 The SQL 1999 Core standard uses the form with the underscore.

For portability across the platforms, when defining a variable to receive the
contents of a special register that contains character data it is recommended that
the variable be defined with the maximum length supported by any of the
platforms for that special register. For more information on the maximum lengths
of the special registers, see Appendix A, “SQL limits”, on page 551.

CURRENT DATE
The CURRENT DATE special register specifies a date that is based on a reading of
the time-of-day clock when the SQL statement is executed at the current server. If
this special register is used more than once within a single SQL statement, or used
with CURRENT TIME or CURRENT TIMESTAMP within a single statement, all
values are based on a single clock reading.

Example
Using the PROJECT table, set the project end date (PRENDATE) of the MA2111
project (PROJNO) to the current date.

UPDATE PROJECT
SET PRENDATE = CURRENT DATE
WHERE PROJNO = ’MA2111’

CURRENT PATH
The CURRENT PATH special register specifies the SQL path used to resolve
unqualified distinct type names, function names, and procedure names in
dynamically prepared SQL statements. It is used to resolve unqualified procedure
names that are specified as host variables in SQL CALL statements (CALL
host-variable). The data type is VARCHAR with a length attribute that is the
maximum length of a path. For more information, see Appendix A, “SQL limits”,
on page 551.

Special registers

78 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

The CURRENT PATH special register contains the value of the SQL path which is
a list of one or more schema names, where each schema name is enclosed in
delimiters and separated from the following schema name by a comma, (any
delimiters within the string are repeated as they are in any delimited identifier).
The delimiters and commas are included in the length of the special register.

For information on when the SQL path is used to resolve unqualified names in
both dynamic and static SQL statements and the effect of its value, see
“Unqualified distinct type, function, procedure, and specific names” on page 40.

The initial value of the special register in a user-defined function or procedure is
inherited from the invoking application. In other contexts the initial value of the
special register is the system path followed by the USER special register value. For
more information on the system path, see “The System Path” in “SET PATH” on
page 503.

The value of the special register can be changed by executing the SET PATH
statement. For details about this statement, see “SET PATH” on page 503. For
portability across the platforms, it is recommended that a SET PATH statement be
issued at the beginning of an application.

Example
Set the special register so that schema SMITH is searched before the system
schemas:

SET PATH = SMITH, SYSTEM PATH;

CURRENT SERVER
The CURRENT SERVER special register specifies a VARCHAR(18) value that
identifies the current server. In DB2 UDB for z/OS and OS/390, CURRENT
SERVER specifies a CHAR(16) value. For more information, see Appendix A, “SQL
limits”, on page 551.

The CURRENT SERVER can be changed by the CONNECT (Type 1), CONNECT
(Type 2), or SET CONNECTION statements, but only under certain conditions. For
more information, see “CONNECT (Type 1)” on page 311, “CONNECT (Type 2)”
on page 315, and “SET CONNECTION” on page 501.

Example
Set the host variable APPL_SERVE (VARCHAR(18)) to the name of the current
server.

SELECT CURRENT SERVER
INTO :APPL_SERVE
FROM SYSDUMMY1

CURRENT TIME
The CURRENT TIME special register specifies a time that is based on a reading of
the time-of-day clock when the SQL statement is executed at the current server. If
this special register is used more than once within a single SQL statement, or used
with CURRENT DATE or CURRENT TIMESTAMP within a single statement, all
values are based on a single clock reading.

Example
Using the CL_SCHED sample table, select all the classes (CLASS_CODE) that start
(STARTING) later today. Today’s classes have a value of 3 in the DAY column.

SELECT CLASS_CODE FROM CL_SCHED
WHERE STARTING > CURRENT TIME AND DAY = 3

Special registers

Chapter 2. Language elements 79

G
G

CURRENT TIMESTAMP
The CURRENT TIMESTAMP special register specifies a timestamp that is based on
a reading of the time-of-day clock when the SQL statement is executed at the
current server. If this special register is used more than once within a single SQL
statement, or used with CURRENT DATE or CURRENT TIME within a single
statement, all values are based on a single clock reading.

Example
Insert a row into the IN_TRAY sample table. The value of the RECEIVED column
should be a timestamp that indicates when the row was inserted. The values for
the other three columns come from the host variables SRC (CHAR(8)), SUB
(CHAR(64)), and TXT (VARCHAR(200)).

INSERT INTO IN_TRAY
VALUES (CURRENT TIMESTAMP, :SRC, :SUB, :TXT)

CURRENT TIMEZONE
The CURRENT TIMEZONE special register specifies the difference between UTC 26

and local time at the current server. The difference is represented by a time
duration (a decimal number in which the first two digits are the number of hours,
the next two digits are the number of minutes, and the last two digits are the
number of seconds). The number of hours is between -24 and 24 exclusive.
Subtracting CURRENT TIMEZONE from a local time converts that local time to
UTC.

Example
Using the IN_TRAY table select all the rows from the table and adjust the value to
UTC.

SELECT RECEIVED - CURRENT TIMEZONE, SOURCE,
SUBJECT, NOTE_TEXT FROM IN_TRAY

USER
The USER special register specifies the run-time authorization ID. The data type of
the register is VARCHAR(18). In DB2 UDB for z/OS and OS/390 the data type is
CHAR(8). See Appendix A, “SQL limits”, on page 551.

Example
Select all notes from the IN_TRAY sample table that the user placed there.

SELECT * FROM IN_TRAY
WHERE SOURCE = USER

26. Coordinated Universal Time, formerly known as GMT.

Special registers

80 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

Column names
The meaning of a column name depends on its context. A column name can be
used to:
v Declare the name of a column, as in a CREATE TABLE statement.
v Identify a column, as in a CREATE INDEX statement.
v Specify values of the column, as in the following contexts:

– In a column function, a column name specifies all values of the column in the
group or intermediate result table to which the function is applied. (Groups
and intermediate result tables are explained under Chapter 4, “Queries”, on
page 245.) For example, MAX(SALARY) applies the function MAX to all
values of the column SALARY in a group.

– In a GROUP BY or ORDER BY clause, a column name specifies all values in
the intermediate result table to which the clause is applied. For example,
ORDER BY DEPT orders an intermediate result table by the values of the
column DEPT.

– In an expression, a search condition, or a scalar function, a column name specifies
a value for each row or group to which the construct is applied. For example,
when the search condition CODE = 20 is applied to some row, the value
specified by the column name CODE is the value of the column CODE in that
row.

v Provide a column name for an expression, temporarily rename a column, as in
the correlation-clause of a table-reference in a FROM clause, or in the AS clause in
the select-clause.

Qualified column names
A qualifier for a column name can be a table name, a view name, or a correlation
name.

Whether a column name can be qualified depends on its context:
v In the COMMENT statement specifying ON COLUMN, the column name must

be qualified.
v Where the column name specifies values of the column, a column name may be

qualified.
v In the assignment-clause of an UPDATE statement, it may be qualified.
v In all other contexts, a column name must not be qualified.

Where a qualifier is optional it can serve two purposes. See “Column name
qualifiers to avoid ambiguity” on page 83 and “Column name qualifiers in
correlated references” on page 85 for details.

Correlation names
A correlation name can be defined in the FROM clause of a query and after the
target table-name or view-name in an UPDATE or DELETE statement. For example,
the clause shown below establishes Z as a correlation name for X.MYTABLE:

FROM X.MYTABLE Z

A correlation name is associated with a table or view only within the context in
which it is defined. Hence, the same correlation name can be defined for different
purposes in different statements, or in different clauses of the same statement.

Column names

Chapter 2. Language elements 81

As a qualifier, a correlation name can be used to avoid ambiguity or to establish a
correlated reference. It can also be used merely as a shorter name for a table or
view. In the example shown above, Z might have been used merely to avoid
having to enter X.MYTABLE more than once.

If a correlation name is specified for a table name or view name, any qualified
reference to a column of that instance of the table or view must use the correlation
name, rather than the table name or view name. For example, the reference to
EMPLOYEE.PROJECT in the following example is incorrect, because a correlation
name has been specified for EMPLOYEE:

┌───────────┐
FROM EMPLOYEE E │ INCORRECT │

WHERE EMPLOYEE.PROJECT=’ABC’ └───────────┘

The qualified reference to PROJECT should instead use the correlation name, “E”,
as shown below:

FROM EMPLOYEE E
WHERE E.PROJECT='ABC'

Names specified in a FROM clause are either exposed or nonexposed. A correlation
name is always an exposed name. A table name or view name is said to be exposed
in that FROM clause if a correlation name is not specified. For example, in the
following FROM clause, a correlation name is specified for EMPLOYEE but not for
DEPARTMENT, so DEPARTMENT is an exposed name, and EMPLOYEE is not:

FROM EMPLOYEE E, DEPARTMENT

A table name or view name that is exposed in a FROM clause must not be the
same as any other table name or view name exposed in that FROM clause or any
correlation name in the FROM clause. The names are compared after qualifying
any unqualified table or view names.

The first two FROM clauses shown below are correct, because each one contains no
more than one reference to EMPLOYEE that is exposed:
1. Given the FROM clause:

FROM EMPLOYEE E1, EMPLOYEE

a qualified reference such as EMPLOYEE.PROJECT denotes a column of the
second instance of EMPLOYEE in the FROM clause. A qualified reference to the
first instance of EMPLOYEE must use the correlation name “E1” (E1.PROJECT).

2. Given the FROM clause:
FROM EMPLOYEE, EMPLOYEE E2

a qualified reference such as EMPLOYEE.PROJECT denotes a column of the
first instance of EMPLOYEE in the FROM clause. A qualified reference to the
second instance of EMPLOYEE must use the correlation name “E2”
(E2.PROJECT).

3. Given the FROM clause:
┌───────────┐

FROM EMPLOYEE, EMPLOYEE │ INCORRECT │
└───────────┘

the two exposed table names included in this clause (EMPLOYEE and
EMPLOYEE) are the same, and this is not allowed.

4. Given the following statement:

Column names

82 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SELECT * ┌───────────┐
FROM EMPLOYEE E1, EMPLOYEE E2 │ INCORRECT │

WHERE EMPLOYEE.PROJECT = ’ABC’ └───────────┘

the qualified reference EMPLOYEE.PROJECT is incorrect, because both
instances of EMPLOYEE in the FROM clause have correlation names. Instead,
references to PROJECT must be qualified with either correlation name
(E1.PROJECT or E2.PROJECT).

5. Given the FROM clause:
FROM EMPLOYEE, X.EMPLOYEE

a reference to a column in the second instance of EMPLOYEE must use
X.EMPLOYEE (X.EMPLOYEE.PROJECT). This FROM clause is only valid if the
authorization ID of the statement is not X.

A correlation name specified in a FROM clause must not be the same as:
v Any other correlation name in that FROM clause
v Any unqualified table name or view name exposed in the FROM clause
v The second SQL identifier of any qualified table name or view name that is

exposed in the FROM clause.

For example, the following FROM clauses are incorrect:
FROM EMPLOYEE E, EMPLOYEE E ┌───────────┐
FROM EMPLOYEE DEPARTMENT, DEPARTMENT │ INCORRECT │
FROM X.T1, EMPLOYEE T1 └───────────┘

The following FROM clause is technically correct, though potentially confusing:
FROM EMPLOYEE DEPARTMENT, DEPARTMENT EMPLOYEE

The use of a correlation name in the FROM clause also allows the option of
specifying a list of column names to be associated with the columns of the result
table. As with a correlation name, these listed column names become the exposed
names of the columns that must be used for references to the columns throughout
the query. If a column name list is specified, then the column names of the
underlying table become non-exposed.

Given the FROM clause:
FROM DEPARTMENT D (NUM,NAME,MGR,ANUM,LOC)

a qualified reference such as D.NUM denotes the first column of the
DEPARTMENT table that is defined in the table as DEPTNO. A reference to
D.DEPTNO using this FROM clause is incorrect since the column name DEPTNO
is a non-exposed column name.

If a list of columns is specified, it must consist of as many names as there are
columns in the table-reference. Each column name must be unique and unqualified.

Column name qualifiers to avoid ambiguity
In the context of a function, a GROUP BY clause, ORDER BY clause, an expression,
or a search condition, a column name refers to values of a column in some target
table or view in a DELETE or UPDATE statement or table-reference in a FROM
clause. The tables, views and table-references 27 that might contain the column are

27. In the case of a joined-table, each table-reference within the joined-table is an object table.

Column names

Chapter 2. Language elements 83

called the object tables of the context. Two or more object tables might contain
columns with the same name. One reason for qualifying a column name is to
designate the object from which the column comes. For information on avoiding
ambiguity between SQL parameters and variables and column names, see
“References to SQL parameters and SQL variables” on page 520.

Table designators
A qualifier that designates a specific object table is called a table designator. The
clause that identifies the object tables also establishes the table designators for
them. For example, the object tables of an expression in a SELECT clause are
named in the FROM clause that follows it:

SELECT CORZ.COLA, OWNY.MYTABLE.COLA
FROM OWNX.MYTABLE CORZ, OWNY.MYTABLE

Table designators in the FROM clause are established as follows:
v A name that follows a table or view name is both a correlation name and a table

designator. Thus, CORZ is a table designator. CORZ is used to qualify the first
column name in the select list.

v An exposed table or view name is a table designator. Thus, OWNY.MYTABLE is
a table designator. OWNY.MYTABLE is used to qualify the second column name
in the select list.

Two or more object tables can be instances of the same table. In this case, distinct
correlation names must be used to unambiguously designate the particular
instances of the table. In the following FROM clause, X and Y are defined to refer,
respectively, to the first and second instances of the table EMPLOYEE:

SELECT * FROM EMPLOYEE X,EMPLOYEE Y

Avoiding undefined or ambiguous references
When a column name refers to values of a column, exactly one object table must
include a column with that name. The following situations are considered errors:
v No object table contains a column with the specified name. The reference is

undefined.
v The column name is qualified by a table designator, but the table designated

does not include a column with the specified name. Again the reference is
undefined.

v The name is unqualified and more than one object table includes a column with
that name. The reference is ambiguous.

Avoid ambiguous references by qualifying a column name with a uniquely defined
table designator. If the column is contained in several object tables with different
names, the object table names can be used as designators. Ambiguous references
can also be avoided without the use of the table designator by giving unique
names to the columns of one of the object tables using the column name list
following the correlation name.

When qualifying a column with the exposed table name form of a table designator,
either the qualified or unqualified form of the exposed table name may be used.
However, the qualifier used and the table used must be the same after fully
qualifying the table name or view name and the table designator.
1. If the authorization ID of the statement is CORPDATA:

SELECT CORPDATA.EMPLOYEE.WORKDEPT
FROM EMPLOYEE

is a valid statement.

Column names

84 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

2. If the authorization ID of the statement is REGION:
SELECT CORPDATA.EMPLOYEE.WORKDEPT ┌───────────┐

FROM EMPLOYEE │ INCORRECT │
└───────────┘

is invalid, because EMPLOYEE represents the table REGION.EMPLOYEE, but
the qualifier for WORKDEPT represents a different table,
CORPDATA.EMPLOYEE.

3. If the authorization ID of the statement is REGION:
SELECT EMPLOYEE.WORKDEPT ┌───────────┐

FROM CORPDATA.EMPLOYEE │ INCORRECT │
└───────────┘

is invalid, because EMPLOYEE in the select list represents the table
REGION.EMPLOYEE, but the explicitly qualified table name in the FROM
clause represents a different table, CORPDATA.EMPLOYEE. In this case, either
omit the table qualifier in the select list, or define a correlation name for the
table designator in the FROM clause and use that correlation name as the
qualifier for column names in the statement.

Column name qualifiers in correlated references
A subselect is a form of a query that can be used as a component of various SQL
statements. Refer to Chapter 4, “Queries”, on page 245 for more information on
subselects. A subquery is a form of a fullselect that is enclosed within parenthesis.
For example, a subquery can be used in a search condition. A fullselect used in the
FROM clause of a query is called a nested table expression.

A subquery can include search conditions of its own, and these search conditions
can, in turn, include subqueries. Therefore, an SQL statement can contain a
hierarchy of subqueries. Those elements of the hierarchy that contain subqueries
are said to be at a higher level than the subqueries they contain.

Every element of the hierarchy has a clause that establishes one or more table
designators. This is the FROM clause, except in the highest level of an UPDATE or
DELETE statement. A search condition of a subquery can reference not only
columns of the tables identified by the FROM clause of its own element of the
hierarchy, but also columns of tables identified at any level along the path from its
own element to the highest level of the hierarchy. A reference to a column of a
table identified at a higher level is called a correlated reference.

A correlated reference to column C of table T can be of the form C, T.C, or Q.C, if
Q is a correlation name defined for T. However, a correlated reference in the form
of an unqualified column name is not good practice. The following explanation is
based on the assumption that a correlated reference is always in the form of a
qualified column name and that the qualifier is a correlation name.

Q.C, is a correlated reference only if these three conditions are met:
v Q.C is used in a search condition of a subquery
v Q does not designate an exposed table used in the FROM clause of that

subquery
v Q does designate an exposed table used at some higher level.

Q.C refers to column C of the table or view at the level where Q is used as the
table designator of that table or view. Because the same table or view can be
identified at many levels, unique correlation names are recommended as table

Column names

Chapter 2. Language elements 85

designators. If Q is used to designate a table at more than one level, Q.C refers to
the lowest level that contains the subquery that includes Q.C.

In the following statement, Q is used as a correlation name for T1 and T2, but Q.C
refers to the correlation name associated with T2, because it is the lowest level that
contains the subquery that includes Q.C.

SELECT *
FROM T1 Q
WHERE A < ALL (SELECT B

FROM T2 Q
WHERE B < ANY (SELECT D

FROM T3
WHERE D = Q.C))

Unqualified column names in correlated references
An unqualified column name can also be a correlated reference if the column:
v Is used in a search condition of a subquery
v Is not contained in a table used in the FROM clause of that subquery
v Is contained in a table used at some higher level.

Unqualified correlated references are not recommended because it makes the SQL
statement difficult to understand. The column will be implicitly qualified when the
statement is prepared depending on which table the column was found in. Once
this implicit qualification is determined it will not change until the statement is
re-prepared. When an SQL statement that has an unqualified correlated reference is
prepared or executed, a warning is returned.

Column names

86 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

References to variables
A variable in an SQL statement specifies a value that can be changed when the SQL
statement is executed. There are several types of variables used in SQL statements:

host variable
Host variables are defined by statements of a host language. For more
information about how to refer to host variables see “References to host
variables” on page 87.

transition variable
Transition variables are defined in a trigger and refer to either the old or
new values of columns of the subject table of a trigger. For more
information about how to refer to transition variables see “CREATE
TRIGGER” on page 398.

SQL variable
SQL variables are defined by an SQL compound statement in an SQL
procedure. For more information about SQL variables, see “References to
SQL parameters and SQL variables” on page 520.

SQL parameter
SQL parameters are defined in an CREATE FUNCTION (SQL Scalar) or
CREATE PROCEDURE (SQL) statement. For more information about SQL
parameters, see “References to SQL parameters and SQL variables” on
page 520.

parameter marker
Parameter markers are specified in an SQL statement that is dynamically
prepared instead of host variables. For more information about parameter
markers, see “Notes” on page 472 in the PREPARE statement.

In this book, unless otherwise noted, the term host variable in syntax diagrams is
used to describe where a host variable, transition variable, SQL variable, SQL
parameter, or parameter marker can be used.

References to host variables
A host variable is a COBOL data item or a C28, Java, or REXX variable that is
referenced in an SQL statement. Host variables are defined by statements of the
host language. Host variables cannot be referenced in dynamic SQL statements;
instead, parameter markers must be used. For more information on parameter
markers, see “Host variables in dynamic SQL” on page 89.

A host-variable in an SQL statement must identify a host variable described in the
program according to the rules for declaring host variables.

All host variables used in an SQL statement must be declared in an SQL declare
section in all host languages other than Java and REXX. Variables do not have to
be declared in REXX. In Java, variables must be declared, but an SQL declare
section is not necessary or allowed. No variables may be declared outside an SQL
declare section with names identical to variables declared inside an SQL declare
section. An SQL declare section begins with BEGIN DECLARE SECTION and ends
with END DECLARE SECTION.

For further information about using host variables, see:

28. In this book, whenever the C language is referenced, the information also applies to C++.

References to Variables

Chapter 2. Language elements 87

v Appendix H, “Coding SQL statements in C applications”, on page 635
v Appendix I, “Coding SQL statements in COBOL applications”, on page 651
v Appendix J, “Coding SQL statements in Java applications”, on page 669
v Appendix K, “Coding SQL statements in REXX applications”, on page 687

The term host-variable, as used in the syntax diagrams, shows a reference to a host
variable. A host-variable in the INTO clause of a FETCH, a SELECT INTO, or a
VALUES INTO statement identifies a host variable to which a column value is
assigned. A host variable in a CALL statement can be an output argument that is
assigned a value after execution of the procedure, an input argument that provides
an input value for the procedure, or both an input and output argument. In all
other contexts a host-variable specifies a value to be passed to the database manager
from the application program.

The general form of a host-variable reference in all languages other than Java is:

�� : host-identifier
INDICATOR

: host-identifier

��

Each host-identifier must be declared in the source program. The variable
designated by the second host-identifier is called an indicator variable and must be a
small integer.

The purposes of the indicator variable are to:
v Specify the null value. A negative value of the indicator variable specifies the

null value.
v Indicate that a numeric conversion error (such as a divide by 0 or overflow) has

occurred. 29

v Indicate that a character could not be converted.
v Record the original length of a truncated string, if the string is not a LOB.
v Record the seconds portion of a time if the time is truncated on assignment to a

host variable.

For example, if :V1:V2 is used to specify an insert or update value, and if V2 is
negative, the value specified is the null value. If V2 is not negative the value
specified is the value of V1.

Similarly, if :V1:V2 is specified in a CALL, FETCH, SELECT INTO or VALUES
INTO statement, and if the value returned is null, V1 is undefined and V2 is set to
a negative value. The negative value is:
v -1 if the value selected was the null value
v -2 if the null value was returned due to a numeric conversion error (such as

divide by 0 or overflow) or a character conversion error. 30

If the value returned is not null, that value is assigned to V1 and V2 is set to zero
(unless the assignment to V1 requires string truncation in which case V2 is set to

29. In DB2 UDB for LUW, the database configuration parameter dft_sqlmathwarn must be set to yes for this behavior to be
supported.

30. Note that although a -2 null value can be returned for conversion errors, the result column itself is not considered nullable
unless an argument of the expression, scalar function, the column is nullable.

References to host variables

88 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

the original length of the string). If an assignment requires truncation of the
seconds part of a time, V2 is set to the number of seconds.

If the second host-identifier is omitted, the host variable does not have an indicator
variable. The value specified by the host-variable :V1 is always the value of V1, and
null values cannot be assigned to the variable. Thus, do not use this form unless
the corresponding result column cannot contain null values. If this form is used
and the column contains nulls, the database manager will return an error at
run-time.

The general form of a host-variable reference in Java is:

�� : Java-identifier
IN (Java-expression)
OUT
INOUT

��

In Java, indicator variables are not used. Instead, instances of a Java class can be
set to a null value. Variables defined as Java primitive types can not be set to a
null value.

If IN, OUT, or INOUT is not specified, the default depends on the context in which
the variable is used. If the Java variable is used in an INTO clause, OUT is the
default. Otherwise, IN is the default. For more information on Java variables, see
“Using host variables and expressions in Java” on page 673.

An SQL statement that references host variables must be within the scope of the
declaration of those host variables. For host variables referenced in the SELECT
statement of a cursor, that rule applies to the OPEN statement rather than to the
DECLARE CURSOR statement.

The CCSID of a string host variable is the default CCSID of the application
requester at the time the SQL statement that contains the host variable is executed
unless the CCSID is for a foreign encoding scheme. In this case the host variable
value is converted to the default CCSID of the current server.

Example
Using the PROJECT table, set the host variable PNAME (VARCHAR(26)) to the
project name (PROJNAME), the host variable STAFF (DECIMAL(5,2)) to the mean
staffing level (PRSTAFF), and the host variable MAJPROJ (CHAR(6)) to the major
project (MAJPROJ) for project (PROJNO) ‘IF1000’. Columns PRSTAFF and
MAJPROJ may contain null values, so provide indicator variables STAFF_IND
(SMALLINT) and MAJPROJ_IND (SMALLINT).
SELECT PROJNAME, PRSTAFF, MAJPROJ

INTO :PNAME, :STAFF :STAFF_IND, :MAJPROJ :MAJPROJ_IND
FROM PROJECT
WHERE PROJNO = ’IF1000’

Host variables in dynamic SQL
In dynamic SQL statements, parameter markers are used instead of host variables.
A parameter marker is a question mark (?) that represents a position in a dynamic
SQL statement where the application will provide a value; that is, where a host
variable would be found if the statement string were a static SQL statement. The
following examples shows a static SQL statement that uses host variables and a
dynamic statement that uses parameter markers:

References to host variables

Chapter 2. Language elements 89

INSERT INTO DEPT
VALUES(:HV_DEPTNO, :HV_DEPTNAME, :HV_MGRNO:IND_MGRNO, :HV_ADMRDEPT)

INSERT INTO DEPT
VALUES(?, ?, ?, ?)

For more information about parameter markers, see “PREPARE” on page 471.

References to LOB host variables
Regular LOB variables can be defined in all host languages other than REXX. LOB
locator variables can be defined in the following host languages:
v C
v COBOL

Where LOBs are allowed, the term host-variable in a syntax diagram can refer to a
regular host variable or a locator variable. Since these variables are not native data
types in host programming languages, SQL extensions are used and the
precompilers generate the host language constructs necessary to represent each
variable.

When it is possible to define a host variable that is large enough to hold an entire
LOB value and the performance benefit of delaying the transfer of data from the
server is not required, a LOB locator is not needed. However, it is often not
acceptable to store an entire LOB value in temporary storage due to host language
restrictions, storage restrictions, or performance requirements. When storing an
entire LOB value at one time is not acceptable, a LOB value can be referenced
using a LOB locator and portions of the LOB value can be accessed.

Like all other host variables, a LOB locator variable can have an associated
indicator variable. Indicator variables for LOB locator variables behave in the same
way as indicator variables for other data types. When a null value is returned from
the database, the indicator variable is set and the host variable is unchanged. This
means that a locator can never point to a null value.

References to LOB locator variables
A LOB locator variable is a host variable that contains the locator representing a
LOB value on the server, which can be defined in the following host languages:
v C
v COBOL

See “Manipulating large objects with locators” on page 49 for information on how
locators can be used to manipulate LOB values.

A locator variable in an SQL statement must identify a LOB locator variable
described in the program according to the rules for declaring locator variables.
This is always indirectly through an SQL statement. For example, in C:

static volatile SQL TYPE IS CLOB_LOCATOR *loc1;

The term locator-variable, as used in the syntax diagrams, shows a reference to a
LOB locator variable. The meta-variable locator-variable can be expanded to include
a host-identifier the same as that for host-variable.

When the indicator variable associated with a LOB locator is null, the value of the
referenced LOB is null.

References to host variables

90 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

If a locator variable does not currently represent any value, an error occurs when
the locator variable is referenced.

At transaction commit or any transaction termination, all LOB locators that were
acquired by the transaction are released.

It is the application programmer’s responsibility to guarantee that any LOB locator
is only used in SQL statements that are executed at the same server that originally
generated the LOB locator. For example, assume that a LOB locator is returned
from one server and assigned to a LOB locator variable. If that LOB locator
variable is subsequently used in an SQL statement that is executed at a different
server unpredictable results will occur.

Host structures
A host structure is a C structure or COBOL group, that is referred to in an SQL
statement. In Java and REXX, there is no equivalent to a host structure. Host
structures are defined by statements of the host language. As used here, the term
"host structure" does not include an SQLCA or SQLDA.

The form of a host structure reference is identical to the form of a host variable
reference. The reference :S1:S2 is a host structure reference if S1 names a host
structure. If S1 designates a host structure, S2 must be either a small integer
variable or an array of small integer variables. S1 is the host structure and S2 is its
indicator array.

A host structure can be referred to in any context where a list of host variables can
be referenced. A host structure reference is equivalent to a reference to each of the
host variables contained within the structure in the order which they are defined in
the host language structure declaration. The nth variable of the indicator array is
the indicator variable for the nth variable of the host structure.

In C, for example, if V1, V2, and V3 are declared as the variables within the
structure S1, the statement:

EXEC SQL FETCH CURSOR1 INTO :S1;

is equivalent to:
EXEC SQL FETCH CURSOR1 INTO :V1, :V2, :V3;

If the host structure has m more variables than the indicator array, the last m
variables of the host structure do not have indicator variables. If the host structure
has m fewer variables than the indicator array, the last m variables of the indicator
array are ignored. These rules also apply if a reference to a host structure includes
an indicator variable or if a reference to a host variable includes an indicator array.
If an indicator array or variable is not specified, no variable of the host structure
has an indicator variable.

In addition to structure references, individual host variables in a host structure or
indicator variables in an indicator array can be referred to by qualified names. The
qualified form is a host identifier followed by a period and another host identifier.
The first host identifier must name a structure and the second host identifier must
name a host variable within that structure.

The general form of a host variable or host structure reference is:

References to host variables

Chapter 2. Language elements 91

�� : host-identifier
host-identifier .

�

�
INDICATOR

: host-identifier
host-identifier .

��

A host-variable in an expression must identify a host variable (not a structure)
described in the program according to the rules for declaring host variables.

The following C example shows a references to host structure, host indicator array,
and a host variable:

struct { char empno[7];
struct { short int firstname_len;

char firstname_text[12];
} firstname;

char midint,
struct { short int lastname_len;

char lastname_text[15];
} lastname;

char workdept[4];
} pemp1;

short ind[14];
short eind
struct { short ind1;

short ind2;
} indstr;

.....
strcpy("000220",pemp1.empno);
.....
EXEC SQL

SELECT *
INTO :pemp1:ind
FROM corpdata.employee
WHERE empno=:pemp1.empno;

In the example above, the following references to host variables and host structures
are valid:

:pemp1 :pemp1.empno :pemp1.empno:eind :pemp1.empno:indstr.ind1

Host Structures in C and COBOL

92 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Functions
A function is an operation denoted by a function name followed by zero or more
operands that are enclosed in parentheses. It represents a relationship between a
set of input values and a set of result values. The input values to a function are
called arguments. For example, a function can be passed two input arguments that
have date and time data types and return a value with a timestamp data type as
the result.

Types of functions
There are several ways to classify functions. One way to classify functions is as
built-in, user-defined, or generated user-defined functions for distinct types.
v Built-in functions are functions that come with the database manager. These

functions provide a single-value result. Built-in functions include operator
functions such as ″+″, column functions such as AVG, and scalar functions such
as SUBSTR. For a list of the built-in column and scalar functions and
information on these functions, see Chapter 3, “Built-in functions”, on page 131.
The built-in functions are in a product-specific schema.

v User-defined functions are functions that are created using the CREATE
FUNCTION statement and registered to the database manager in the catalog.
For more information, see “CREATE FUNCTION” on page 325. These functions
allow users to extend the function of the database manager by adding their own
or third party vendor function definitions.
A user-defined function is an SQL, external, or sourced function. An SQL function
is defined to the database using only an SQL RETURN statement. An external
function is defined to the database with a reference to an external program that
is executed when the function is invoked. A sourced function is defined to the
database with a reference to a built-in function or another user-defined function.
Sourced functions can be used to extend built-in column and scalar functions for
use on distinct types.
A user-defined function resides in the schema in which it was created.

v Generated user-defined functions for distinct types are functions that the database
manager automatically generates when a distinct type is created using the
CREATE DISTINCT TYPE statement. These functions support casting from the
distinct type to the source type and from the source type to the distinct type.
The ability to cast between the data types is important because a distinct type is
compatible only with itself.
The generated user-defined functions for distinct types reside in the same
schema as the distinct type for which they were created. For more information
about the functions that are generated for a distinct type, see “CREATE
DISTINCT TYPE” on page 319.

Another way to classify functions is as column, scalar, or table functions,
depending on the input data values and result values.
v A column function receives a set of values for each argument (such as the values

of a column) and returns a single-value result for the set of input values.
Column functions are sometimes called aggregating functions. Built-in functions
and user-defined sourced functions can be column functions.

v A scalar function receives a single value for each argument and returns a
single-value result. Built-in functions and user-defined functions can be scalar
functions. Generated user-defined functions for distinct types are also scalar
functions.

Functions

Chapter 2. Language elements 93

G

v A table function returns a table for the set of arguments it receives. Each
argument is a single value. A table function can be referenced only in the FROM
clause of a subselect. A table function can be defined as an external function, but
a table function cannot be a sourced function.
Table functions can be used to apply SQL language processing power to data
that is not data that is not stored in the database or to allow access to such data
as if it were stored in a result table. For example, a table function can take a file
and convert it to a table, get data from the Web and tabularize it, or access a
Lotus Notes database and return information about email messages.

Function invocation
Each reference to a function conforms to the following syntax:31

In the above syntax, expression cannot include a column function. See
“Expressions” on page 99 for other rules for expression.

When the function is invoked, the value of each of its parameters is assigned,
using storage assignment, to the corresponding parameter of the function. Control
is passed to external functions according to the calling conventions of the host
language. When execution of a user-defined column or scalar function is complete,
the result of the function is assigned, using storage assignment, to the result data
type. For details on the assignment rules, see “Assignments and comparisons” on
page 60.

Additionally, a character FOR BIT DATA argument cannot be passed as input for a
parameter that is not defined as character FOR BIT DATA. Likewise, a character
argument that is not FOR BIT DATA cannot be passed as input for a parameter
that is defined as character FOR BIT DATA.

Table functions can be referenced only in the FROM clause of a subselect. For more
details on referencing a table function, see “table-reference” on page 251.

Function resolution
A function is invoked by its function name, which is implicitly or explicitly
qualified with a schema name, followed by parentheses that enclose the arguments
to the function. Within the database, each function is uniquely identified by its
function signature, which is its schema name, function name, the number of
parameters, and the data types of the parameters. Thus, a schema can contain
several functions that have the same name but each of which have a different

31. A few functions allow keywords instead of a comma separated list of expressions. For example, the CHAR function allows a list
of keywords to indicate the desired date format.

function-invocation:

�

(1)
function-name ()

ALL ,
DISTINCT

expression

Notes:

1 The ALL or DISTINCT keyword can be specified only for a column function or a
user-defined function that is sourced on a column function.

Functions

94 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

number of parameters, or parameters with different data types. Or, a function with
the same name, number of parameters, and types of parameters can exist in
multiple schemas. When any function is invoked, the database manager must
determine which function to execute. This process is called function resolution.

Function resolution is similar for functions that are invoked with a qualified or
unqualified function name with the exception that for an unqualified name, the
database manager needs to search more than one schema.
v Qualified function resolution: When a function is invoked with a function name

and a schema name, the database manager only searches the specified schema to
resolve which function to execute. The database manager selects candidate
functions based on the following criteria:
– The name of the function instance matches the name in the function

invocation.
– The number of input parameters in the function instance matches the number

of arguments in the function invocation.
– The authorization ID of the statement must have the EXECUTE privilege to

the function instance.
– The data type of each input argument of the function invocation matches or is

promotable to the data type of the corresponding parameter of the function
instance.

If no function in the schema meets these criteria, an error is returned. If a
function is selected, its successful use depends on it being invoked in a context
in which the returned result is allowed. For example, if the function returns an
integer data type where a character data type is required, or returns a table
where a table is not allowed, an error is returned.

v Unqualified function resolution: When a function is invoked with only a function
name, the database manager needs to search more than one schema to resolve
the function instance to execute. The SQL path contains the list of schemas to
search. For each schema in the SQL path (see “SQL path” on page 40), the
database manager selects candidate functions based on the following criteria:
– The name of the function instance matches the name in the function

invocation.
– The number of input parameters in the function instance matches the number

of function arguments in the function invocation.
– The authorization ID of the statement must have the EXECUTE privilege to

the function instance.
– The data type of each input argument of the function invocation matches or is

promotable to the data type of the corresponding parameter of the function
instance.

If no function in the schema meets these criteria, an error is returned. If a
function is selected, its successful use depends on it being invoked in a context
in which the returned result is allowed. For example, if the function returns an
integer data type where a character data type is required, or returns a table
where a table is not allowed, an error is returned.

After the database manager identifies the candidate functions, it selects the
candidate with the best fit as the function instance to execute (see “Determining
the best fit” on page 96). If more than one schema contains the function instance

Functions

Chapter 2. Language elements 95

with the best fit (the function signatures are identical except for the schema name),
the database manager selects the function whose schema is earliest in the SQL
path.

Function resolution applies to all functions, including built-in functions. Built-in
functions logically exist in the system portion of the SQL path. For more
information on the system portion of the SQL path, see “SQL path” on page 40.
When an unqualified function name is specified, the SQL path must be set to a list
of schemas in the desired search order so that the intended function is selected.

In a CREATE VIEW statement, function resolution occurs at the time the view is
created. If another function with the same name is subsequently created, the view
is not affected, even if the new function is a better fit than the one chosen at the
time the view was created. In CREATE FUNCTION, CREATE PROCEDURE, and
CREATE TRIGGER statements, the effect of subsequently creating a function with
the same name that is a better fit is product-specific.

Determining the best fit
There might be more than one function with the same name that is a candidate for
execution. In that case, the database manager determines which function is the best
fit for the invocation by comparing the argument and parameter data types. Note
that the data type of the result of the function or the type of function (column,
scalar, or table) under consideration does not enter into this determination.

If the data types of all the parameters for a given function are the same as those of
the arguments in the function invocation, that function is the best fit. If there is no
exact match, the database manager compares the data types in the parameter lists
from left to right, using the following method:
1. Compare the data type of the first argument in the function invocation to the

data type of the first parameter in each function. Any length, precision, scale,
and CCSID attributes of the data types are not considered in the comparison.

2. For this argument, if one function has a data type that fits the function
invocation better than the data types in the other candidate functions, that
function is the best fit. The precedence list for the promotion of data types in
“Promotion of data types” on page 55 shows the data types that fit each data
type in best-to-worst order.

3. If the data type of the first parameter for more than one candidate function fits
the function invocation equally well, repeat this process for the next argument
of the function invocation. Continue for each argument until a best fit is found.

The following examples illustrate function resolution.

Example 1: Assume that MYSCHEMA contains two functions, both named FUNA,
that were created with these partial CREATE FUNCTION statements.

CREATE FUNCTION MYSCHEMA.FUNA (VARCHAR(10), INT, DOUBLE) ...
CREATE FUNCTION MYSCHEMA.FUNA (VARCHAR(10), REAL, DOUBLE) ...

Also assume that a function with three arguments of data types VARCHAR(10),
SMALLINT, and DECIMAL is invoked with a qualified name:

MYSCHEMA.FUNA(VARCHARCOL, SMALLINTCOL, DECIMALCOL) ...

Both MYSCHEMA.FUNA functions are candidates for this function invocation
because they meet the criteria specified in “Function resolution” on page 94. The
data types of the first parameter for the two function instances in the schema,
which are both VARCHAR, fit the data type of the first argument of the function

Functions

96 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
G

invocation, which is VARCHAR, equally well. However, for the second parameter,
the data type of the first function (INT) fits the data type of the second argument
(SMALLINT) better than the data type of second function (REAL). Therefore, the
database manager selects the first MYSCHEMA.FUNA function as the function
instance to execute.

Example 2: Assume that functions were created with these partial CREATE
FUNCTION statements:

1. CREATE FUNCTION SMITH.ADDIT (CHAR(5), INT, DOUBLE) ...
2. CREATE FUNCTION SMITH.ADDIT (INT, INT, DOUBLE) ...
3. CREATE FUNCTION SMITH.ADDIT (INT, INT, DOUBLE, INT) ...
4. CREATE FUNCTION JOHNSON.ADDIT (INT, DOUBLE, DOUBLE) ...
5. CREATE FUNCTION JOHNSON.ADDIT (INT, INT, DOUBLE) ...
6. CREATE FUNCTION TODD.ADDIT (REAL) ...
7. CREATE FUNCTION TAYLOR.SUBIT (INT, INT, DECIMAL) ...

Also assume that the SQL path at the time an application invokes a function is
″TAYLOR″, ″JOHNSON″, ″SMITH″. The function is invoked with three data types
(INT, INT, DECIMAL) as follows:

SELECT ... ADDIT(INTCOL1, INTCOL2, DECIMALCOL) ...

Function 5 is chosen as the function instance to execute based on the following
evaluation:
v Function 6 is eliminated as a candidate because schema TODD is not in the SQL

path.
v Function 7 in schema TAYLOR is eliminated as a candidate because it does not

have the correct function name.
v Function 1 in schema SMITH is eliminated as a candidate because the INT data

type is not promotable to the CHAR data type of the first parameter of Function
1.

v Function 3 in schema SMITH is eliminated as a candidate because it has the
wrong number of parameters.

v Function 2 is a candidate because the data types of its parameters match or are
promotable to the data types of the arguments.

v Both Function 4 and 5 in schema JOHNSON are candidates because the data
types of their parameters match or are promotable to the data types of the
arguments. However, Function 5 is chosen as the better candidate because
although the data types of the first parameter of both functions (INT) match the
first argument (INT), the data type of the second parameter of Function 5 (INT)
is a better match of the second argument (INT) than the data type of Function 4
(DOUBLE).

v Of the remaining candidates, Function 2 and 5, the database manager selects
Function 5 because schema JOHNSON comes before schema SMITH in the SQL
path.

Example 3: Assume that functions were created with these partial CREATE
FUNCTION statements:

1. CREATE FUNCTION BESTGEN.MYFUNC (INT, DECIMAL(9,0)) ...
2. CREATE FUNCTION KNAPP.MYFUNC (INT, NUMERIC(8,0))...
3. CREATE FUNCTION ROMANO.MYFUNC (INT, NUMERIC(8,0))...
4. CREATE FUNCTION ROMANO.MYFUNC (INT, FLOAT) ...

Also assume that the SQL path at the time the application invokes the function is
″ROMANO″, ″KNAPP″, ″BESTGEN″ and that the authorization ID of the statement

Functions

Chapter 2. Language elements 97

has the EXECUTE privilege to functions 1, 2 and 4. The function is invoked with
two data types (SMALLINT, DECIMAL) as follows:

SELECT ... MYFUNC(SINTCOL1, DECIMALCOL) ...

Function 2 is chosen as the function instance to execute based on the following
evaluation:
v Function 3 is eliminated. It is not a candidate for this function invocation

because the authorization ID of the statement does not have the EXECUTE
privilege to the function. The remaining three functions are candidates for this
function invocation because they meet the criteria specified in “Function
resolution” on page 94.

v Function 4 in schema ROMANO is eliminated because the second parameter
(FLOAT) is not as good a fit for the second argument (DECIMAL) as the second
parameter of either Function 1 (DECIMAL) or Function 2 (NUMERIC).

v The second parameters of Function 1 (DECIMAL) and Function 2 (NUMERIC)
are equally good fits for the second argument (DECIMAL).

v Function 2 is finally chosen because ″KNAPP″ precedes ″BESTGEN″ in the SQL
path.

Best fit considerations
Once the function is selected, there are still possible reasons why the use of the
function may not be permitted. Each function is defined to return a result with a
specific data type. If this result data type is not compatible within the context in
which the function is invoked, an error is returned. For example, given functions
named STEP defined with different data types as the result:

STEP(SMALLINT) RETURNS CHAR(5)
STEP(DOUBLE) RETURNS INTEGER

and the following function reference (where S is a SMALLINT column):
SELECT ... 3 +STEP(S)

then, because there is an exact match on argument type, the first STEP is chosen.
An error is returned on the statement because the result type is CHAR(5) instead
of a numeric type as required for an argument of the addition operator.

In cases where the arguments of the function invocation were not an exact match
to the data types of the parameters of the selected function, the arguments are
converted to the data type of the parameter at execution using the storage
assignment rules (see “Assignments and comparisons” on page 60). This includes
the case where precision, scale, length, or CCSID differs between the argument and
the parameter.

An error also occurs in the following examples:
v The function is referenced in the TABLE clause of a FROM clause, but the

function selected by the function resolution step is a scalar or column function.
v The function referenced in an SQL statement requires a scalar or column

function, but the function selected by the function resolution step is a table
function.

Functions

98 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Expressions
An expression specifies a value.

Without operators
If no operators are used, the result of the expression is the specified value.

Examples
SALARY :SALARY ’SALARY’ MAX(SALARY)

With arithmetic operators
If arithmetic operators are used, the result of the expression is a number derived
from the application of the operators to the values of the operands.

�� �

operator

function-invocation
+ (expression)
− constant

column-name
host-variable
special-register
labeled-duration
cast-specification
case-expression

��

operator:

�� CONCAT
||
/
*
+
−

��

labeled-duration:

�� function-invocation
(expression)
constant
column-name
host-variable

YEAR
YEARS
MONTH
MONTHS
DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES
SECOND
SECONDS
MICROSECOND
MICROSECONDS

��

Expressions

Chapter 2. Language elements 99

If any operand can be null, the result can be null. If any operand has the null
value, the result of the expression is the null value. Arithmetic operators must not
be applied to character strings. For example, USER+2 is invalid.

The prefix operator + (unary plus) does not change its operand. The prefix operator
- (unary minus) reverses the sign of a nonzero operand. If the data type of A is
small integer, the data type of -A is large integer. The first character of the token
following a prefix operator must not be a plus or minus sign.

The infix operators +, -, *, and / specify addition, subtraction, multiplication, and
division, respectively. If the value of the second operand of division is zero, then
an error is returned.

Two integer operands
If both operands of an arithmetic operator are integers, the operation is performed
in binary and the result is a large integer. Any remainder of division is lost. The
result of an integer arithmetic operation (including unary minus) must be within
the range of large integers.

Integer and decimal operands
If one operand is an integer and the other is decimal, the operation is performed in
decimal using a temporary copy of the integer that has been converted to a
decimal number with precision p and scale 0. p is 11 for a large integer and 5 for a
small integer. However, in the case of an integer constant, p is product-specific.

Two decimal operands
If both operands are decimal, the operation is performed in decimal. The result of
any decimal arithmetic operation is a decimal number with a precision and scale
that are dependent on the operation and the precision and scale of the operands. If
the operation is addition or subtraction and the operands do not have the same
scale, the operation is performed as if a temporary copy of the operand with the
smaller scale is made by extending it with trailing zeros so that its fractional part
has the same scale as the longer operand.

Unless specified otherwise, all functions and operations that accept decimal
numbers allow a precision of up to 31 digits. The result of a decimal operation
must not have a precision greater than 31.

Decimal arithmetic in SQL: The following formulas define the precision and
scale of the result of decimal operations in SQL. The symbols p and s denote the
precision and scale of the first operand and the symbols p' and s' denote the
precision and scale of the second operand.

Addition and subtraction: The scale of the result of addition and subtraction is max
(s,s’). The precision is min(31,max(p-s,p’-s’) +max(s,s’)+1). 32

In COBOL, blanks must precede and follow a minus sign to avoid any ambiguity
with COBOL host variable names (which allow use of a dash).

Multiplication: The precision of the result of multiplication is min (31,p+p’) and the
scale is min(31,s+s’). In DB2 UDB for z/OS and OS/390, special rules apply if both
p and p’ are greater than 15. See the product reference for further information.

32. For DB2 UDB for z/OS and OS/390, the formulas used in this book are those that apply when the DEC31 option is in effect or
the precision of an operand is greater than 15.

Expressions

100 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G

G
G

Division: The precision of the result of division is 31. The scale is 31-p+s-s'. The
scale must not be negative. In DB2 UDB for z/OS and OS/390, the scale is
different and special rules apply when p’ is greater than 15. See the product
reference for further information.

Floating-point operands
If either operand of an arithmetic operator is floating point, the operation is
performed in floating point, the operands having been first converted to
double-precision floating-point numbers, if necessary. Thus, if any element of an
expression is a floating-point number, the result of the expression is a
double-precision floating-point number.

An operation involving a floating-point number and an integer is performed with
a temporary copy of the integer that has been converted to double-precision
floating point. An operation involving a floating-point number and a decimal
number is performed with a temporary copy of the decimal number that has been
converted to double-precision floating point. The result of a floating-point
operation must be within the range of floating-point numbers.

The order in which floating-point operands (or arguments to functions) are
processed can slightly affect results because floating-point operands are
approximate representations of real numbers. Since the order in which operands
are processed may be implicitly modified by the database manager (for example,
the database manager may decide what degree of parallelism to use and what
access plan to use), an application that uses floating-point operands should not
depend on the results being precisely the same each time an SQL statement is
executed.

Distinct type operands
A distinct type cannot be used with arithmetic operators even if its source data
type is numeric. To perform an arithmetic operation, create a function with the
arithmetic operator as its source. For example, if there were distinct types
INCOME and EXPENSES, both of which had DECIMAL(8,2) data types, then the
following user-defined function, REVENUE, could be used to subtract one from the
other.

CREATE FUNCTION REVENUE (INCOME, EXPENSES)
RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Alternately, the - (minus) operator could be overloaded using a user-defined
function to subtract the new data types.

CREATE FUNCTION "-" (INCOME, EXPENSES)
RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Alternatively, the distinct type can be cast to a built-in type and the result used as
an operand of an arithmetic operator.

With the concatenation operator
If the concatenation operator (CONCAT or ||) is used, the result of the expression
is a string.33

33. Using the vertical bar (|) character might inhibit code portability between DB2 relational database products. Use the CONCAT
operator in place of the || operator. On the other hand, if conformance to the SQL 1999 Core standard is of primary importance,
use the || operator).

Expressions

Chapter 2. Language elements 101

G
G
G

The operands of concatenation must be compatible strings that are not distinct
types. Note that a binary string cannot be concatenated with a character string,
including character strings defined as FOR BIT DATA.

The data type of the result is determined by the data types of the operands. The
data type of the result is summarized in the following table:

Table 13. Result Data Types With Concatenation

If one operand
column is ...

And the other
operand is ... The data type of the result column is ...

DBCLOB(x) CHAR(y)* or
VARCHAR(y)* or
CLOB(y)* or
GRAPHIC(y) or
VARGRAPHIC(y) or
DBCLOB(y)

DBCLOB(z) where z = MIN(x + y,
maximum length of a DBCLOB)

VARGRAPHIC(x) CHAR(y)* or
VARCHAR(y)* or
GRAPHIC(y) or
VARGRAPHIC(y)

VARGRAPHIC(z) *** where z = MIN(x + y,
maximum length of a VARGRAPHIC)

GRAPHIC(x) CHAR(y)* or
GRAPHIC(y)

GRAPHIC(z)** where z = MIN(x + y,
maximum length of a VARGRAPHIC)

CLOB(x) CHAR(y) or
VARCHAR(y) or
CLOB(y)

CLOB(z) where z = MIN(x + y, maximum
length of a CLOB)

VARCHAR(x) CHAR(y) or
VARCHAR(y)

VARCHAR(z) **** where z = MIN(x + y,
maximum length of a VARCHAR)

CHAR(x) CHAR(y) CHAR(z)** z = x+y and z must not be
greater than the maximum length of CHAR

BLOB(x) BLOB(y) BLOB(z) where z = MIN(x + y, maximum
length of a BLOB)

Note:

* Character strings are only allowed when the other operand is a graphic string if the
graphic string is Unicode.

** In EBCDIC environments, if either operand is mixed data, the resulting data type is
VARCHAR(z). In DB2 UDB for z/OS and OS/390 and DB2 UDB for LUW, if z evaluates to
greater than the maximum length of a CHAR column, then VARCHAR(z) where z = x + y.

*** In DB2 UDB for LUW, if z evaluates to greater than 2000, a LONG VARGRAPHIC is
returned.

**** In DB2 UDB for LUW, if z evaluates to greater than 4000, a LONG VARCHAR is
returned.

The encoding scheme of the result is summarized in the following table:

Table 14. Result Encoding Schemes With Concatenation

If one operand
column is ...

And the other
operand is ... The data type of the result column is ...

Unicode data Unicode or DBCS or
mixed or SBCS data

Unicode data

DBCS data DBCS data DBCS data

Expressions

102 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

G
G

G
G

Table 14. Result Encoding Schemes With Concatenation (continued)

If one operand
column is ...

And the other
operand is ... The data type of the result column is ...

bit data mixed or SBCS or bit
data

bit data

mixed data mixed or SBCS data mixed data

SBCS data SBCS data SBCS data

If both operands are strings, the sum of their lengths must not exceed the
maximum length of the resulting data type. See Table 39 on page 552 for more
information.

If either operand can be null, the result can be null, and if either is null, the result
is the null value. Otherwise, the result consists of the first operand string followed
by the second.

With EBCDIC mixed data, this result will not have redundant shift codes “at the
seam”. Thus, if the first operand is a string ending with a “shift-in” character,
while the second operand is a character string beginning with a “shift-out”
character, these two bytes are eliminated from the result.

The length of the result is the sum of the lengths of the operands, unless
redundant shift codes are eliminated, in which case the length is two less than the
sum of the lengths of the operands.

The CCSID of the result is determined by the CCSID of the operands as explained
under “Conversion rules for operations that combine strings” on page 73. Note that
as a result of these rules:
v If any operand is bit data, the result is bit data.
v If one operand is mixed data and the other is SBCS data, the result is mixed

data. However, this does not necessarily mean that the result is well-formed
mixed data.

Datetime operands and durations
Datetime values can be incremented, decremented, and subtracted. These
operations may involve decimal numbers called durations. A duration is a positive
or negative number representing an interval of time. There are four types of
durations:

Labeled Durations (see diagram in “Expressions” on page 99)
A labeled duration represents a specific unit of time as expressed by a
number (which can be the result of an expression) followed by one of the
duration keywords. The number specified is converted as if it were
assigned to a DECIMAL(15,0) number.

A labeled duration can only be used as an operand of an arithmetic
operator in which the other operand is a value of data type DATE, TIME,
or TIMESTAMP. Thus, the expression HIREDATE + 2 MONTHS + 14
DAYS is valid whereas the expression HIREDATE + (2 MONTHS + 14
DAYS) is not. In both of these expressions, the labeled durations are 2
MONTHS and 14 DAYS.

Date Duration
A date duration represents a number of years, months, and days, expressed

Expressions

Chapter 2. Language elements 103

as a DECIMAL(8,0) number. To be properly interpreted, the number must
have the format yyyymmdd, where yyyy represents the number of years, mm
the number of months, and dd the number of days. The result of
subtracting one DATE value from another, as in the expression HIREDATE
- BIRTHDATE, is a date duration.

Time Duration
A time duration represents a number of hours, minutes, and seconds,
expressed as a DECIMAL(6,0) number. To be properly interpreted, the
number must have the format hhmmss where hh represents the number of
hours, mm the number of minutes, and ss the number of seconds. The
result of subtracting one TIME value from another is a time duration.

Timestamp duration
A timestamp duration represents a number of years, months, days, hours,
minutes, seconds, and microseconds, expressed as a DECIMAL(20,6)
number. To be properly interpreted, the number must have the format
yyyymmddhhmmsszzzzzz, where yyyy, mm, dd, hh, mm, ss, and zzzzzz
represent, respectively, the number of years, months, days, hours, minutes,
seconds, and microseconds. The result of subtracting one timestamp value
from another is a timestamp duration.

Datetime arithmetic in SQL
The only arithmetic operations that can be performed on datetime values are
addition and subtraction. If a datetime value is the operand of addition, the other
operand must be a duration. The specific rules governing the use of the addition
operator with datetime values follow.
v If one operand is a date, the other operand must be a date duration or labeled

duration of years, months, or days.
v If one operand is a time, the other operand must be a time duration or a labeled

duration of hours, minutes, or seconds.
v If one operand is a timestamp, the other operand must be a duration. Any type

of duration is valid.
v Neither operand of the addition operator can be a parameter marker.

The rules for the use of the subtraction operator on datetime values are not the
same as those for addition, because a datetime value cannot be subtracted from a
duration, and because the operation of subtracting two datetime values is not the
same as the operation of subtracting a duration from a datetime value. The specific
rules governing the use of the subtraction operator with datetime values follow.
v If the first operand is a date, the second operand must be a date, a date

duration, a string representation of a date, or a labeled duration of years,
months, or days.

v If the second operand is a date, the first operand must be a date, or a string
representation of a date.

v If the first operand is a time, the second operand must be a time, a time
duration, a string representation of a time, or a labeled duration of hours,
minutes, or seconds.

v If the second operand is a time, the first operand must be a time, or string
representation of a time.

v If the first operand is a timestamp, the second operand must be a timestamp, a
string representation of a timestamp, or a duration.

v If the second operand is a timestamp, the first operand must be a timestamp or
a string representation of a timestamp.

Expressions

104 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

v Neither operand of the subtraction operator can be a parameter marker.

Date arithmetic
Dates can be subtracted, incremented, or decremented.

Subtracting dates: The result of subtracting one date (DATE2) from another
(DATE1) is a date duration that specifies the number of years, months, and days
between the two dates. The data type of the result is DECIMAL(8,0). If DATE1 is
greater than or equal to DATE2, DATE2 is subtracted from DATE1. If DATE1 is
less than DATE2, however, DATE1 is subtracted from DATE2, and the sign of the
result is made negative. The following procedural description clarifies the steps
involved in the operation RESULT = DATE1 - DATE2.

If DAY(DATE2) <= DAY(DATE1)
then DAY(RESULT) = DAY(DATE1) - DAY(DATE2).

If DAY(DATE2) > DAY(DATE1)
then DAY(RESULT) = N + DAY(DATE1) - DAY(DATE2)

where N = the last day of MONTH(DATE2).
MONTH(DATE2) is then incremented by 1.

If MONTH(DATE2) <= MONTH(DATE1)
then MONTH(RESULT) = MONTH(DATE1) - MONTH(DATE2).

If MONTH(DATE2) > MONTH(DATE1)
then MONTH(RESULT) = 12 + MONTH(DATE1) - MONTH(DATE2).
YEAR(DATE2) is then incremented by 1.

YEAR(RESULT) = YEAR(DATE1) - YEAR(DATE2).

For example, the result of DATE('3/15/2000') - '12/31/1999' is 215 (or, a duration
of 0 years, 2 months, and 15 days).

Incrementing and decrementing dates: The result of adding a duration to a date,
or of subtracting a duration from a date, is itself a date. (For the purposes of this
operation, a month denotes the equivalent of a calendar page. Adding months to a
date, then, is like turning the pages of a calendar, starting with the page on which
the date appears.) The result must fall between the dates January 1, 0001 and
December 31, 9999 inclusive. If a duration of years is added or subtracted, only the
year portion of the date is affected. The month is unchanged, as is the day unless
the result would be February 29 of a non-leap-year. In this case, the day is changed
to 28, and a warning indicator in the SQLCA is set to indicate the end-of-month
adjustment.

Similarly, if a duration of months is added or subtracted, only months and, if
necessary, years are affected. The day portion of the date is unchanged unless the
result would be invalid (September 31, for example). In this case, the day is set to
the last day of the month, and a warning indicator in the SQLCA is set to indicate
the end-of-month adjustment.

Adding or subtracting a duration of days will, of course, affect the day portion of
the date, and potentially the month and year. Adding or subtracting a duration of
days will not cause an end-of-month adjustment.

Expressions

Chapter 2. Language elements 105

Date durations, whether positive or negative, may also be added to and subtracted
from dates. As with labeled durations, the result is a valid date, and a warning
indicator is set in the SQLCA whenever an end-of-month adjustment is necessary.

When a positive date duration is added to a date, or a negative date duration is
subtracted from a date, the date is incremented by the specified number of years,
months, and days, in that order. Thus, DATE1 + X, where X is a positive
DECIMAL(8,0) number, is equivalent to the expression:

DATE1 + YEAR(X) YEARS + MONTH(X) MONTHS + DAY(X) DAYS

When a positive date duration is subtracted from a date, or a negative date
duration is added to a date, the date is decremented by the specified number of
days, months, and years, in that order. Thus, DATE1 - X, where X is a positive
DECIMAL(8,0) number, is equivalent to the expression:

DATE1 - DAY(X) DAYS - MONTH(X) MONTHS - YEAR(X) YEARS

When adding durations to dates, adding one month to a given date gives the same
date one month later unless that date does not exist in the later month. In that case,
the date is set to that of the last day of the later month. For example, January 28
plus one month gives February 28; and one month added to January 29, 30, or 31
results in either February 28 or, for a leap year, February 29.

Note: If one or more months is added to a given date and then the same number
of months is subtracted from the result, the final date is not necessarily the
same as the original date.

Also note that logically equivalent expressions may not produce the same
result. For example:

(DATE(’2002–01–31’) + 1 MONTH) + 1 MONTH will result in a date of
2002–03–28.

does not produce the same result as
DATE(’2002–01–31’) + 2 MONTHS will result in a date of 2002–03–31.

The order in which labeled date durations are added to and subtracted from dates
can affect the results. For compatibility with the results of adding or subtracting
date durations, a specific order must be used. When labeled date durations are
added to a date, specify them in the order of YEARS + MONTHS + DAYS. When
labeled date durations are subtracted from a date, specify them in the order of
DAYS - MONTHS - YEARS. For example, to add one year and one day to a date,
specify:

DATE1 + 1 YEAR + 1 DAY

To subtract one year, one month, and one day from a date, specify:
DATE1 - 1 DAY - 1 MONTH - 1 YEAR

Time arithmetic
Times can be subtracted, incremented, or decremented.

Subtracting times: The result of subtracting one time (TIME2) from another
(TIME1) is a time duration that specifies the number of hours, minutes, and
seconds between the two times. The data type of the result is DECIMAL(6,0). If
TIME1 is greater than or equal to TIME2, TIME2 is subtracted from TIME1. If
TIME1 is less than TIME2, however, TIME1 is subtracted from TIME2, and the sign
of the result is made negative. The following procedural description clarifies the
steps involved in the operation RESULT = TIME1 - TIME2.

Expressions

106 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

If SECOND(TIME2) <= SECOND(TIME1)
then SECOND(RESULT) = SECOND(TIME1) - SECOND(TIME2).

If SECOND(TIME2) > SECOND(TIME1)
then SECOND(RESULT) = 60 + SECOND(TIME1) - SECOND(TIME2).
MINUTE(TIME2) is then incremented by 1.

If MINUTE(TIME2) <= MINUTE(TIME1)
then MINUTE(RESULT) = MINUTE(TIME1) - MINUTE(TIME2).

If MINUTE(TIME2) > MINUTE(TIME1)
then MINUTE(RESULT) = 60 + MINUTE(TIME1) - MINUTE(TIME2).
HOUR(TIME2) is then incremented by 1.

HOUR(RESULT) = HOUR(TIME1) - HOUR(TIME2).

For example, the result of TIME('11:02:26') - '00:32:56' is 102930 (a duration of 10
hours, 29 minutes, and 30 seconds).

Incrementing and decrementing times: The result of adding a duration to a time,
or of subtracting a duration from a time, is itself a time. Any overflow or
underflow of hours is discarded, thereby ensuring that the result is always a time.
If a duration of hours is added or subtracted, only the hours portion of the time is
affected. The minutes and seconds are unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if
necessary, hours are affected. The seconds portion of the time is unchanged.

Adding or subtracting a duration of seconds will, of course, affect the seconds
portion of the time, and potentially the minutes and hours.

Time durations, whether positive or negative, also can be added to and subtracted
from times. The result is a time that has been incremented or decremented by the
specified number of hours, minutes, and seconds, in that order. TIME1 + X, where
“X” is a DECIMAL(6,0) number, is equivalent to the expression:

TIME1 + HOUR(X) HOURS + MINUTE(X) MINUTES + SECOND(X) SECONDS

Timestamp arithmetic
Timestamps can be subtracted, incremented, or decremented.

Subtracting timestamps: The result of subtracting one timestamp (TS2) from
another (TS1) is a timestamp duration that specifies the number of years, months,
days, hours, minutes, seconds, and microseconds between the two timestamps. The
data type of the result is DECIMAL(20,6). If TS1 is greater than or equal to TS2,
TS2 is subtracted from TS1. If TS1 is less than TS2, however, TS1 is subtracted from
TS2 and the sign of the result is made negative. The following procedural
description clarifies the steps involved in the operation RESULT = TS1 - TS2.

If MICROSECOND(TS2) <= MICROSECOND(TS1)
then MICROSECOND(RESULT) = MICROSECOND(TS1) -
MICROSECOND(TS2).

If MICROSECOND(TS2) > MICROSECOND(TS1)
then MICROSECOND(RESULT) = 1000000 +
MICROSECOND(TS1) - MICROSECOND(TS2)
and SECOND(TS2) is incremented by 1.

Expressions

Chapter 2. Language elements 107

The seconds and minutes part of the timestamps are subtracted as
specified in the rules for subtracting times.

If HOUR(TS2) <= HOUR(TS1)
then HOUR(RESULT) = HOUR(TS1) - HOUR(TS2).

If HOUR(TS2) > HOUR(TS1)
then HOUR(RESULT) = 24 + HOUR(TS1) - HOUR(TS2)
and DAY(TS2) is incremented by 1.

The date part of the timestamps is subtracted as specified in the
rules for subtracting dates.

Incrementing and decrementing timestamps: The result of adding a duration to a
timestamp, or of subtracting a duration from a timestamp, is itself a timestamp.
Date and time arithmetic is performed as previously defined, except that an
overflow or underflow of hours is carried into the date part of the result, which
must be within the range of valid dates. Microseconds overflow into seconds.

Precedence of operations
Expressions within parentheses are evaluated first. When the order of evaluation is
not specified by parentheses, prefix operators are applied before multiplication and
division, and multiplication, division, and concatenation are applied before
addition and subtraction. Operators at the same precedence level are applied from
left to right.

Example 1: In this example, the first operation is the addition in (SALARY +
BONUS) because it is within parenthesis. The second operation is multiplication
because it is at a higher precedence level than the second addition operator and it
is to the left of the division operator. The third operation is division because it is at
a higher precedence level than the second addition operator. Finally, the remaining
addition is performed.

1.10 * (SALARY + BONUS) + SALARY / :VAR3
6 6 6 6
┌┴┐ ┌┴┐ ┌┴┐ ┌┴┐
│2│ │1│ │4│ │3│
└─┘ └─┘ └─┘ └─┘

Example 2: In this example, the first operation (CONCAT) combines the character
strings in the variables YYYYMM and DD into a string representing a date. The
second operation (-) then subtracts that date from the date being processed in
DATECOL. The result is a date duration that indicates the time elapsed between
the two dates.

DATECOL - :YYYYMM CONCAT :DD
6 6
┌┴┐ ┌┴┐
│2│ │1│
└─┘ └─┘

Expressions

108 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

CASE expressions

��
ELSE NULL

CASE searched-when-clause END
simple-when-clause ELSE result-expression

��

searched-when-clause:

� WHEN search-condition THEN result-expression
NULL

simple-when-clause:

expression � WHEN expression THEN result-expression
NULL

CASE expressions allow an expression to be selected based on the evaluation of
one or more conditions. In general, the value of the case-expression is the value of
the result-expression following the first (leftmost) when-clause that evaluates to true.
If no when-clause evaluates to true and the ELSE keyword is present then the result
is the value of the ELSE result-expression or NULL. If no when-clause evaluates to
true and the ELSE keyword is not present then the result is NULL. Note that if a
when-clause evaluates to unknown (because of nulls), the when-clause is not true and
hence is treated the same way as a when-clause that evaluates to false.

searched-when-clause
Specifies a search-condition that is applied to each row or group of table data
presented for evaluation, and the result when that condition is true.

simple-when-clause
Specifies that the value of the expression prior to the first WHEN keyword is
tested for equality with the value of the expression that follows each WHEN
keyword. It also specifies the result when that condition is true.

The data type of the expression prior to the first WHEN keyword:
v must be compatible with the data types of the expression that follows each

WHEN keyword.
v must not be a a CLOB, DBCLOB or BLOB or a character string with a

maximum length greater than 254 or a graphic string with a maximum
length greater than 127.

v must not include a function that is non-deterministic or has an external
action.

result-expression or NULL
Specifies the value that follows the THEN keyword and ELSE keywords. There
must be at least one result-expression in the CASE expression with a defined
data type. NULL cannot be specified for every case.

All result-expressions must have compatible data types, where the attributes of
the result are determined based on the “Rules for result data types” on page
70.

Expressions

Chapter 2. Language elements 109

search-condition
Specifies a condition that is true, false, or unknown about a row or group of
table data.

The search-condition cannot contain a subselect.

There are two scalar functions, NULLIF and COALESCE, that are specialized to
handle a subset of the functionality provided by CASE. The following table shows
the equivalent expressions using CASE or these functions.

Table 15. Equivalent CASE Expressions

CASE Expression Equivalent Expression

CASE WHEN e1=e2 THEN NULL ELSE e1 END NULLIF(e1,e2)

CASE WHEN e1 IS NOT NULL THEN e1 ELSE e2 END COALESCE(e1,e2)

CASE WHEN e1 IS NOT NULL THEN e1 ELSE
COALESCE(e2,...,eN) END COALESCE(e1,e2,...,eN)

Examples
v If the first character of a department number is a division in the organization,

then a CASE expression can be used to list the full name of the division to
which each employee belongs:

SELECT EMPNO, LASTNAME,
CASE SUBSTR(WORKDEPT,1,1)
WHEN ’A’ THEN ’Administration’
WHEN ’B’ THEN ’Human Resources’
WHEN ’C’ THEN ’Accounting’
WHEN ’D’ THEN ’Design’
WHEN ’E’ THEN ’Operations’
END

FROM EMPLOYEE

v The number of years of education are used in the EMPLOYEE table to give the
education level. A CASE expression can be used to group these and to show the
level of education.

SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,
CASE
WHEN EDLEVEL < 15 THEN ’SECONDARY’
WHEN EDLEVEL < 19 THEN ’COLLEGE’
ELSE ’POST GRADUATE’
END

FROM EMPLOYEE

v Another interesting example of CASE statement usage is in protecting from
division by 0 errors. For example, the following code finds the employees who
earn more than 25% of their income from commission, but who are not fully
paid on commission:

SELECT EMPNO, WORKDEPT, SALARY+COMM
FROM EMPLOYEE
WHERE (CASE WHEN SALARY=0 THEN NULL

ELSE COMM/SALARY
END) > 0.25

v The following CASE expressions are equivalent:
SELECT LASTNAME,
CASE
WHEN LASTNAME = ’Haas’ THEN ’President’
...
ELSE ’Unknown’
END
FROM EMPLOYEE

Expressions

110 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SELECT LASTNAME,
CASE LASTNAME
WHEN ’Haas’ THEN ’President’
...
ELSE ’Unknown’
END
FROM EMPLOYEE

Expressions

Chapter 2. Language elements 111

CAST specification

�� CAST (expression AS data-type)
NULL
parameter-marker

��

data-type:

built-in-type
distinct-type-name

built-in-type:

SMALLINT
INTEGER
INT

(5,0)
DECIMAL
DEC ,0

NUMERIC (integer)
, integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(1)
CHARACTER
CHAR (integer)

CHARACTER VARYING (integer)
CHAR

VARCHAR
CLOB (integer)

K
M
G

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)
DBCLOB (integer)

K
M
G

BLOB (integer)
K
M
G

DATE
TIME
TIMESTAMP

The CAST specification returns the cast operand (the first operand) cast to the type
specified by the data-type. If the data type of either operand is a distinct type, the
privileges held by the authorization ID of the statement must include EXECUTE on

Expressions

112 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

the generated user-defined functions for the distinct type. If the data type of the
second operand is a distinct type, the privileges held by the authorization ID of the
statement must include USAGE authority on the distinct type.

expression
Specifies that the cast operand is an expression other than NULL or a
parameter marker. The result is the argument value converted to the specified
target data type.

The supported casts are shown in “Casting between data types” on page 56,
where the first column represents the data type of the cast operand (source
data type) and the data types across the top represent the target data type of
the CAST specification. If the cast is not supported, an error is returned.

NULL
Specifies that the cast operand is the null value. The result is a null value that
has the specified data type.

parameter-marker
A parameter marker (specified as a question mark character) is normally
considered an expression, but is documented separately in this case because it
has a special meaning. If the cast operand is a parameter-marker, the specified
data-type is considered a promise that the replacement will be assignable to the
specified data-type (using storage assignment rules, see “Assignments and
comparisons” on page 60). Such a parameter marker is called a typed parameter
marker. Typed parameter markers are treated like any other typed value for the
purpose of DESCRIBE of a select list or for column assignment.

data-type
Specifies the data type of the result. If the data type is not qualified, the SQL
path is used to find the appropriate data type. For more information, see
“Unqualified distinct type, function, procedure, and specific names” on
page 40. For a description of data-type, see “CREATE TABLE” on page 379. (For
portability across operating systems, when specifying a floating-point data
type, use REAL or DOUBLE instead of FLOAT.)

Restrictions on the supported data types are based on the specified cast
operand.
v For a cast operand that is an expression, see Table 7 on page 58 for the target

data types that are supported based on the data type of the cast operand.
v For a cast operand that is the keyword NULL, the target data type can be

any data type.
v For a cast operand that is a parameter marker, the target data type can be

any data type. If the data type is a distinct type, the application that uses the
parameter marker will use the source data type of the distinct type.

For information on which casts between data types are supported and the rules for
casting to a data type see “Casting between data types” on page 56.

Examples
v An application is only interested in the integer portion of the SALARY column

(defined as DECIMAL(9,2)) from the EMPLOYEE table. The following CAST
specification will convert the SALARY column to INTEGER.
SELECT EMPNO, CAST(SALARY AS INTEGER)
FROM EMPLOYEE

v Assume that two distinct types exist. T_AGE is sourced on SMALLINT and is
the data type for the AGE column in the PERSONNEL table. R_YEAR is sourced

Expressions

Chapter 2. Language elements 113

on INTEGER and is the data type for the RETIRE_YEAR column in the same
table. The following UPDATE statement could be prepared.
UPDATE PERSONNEL SET RETIRE_YEAR = ?

WHERE AGE = CAST(? AS T_AGE)

The first parameter is an untyped parameter marker that would have a data
type of R_YEAR. An explicit CAST specification is not required in this case
because the parameter marker value is assigned to the distinct type.

The second parameter marker is a typed parameter marker that is cast to distinct
type T_AGE. An explicit CAST specification is required in this case because the
parameter marker value is compared to the distinct type.

Expressions

114 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Predicates
A predicate specifies a condition that is true, false, or unknown about a given row
or group.

The following rules apply to all types of predicates:
v Predicates are evaluated after the expressions that are operands of the predicate.
v All values specified in the same predicate must be compatible.
v Except for EXISTS and the first operand of LIKE, the operand of a predicate

must not be a character string with a maximum length greater than 255, a
graphic string with a maximum length greater than 127, or a LOB. However, a
LOB can be used in a NULL predicate.

v The value of a host variable may be null (that is, the variable may have a
negative indicator variable).

v The CCSID conversion of operands of predicates involving two or more
operands are done according to “Conversion rules for comparison” on page 68.

Predicates

Chapter 2. Language elements 115

Basic predicate

�� expression =
<>
<
>
<=
>=

expression
(subselect)

��

A basic predicate compares two values.

A subselect in a basic predicate must specify a single result column and must not
return more than one value.

If the value of either operand is null or the result of the subselect is empty, the
result of the predicate is unknown. Otherwise the result is either true or false.

For values x and y:

Predicate Is true if and only if...

x = y x is equal to y

x<> y x is not equal to y

x < y x is less than y

x > y x is greater than y

x>= y x is greater than or equal to y

x<= y x is less than or equal to y

Examples

EMPNO = ’528671’

PRTSTAFF <> :VAR1

SALARY + BONUS + COMM < 20000

SALARY > (SELECT AVG(SALARY)
FROM EMPLOYEE)

Basic predicate

116 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Quantified predicate

�� expression =
<>
<
>
<=
>=

SOME
ANY
ALL

(subselect) ��

A quantified predicate compares a value with a set of values.

The subselect must specify a single result column and can return any number of
values, whether null or not null.

When ALL is specified, the result of the predicate is:
v True if the result of the subselect is empty or if the specified relationship is true

for every value returned by the subselect
v False if the specified relationship is false for at least one value returned by the

subselect
v Unknown if the specified relationship is not false for any values returned by the

subselect and at least one comparison is unknown because of a null value.

When SOME or ANY is specified, the result of the predicate is:
v True if the specified relationship is true for at least one value returned by the

subselect
v False if the result of the subselect is empty or if the specified relationship is false

for every value returned by the subselect
v Unknown if the specified relationship is not true for any of the values returned

by the subselect and at least one comparison is unknown because of a null
value.

Examples

Table TBLA
COLA

1
2
3
4

null

Table TBLB
COLA

2
3

Example 1
SELECT * FROM TBLA WHERE COLA = ANY(SELECT COLB FROM TBLB)

Results in 2,3. The subselect returns (2,3). COLA in rows 2 and 3 equals at least
one of these values.

Quantified predicates

Chapter 2. Language elements 117

Example 2
SELECT * FROM TBLA WHERE COLA > ANY(SELECT COLB FROM TBLB)

Results in 3,4. The subselect returns (2,3). COLA in rows 3 and 4 is greater than at
least one of these values.

Example 3
SELECT * FROM TBLA WHERE COLA > ALL(SELECT COLB FROM TBLB)

Results in 4. The subselect returns (2,3). COLA in row 4 is the only one that is
greater than both these values.

Example 4
SELECT * FROM TBLA WHERE COLA > ALL(SELECT COLB FROM TBLB WHERE COLB<0)

Results in 1,2,3,4, and null. The subselect returns no values. Thus, the predicate is
true for all rows in TBLA.

Example 5
SELECT * FROM TBLA WHERE COLA > ANY(SELECT COLB FROM TBLB WHERE COLB<0)

Results in the empty set. The subselect returns no values. Thus, the predicate is
false for all rows in TBLA.

Quantified predicates

118 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

BETWEEN predicate

�� expression
NOT

BETWEEN expression AND expression ��

The BETWEEN predicate compares a value with a range of values.

The BETWEEN predicate:
value1 BETWEEN value2 AND value3

is logically equivalent to the search condition:
value1 >= value2 AND value1 <= value3

The BETWEEN predicate:
value1 NOT BETWEEN value2 AND value3

is logically equivalent to the search condition:
NOT(value1 BETWEEN value2 AND value3)

that is,
value1 < value2 OR value1 > value3

If the operands of the BETWEEN predicate are strings with different CCSIDs,
product-specific rules are used to determine which operands are converted.

Given a mixture of datetime values and string representations of datetime values,
all operands are converted to the data type of the datetime operand.

Examples

EMPLOYEE.SALARY BETWEEN 20000 AND 40000

SALARY NOT BETWEEN 20000 + :HV1 AND 40000

BETWEEN predicate

Chapter 2. Language elements 119

G
G

EXISTS predicate

�� EXISTS (subselect) ��

The EXISTS predicate tests for the existence of certain rows. The subselect may
specify any number of columns, and
v The result is true only if the number of rows specified by the subselect is not

zero
v The result is false only if the number of rows specified by the subselect is zero
v The result cannot be unknown.

Any values that may be returned by the subselect are ignored.

Example

EXISTS (SELECT * FROM EMPLOYEE WHERE SALARY > 60000)

EXISTS predicate

120 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

IN predicate

��

�

expression IN (subselect)
NOT ,

host-variable
constant
special-register

��

The IN predicate compares a value with a set of values.

In the subselect form, the subselect must identify a single result column and may
return any number of values, whether null or not null.

An IN predicate of the form:
expression IN (subselect)

is equivalent to a quantified predicate of the form:
expression = ANY (subselect)

An IN predicate of the form:
expression NOT IN (subselect)

is equivalent to a quantified predicate of the form:
expression <> ALL (subselect)

An IN predicate of the form:
expression IN (value1, value2, ..., valuen)

is logically equivalent to:
expression IN (SELECT * FROM R)

where T is a table with a single row and R is a temporary table formed by the
following fullselect:

SELECT value1 FROM T
UNION

SELECT value2 FROM T
UNION

.

.

.
UNION

SELECT valuen FROM T

Each host variable must identify a structure or variable that is described in
accordance with the rule for declaring host structures or variables.

If the operands of the IN predicate have different data types or attributes, the rules
used to determine the data type for evaluation of the IN predicate are those for
UNION and UNION ALL. For a description, see “Rules for result data types” on
page 70.

IN predicate

Chapter 2. Language elements 121

If the operands of the IN predicate are strings with different CCSIDs, the rules
used to determine which operands are converted are those for operations that
combine strings. For a description, see “Conversion rules for operations that
combine strings” on page 73.

Examples

DEPTNO IN (’D01’, ’B01’, ’C01’)

EMPNO IN (SELECT EMPNO FROM EMPLOYEE WHERE WORKDEPT = ’E11’)

IN predicate

122 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

LIKE predicate

�� match-expression
NOT

LIKE pattern-expression �

�
ESCAPE escape-expression

��

The LIKE predicate searches for strings that have a certain pattern. The pattern is
specified by a string in which the underscore and percent sign have special
meanings. Trailing blanks in a pattern are a part of the pattern.

If the value of any of the arguments is null, the result of the LIKE predicate is
unknown.

The match-expression, pattern-expression, and escape-expression must identify a string.
The values for match-expression, pattern-expression, and escape-expression must either
all be binary strings or none can be binary strings.

None of the expressions can yield a distinct type. However, it can be a function
that casts a distinct type to its source data type.

With character strings, the terms character, percent sign, and underscore in the
following description refer to single-byte characters. With graphic strings, the terms
refer to double-byte or Unicode characters. With binary strings, the terms refer to
the code points of those single-byte characters.

match-expression
An expression that specifies the string that is to be examined to see if it
conforms to a certain pattern of characters.

LIKE pattern-expression
An expression that specifies the string that is to be matched.

Simple description: A simple description of the LIKE pattern is as follows:
v The underscore sign (_) represents any single character.
v The percent sign (%) represents a string of zero or more characters.
v Any other character represents itself.

Rigorous description: Let x denote a value of match-expression and y denote the
value of pattern-expression.

The string y is interpreted as a sequence of the minimum number of substring
specifiers so each character of y is part of exactly one substring specifier. A
substring specifier is an underscore, a percent sign, or any nonempty sequence
of characters other than an underscore or a percent sign.

The result of the predicate is unknown if x or y is the null value. Otherwise,
the result is either true or false. The result is true if x and y are both empty
strings or if there exists a partitioning of x into substrings such that:
v A substring of x is a sequence of zero or more contiguous characters and

each character of x is part of exactly one substring.
v If the nth substring specifier is an underscore, the nth substring of x is any

single character.

LIKE predicate

Chapter 2. Language elements 123

v If the nth substring specifier is a percent sign, the nth substring of x is any
sequence of zero or more characters.

v If the nth substring specifier is neither an underscore nor a percent sign, the
nth substring of x is equal to that substring specifier and has the same
length as that substring specifier.

v The number of substrings of x is the same as the number of substring
specifiers.

It follows that if y is an empty string and x is not an empty string, the result is
false. Similarly, it follows that if y is an empty string and x is not an empty
string consisting of other than percent signs, the result is false.

The predicate x NOT LIKE y is equivalent to the search condition NOT(x LIKE
y).

If the CCSID of either the pattern value or the escape value is different than
that of the column, that value is converted to adhere to the CCSID of the
column before the predicate is applied.

Mixed data: If the column is mixed data, the pattern can include both SBCS
and DBCS characters. The special characters in the pattern are interpreted as
follows:
v An SBCS underscore refers to one SBCS character.
v A DBCS underscore refers to one DBCS character.
v A percent (either SBCS or DBCS) refers to any number of characters of any

type, either SBCS or DBCS.

In EBCDIC environments, any redundant shifts in either the column values or
the pattern are ignored. 34

If the pattern is improperly formed mixed data, the result is unpredictable.

For Unicode, the special characters in the pattern are interpreted as follows:
v An SBCS or DBCS underscore refers to one character (either SBCS or MBCS)
v A percent sign (either SBCS or DBCS) refers to a string of zero or more SBCS

or MBCS characters.

When the LIKE predicate is used with Unicode data, the Unicode percent sign
and underscore use the code points indicated in the following table:

Table 16. Code Points for Unicode Percent Sign and Underscore

Character UTF-8 UTF-16 or UCS-2

Half-width % X’25’ X’0025’

Full-width % X’EFBC85’ X’FF05’

Half-width _ X’5F’ X’005F’

Full-width _ X’EFBCBF’ X’FF3F’

The full-width or half-width % matches zero or more characters. The full-width
or half-width _ character matches exactly one character. (For ASCII or EBCDIC

34. In DB2 UDB for iSeries, redundant shifts are normally ignored, but the IGNORE_LIKE_REDUNDANT_SHIFTS option must be
specified to ensure redundant shifts are always ignored.

LIKE predicate

124 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

data, a full-width _ character matches one DBCS character.) In DB2 UDB for
LUW for a Unicode database, the full-with % character and full-width _
character

Parameter marker:

When the pattern specified in a LIKE predicate is a
parameter marker, and a fixed-length character host
variable is used to replace the parameter marker; specify a
value for the host variable that is the correct length. If the
correct length is not specified, the select will not return the
intended results.

For example, if the host variable is defined as CHAR(10),
and the value WYSE% is assigned to that host variable, the
host variable is padded with blanks on assignment. The
pattern used is

’WYSE% ’

This pattern requests the database manager to search for all
values that start with WYSE and end with five blank
spaces. If the search was intended to search only for the
values that start with ’WYSE’, then assign the value
’WSYE%%%%%%’ to the host variable.

ESCAPE escape-expression

The ESCAPE clause allows the definition of patterns intended to match values
that contain the actual percent and underscore characters. The following rules
govern the use of the ESCAPE clause:
v If a character-string column is identified, the escape character must be a

character-string constant or fixed length variable of length 1. 35

v If a graphic-string column is identified, the escape character must be a
graphic-string constant or fixed length variable of length 1. 36

v If the ESCAPE host-variable has a negative indicator variable, the result of the
predicate is unknown.

v The host-variable or string-constant forming the pattern must not contain the
escape character except when followed by the escape character, percent, or
underscore.
For example, if '+' is the escape character, any occurrences of '+' other than
'++', '+_', or '+%' in the pattern is an error.

v If the column is mixed data, the ESCAPE clause is not allowed.

The following example shows the effect of successive occurrences of the escape
character, which in this case is the plus sign (+).

Table 17.

When the pattern string is... The actual pattern is...

+% A percent sign

++% A plus sign followed by zero or more arbitrary
characters

35. Except in C, where a NUL-terminated character string variable of length 2 can be used.

36. Except in C, where a NUL-terminated graphic string variable of length 2 can be used.

LIKE predicate

Chapter 2. Language elements 125

G
G
G

Table 17. (continued)

When the pattern string is... The actual pattern is...

+++% A plus sign followed by a percent sign

Examples

Example 1: Search for the string ‘SYSTEMS’ appearing anywhere within the
PROJNAME column in the PROJECT table.

SELECT PROJNAME
FROM PROJECT
WHERE PROJECT.PROJNAME LIKE ’%SYSTEMS%’

Example 2: Search for a string with a first character of ‘J’ that is exactly two
characters long in the FIRSTNME column of the EMPLOYEE table.
SELECT FIRSTNME

FROM EMPLOYEE
WHERE EMPLOYEE.FIRSTNME LIKE ’J_’

Example 3: In this example:
SELECT *

FROM TABLEY
WHERE C1 LIKE ’AAAA+%BBB%’ ESCAPE ’+’

'+' is the escape character and indicates that the search is for a string that starts
with 'AAAA%BBB'. The '+%' is interpreted as a single occurrence of '%' in the
pattern.

Example 4: In the following table of EBCDIC examples, assume COL1 is mixed
data. The table shows the results when the predicates in the first column are
evaluated using the COL1 values from the second column:

LIKE predicate

126 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

WHERE COL1 LIKE

WHERE COL1 LIKE

WHERE COL1 LIKE

WHERE COL1 LIKE

WHERE COL1 LIKE

WHERE COL1 LIKE

Predicates ResultCOL1 Values

True

True

True

True

False

True

True

True

True

False

False

False

True

False

False

False

False

False

Empty string

Empty string

Empty string

Empty string

Empty string

Empty string

'aaa 'S
O

SAB%C 'aaa

'aaa

'aaa

'aaa

'aaa

'aaa

'

'

'

'

'

'

S
O

S
O

S
O

S
O

S
O

S
O

S

S

S

S

S

S

ABDZC

ABDZC

ABDZC

ABDZC

ABDZC

ABDZC'aaa

' '

' '

' '

' '

'aaa

'aaa

'aaa

'aaa

'aaa

'aaa

AB

AB

AB

AB

AB

AB

AB

C

C

C

C

C

C

C

'

'

'

'

'

'

'

%

%

%

dzx

dzx

dzx

dzx

dzx

dzx

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Example 5: In the following table of ASCII examples, assume COL1 is mixed data.
The table shows the results when the predicates in the first column are evaluated
using the COL1 values from the second column:

WHERE COL1 LIKE

WHERE COL1 LIKE

Predicates ResultCOL1 Values

True

True

'aaa '

'aaa '

AB%C

AB%C

'aaa 'ABDZC

'aaa 'AB Cdzx

LIKE predicate

Chapter 2. Language elements 127

NULL predicate

�� column-name IS
NOT

NULL ��

The NULL predicate tests for null values.

The result of a NULL predicate cannot be unknown. If the value of the column is
null, the result is true. If the value is not null, the result is false.

If NOT is specified, the result is reversed.

Examples

EMPLOYEE.PHONE IS NULL

SALARY IS NOT NULL

NULL predicate

128 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Search conditions

��
NOT

predicate
(search-condition)

�

� �

AND predicate
OR NOT (search-condition)

��

A search-condition specifies a condition that is true, false, or unknown about a given
row or group.

The result of a search condition is derived by application of the specified logical
operators (AND, OR, NOT) to the result of each specified predicate. If logical
operators are not specified, the result of the search condition is the result of the
specified predicate.

AND and OR are defined in the following table in which P and Q are any
predicates:

Table 18. Truth Tables for AND and OR

P Q P AND Q P OR Q

True True True True

True False False True

True Unknown Unknown True

False True False True

False False False False

False Unknown False Unknown

Unknown True Unknown True

Unknown False False Unknown

Unknown Unknown Unknown Unknown

NOT(true) is false, NOT(false) is true, and NOT(unknown) is unknown.

Search conditions within parentheses are evaluated first. If the order of evaluation
is not specified by parentheses, NOT is applied before AND, and AND is applied
before OR. The order in which operators at the same precedence level are
evaluated is undefined to allow for optimization of search conditions.

Examples
In the examples, the numbers on the second line indicate the order in which the
operators are evaluated.

MAJPROJ = ’MA2100’ AND DEPTNO = ’D11’ OR DEPTNO = ’B03’ OR DEPTNO = ’E11’
6 6 6

┌┴┐ ┌──┴───┐ ┌──┴───┐
│1│ │2 or 3│ │2 or 3│
└─┘ └──────┘ └──────┘

Search conditions

Chapter 2. Language elements 129

MAJPROJ = ’MA2100’ AND (DEPTNO = ’D11’ OR DEPTNO = ’B03’) OR DEPTNO = ’E11’
6 6 6
┌┴┐ ┌┴┐ ┌┴┐
│2│ │1│ │3│
└─┘ └─┘ └─┘

Search conditions

130 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Chapter 3. Built-in functions

This chapter contains syntax diagrams, semantic descriptions, rules, and examples
of the use of the built-in functions listed in the following tables. For more
information on functions, see “Functions” on page 93.

Table 19. Column Functions

Function Description Reference

AVG Returns the average of a set of numbers 136

COUNT Returns the number of rows or values in a set
of rows or values

137

COUNT_BIG Returns the number of rows or values in a set
of rows or values (COUNT_BIG is similar to
COUNT except that the result can be greater
than the maximum value of integer)

138

MAX Returns the maximum value in a set of values
in a group

139

MIN Returns the minimum value in a set of values
in a group

140

STDDEV Returns the biased standard deviation of a set
of numbers

141

SUM Returns the sum of a set of numbers 142

VARIANCE or VAR Returns the biased variance of a set of
numbers

143

Table 20. Cast Scalar Functions

Function Description Reference

BLOB Returns a BLOB representation of a string of
any type

151

CHAR Returns a CHARACTER representation of a
value

153

CLOB Returns a CLOB representation of a value 158

DATE Returns a DATE from a value 163

DBCLOB Returns a DBCLOB representation of a string 170

DECIMAL Returns a DECIMAL representation of a
number

171

DOUBLE_PRECISION
or DOUBLE

Returns a DOUBLE PRECISION
representation of a number

175

FLOAT Returns a FLOAT representation of a number 178

GRAPHIC Returns a GRAPHIC representation of a string 180

INTEGER or INT Returns an INTEGER representation of a
number

187

REAL Returns a REAL representation of a number 210

SMALLINT Returns a SMALLINT representation of a
number

218

TIME Returns a TIME from a value 226

© Copyright IBM Corp. 1982, 2003 131

Table 20. Cast Scalar Functions (continued)

Function Description Reference

TIMESTAMP Returns a TIMESTAMP from a value or a pair
of values

227

VARCHAR Returns a VARCHAR representative of a value 236

VARGRAPHIC Returns a VARGRAPHIC representation of a
value

238

Table 21. Datetime Scalar Functions

Function Description Reference

DAY Returns the day part of a value 165

DAYOFWEEK Returns the day of the week from a value,
where 1 is Sunday and 7 is Saturday

166

DAYOFWEEK_ISO Returns the day of the week from a value,
where 1 is Monday and 7 is Sunday

167

DAYOFYEAR Returns the day of the year from a value 168

DAYS Returns an integer representation of a date 169

HOUR Returns the hour part of a value 182

JULIAN_DAY Returns an integer value representing a
number of days from January 1, 4712 B.C. to
the date specified in the argument

188

MICROSECOND Returns the microsecond part of a value 198

MIDNIGHT_SECONDS Returns an integer value representing the
number of seconds between midnight and a
specified time value

199

MINUTE Returns the minute part of a value 200

MONTH Returns the month part of a value 202

QUARTER Returns an integer that represents the quarter
of the year in which a date resides

207

SECOND Returns the seconds part of a value 214

WEEK Returns the week of the year from a value,
where the week starts with Sunday

241

WEEK_ISO Returns the week of the year from a value,
where the week starts with Monday

242

YEAR Returns the year part of a value 243

Table 22. Miscellaneous Scalar Functions

Function Description Reference

COALESCE Returns the first argument that is not null 159

HEX Returns a hexadecimal representation of a
value

181

IDENTITY_VAL_LOCAL Returns the most recently assigned value for
an identity column

183

LENGTH Returns the length of a value 191

NULLIF Returns a null value if the arguments are
equal, otherwise it returns the value of the
first argument

203

Functions

132 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 22. Miscellaneous Scalar Functions (continued)

Function Description Reference

VALUE Returns the first argument that is not null 235

Table 23. Numeric Scalar Functions

Function Description Reference

ABS Returns the absolute value of a number 145

ACOS Returns the arc cosine of a number, in radians 146

ASIN Returns the arc sine of a number, in radians 147

ATAN Returns the arc tangent of a number, in
radians

148

ATANH Returns the hyperbolic arc tangent of a
number, in radians

149

ATAN2 Returns the arc tangent of x and y coordinates
as an angle expressed in radians

150

CEILING Returns the smallest integer value that is
greater than or equal to a number

152

COS Returns the cosine of a number 161

COSH Returns the hyperbolic cosine of a number 162

DEGREE Returns the number of degrees of an angle 173

DIGITS Returns a character-string representation of the
absolute value of a number

174

EXP Returns a value that is the base of the natural
logarithm (e) raised to a power specified by
the argument

177

FLOOR Returns the largest integer value that is less
than or equal to a number

179

LN Returns the natural logarithm of a number 192

LOG10 Returns the common logarithm (base 10) of a
number

195

MOD Returns the remainder of the first argument
divided by the second argument

201

POWER Returns the result of raising the first argument
to the power of the second argument

206

RADIANS Returns the number of radians for an
argument that is expressed in degrees

208

RAND Returns a random number 209

ROUND Returns a numeric value that has been
rounded to the specified number of decimal
places

211

SIGN Returns the sign of a number 215

SIN Returns the sine of a number 216

SINH Returns the hyperbolic sine of a number 217

SQRT Returns the square root of a number 220

TAN Returns the tangent of a number 148

TANH Returns the hyperbolic tangent of a number 225

Functions

Chapter 3. Built-in functions 133

Table 23. Numeric Scalar Functions (continued)

Function Description Reference

TRUNCATE or TRUNC Returns a number value that has been
truncated at a specified number of decimal
places

231

Table 24. String Scalar Functions

Function Description Reference

CONCAT Returns a string that is the concatenation of
two strings

160

LCASE Returns a string in which all the characters
have been converted to lowercase characters

189

LEFT Returns the leftmost characters from the string 190

LOCATE Returns the starting position of one string
within another string

193

LOWER Returns a string in which all the characters
have been converted to lowercase characters

196

LTRIM Returns a string in which blanks have been
removed from the beginning of another string

197

POSSTR Returns the starting position of one string
within another string

204

RTRIM Returns a string in which blanks have been
removed from the end of another string

213

SPACE Returns a character string that consists of a
specified number of blanks

219

SUBSTR Returns a substring of a string 221

TRANSLATE Returns a string in which one or more
characters in a string are converted to other
characters

229

UCASE Returns a string in which all the characters
have been converted to uppercase characters

233

UPPER Returns a string in which all the characters
have been converted to uppercase characters

234

Functions

134 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Column functions
The following information applies to all column functions. However, it does not
apply when an asterisk (*) is used as the argument to COUNT or COUNT_BIG.
v The argument of a column function is a set of values derived from an

expression. The expression must include a column name and must not include
another column function. The scope of the set is a group or an intermediate
result table as explained in Chapter 4, “Queries”, on page 245.

v If a GROUP BY clause is specified in a query and the intermediate result of the
FROM, WHERE, GROUP BY, and HAVING clauses is the empty set; then the
column functions are not applied, the result of the query is the empty set.

v If a GROUP BY clause is not specified in a query and the intermediate result of
the FROM, WHERE, and HAVING clauses is the empty set, then the column
functions are applied to the empty set. For example, the result of the following
SELECT statement is applied to the empty set because department D01 has no
employees:

SELECT COUNT(DISTINCT JOB)
FROM EMPLOYEE
WHERE WORKDEPT = ’D01’

v The keyword DISTINCT is not considered an argument of the function, but
rather a specification of an operation that is performed before the function is
applied. If DISTINCT is specified, redundant duplicate values are eliminated. If
ALL is implicitly or explicitly specified, redundant duplicate values are not
eliminated.

v A column function can be used in a WHERE clause only if that clause is part of
a subquery of a HAVING clause and the column name specified in the
expression is a correlated reference to a group. If the expression includes more
than one column name, each column name must be a correlated reference to the
same group.

Functions

Chapter 3. Built-in functions 135

AVG

��
ALL

AVG (numeric-expression)
DISTINCT

��

The AVG function returns the average of a set of numbers.

The argument values can be of any built-in numeric data type.

The data type of the result is the same as the data type of the argument values,
except that:
v The result is double-precision floating point if the argument values are

single-precision floating point.
v The result is a large integer if the argument values are small integers.
v The result is decimal with precision 31 and scale 31-p+s if the argument values

are decimal numbers with precision p and scale s.37 In DB2 UDB for z/OS and
OS/390, the scale is MAX(0,28-p+s).

The function is applied to the set of values derived from the argument values by
eliminating null values. If DISTINCT is specified, redundant duplicate values are
eliminated.

The result can be null. If the set of values is empty, the result is the null value.
Otherwise, the result is the average value of the set.

The order in which the values are aggregated is undefined, but every intermediate
result must be within the range of the result data type.

If the type of the result is integer, the fractional part of the average is lost.

Examples
v Using the PROJECT table, set the host variable AVERAGE (DECIMAL(5,2)) to

the average staffing level (PRSTAFF) of projects in department (DEPTNO) ‘D11’.
SELECT AVG(PRSTAFF)

INTO :AVERAGE
FROM PROJECT
WHERE DEPTNO = ’D11’

Results in AVERAGE being set to 4.25 (that is, 17/4).
v Using the PROJECT table, set the host variable ANY_CALC to the average of

each unique staffing level value (PRSTAFF) of projects in department (DEPTNO)
‘D11’.

SELECT AVG(DISTINCT PRSTAFF)
INTO :ANY_CALC
FROM PROJECT
WHERE DEPTNO = ’D11’

Results in ANY_CALC being set to 4.66 (that is, 14/3).

37. For DB2 UDB for z/OS and OS/390, the formulas used in this book are those that apply when the DEC31 option is in effect or
the precision of an operand is greater than 15.

AVG

136 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

COUNT

��
ALL

COUNT (expression)
DISTINCT

*

��

The COUNT function returns the number of rows or values in a set of rows or
values.

The argument values can be of any built-in data type other than a BLOB, CLOB, or
DBCLOB. If DISTINCT is used, the resulting expression must not have a length
attribute greater than 255 for a character column or 127 for a graphic column.

The result of the function is a large integer and must be within the range of large
integers. The result cannot be null.

The argument of COUNT(*) is a set of rows. The result is the number of rows in
the set. A row that includes only null values is included in the count.

The argument of COUNT(expression) or COUNT(ALL expression) is a set of values.
The function is applied to the set of values derived from the argument values by
the elimination of null values. The result is the number of non-null values in the
set including duplicates.

The argument of COUNT(DISTINCT expression) is a set of values. The function is
applied to the set of values derived from the argument values by the elimination
of null values and redundant duplicate values. The result is the number of
different non-null values in the set.

Examples
v Using the EMPLOYEE table, set the host variable FEMALE (INTEGER) to the

number of rows where the value of the SEX column is ‘F’.
SELECT COUNT(*)

INTO :FEMALE
FROM EMPLOYEE
WHERE SEX = ’F’

Results in FEMALE being set to 13.
v Using the EMPLOYEE table, set the host variable FEMALE_IN_DEPT

(INTEGER) to the number of departments (WORKDEPT) that have at least one
female as a member.

SELECT COUNT(DISTINCT WORKDEPT)
INTO :FEMALE_IN_DEPT
FROM EMPLOYEE
WHERE SEX = ’F’

Results in FEMALE_IN_DEPT being set to 5. (There is at least one female in
departments A00, C01, D11, D21, and E11.)

COUNT

Chapter 3. Built-in functions 137

COUNT_BIG

The COUNT_BIG function returns the number of rows or values in a set of rows
or values. It is similar to COUNT except that the result can be greater than the
maximum value of integer.

The argument values can be of any built-in data type other than a BLOB, CLOB, or
DBCLOB. If DISTINCT is used, the resulting expression must not have a length
attribute greater than 255 for a character column or 127 for a graphic column.

The result of the function is a decimal with precision 31 and scale 0. The result
cannot be null.

The argument of COUNT_BIG(*) is a set of rows. The result is the number of rows
in the set. A row that includes only null values is included in the count.

The argument of COUNT_BIG(expression) or COUNT_BIG(ALL expression) is a set
of values. The function is applied to the set of values derived from the argument
values by the elimination of null values. The result is the number of non-null
values in the set including duplicates.

The argument of COUNT_BIG(DISTINCT expression) is a set of values. The
function is applied to the set of values derived from the argument values by the
elimination of null values and redundant duplicate values. The result is the
number of different non-null values in the set.

Examples
v Refer to the COUNT examples and substitute COUNT_BIG for occurrences of

COUNT. The results are the same except for the data type of the result.
v To create a sourced function that is similar to the built-in COUNT_BIG function,

the definition of the sourced function must include the type of the column that
can be specified when the new function is invoked. In this example, the
CREATE FUNCTION statement creates a sourced function that takes any
column defined as CHAR, uses COUNT_BIG to perform the counting, and
returns the result as a double-precision floating-point number. The query shown
counts the number of unique departments in the sample employee table.

CREATE FUNCTION RICK.COUNT(CHAR()) RETURNS DOUBLE
SOURCE COUNT_BIG(CHAR());

SET CURRENT PATH RICK, SYSTEM PATH

SELECT COUNT(DISTINCT WORKDEPT) FROM EMPLOYEE;

The empty parenthesis in the parameter list for the new function
(RICK.COUNT) means that the input parameter for the new function is the same
type as the input parameter for the function named in the SOURCE clause. The
empty parenthesis in the parameter list in the SOURCE clause (COUNT_BIG)
means that the length attribute of the CHAR parameter of the COUNT_BIG
function is ignored when the database manager locates the COUNT_BIG
function.

��
ALL

COUNT_BIG (expression)
DISTINCT

*

��

COUNT_BIG

138 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

MAX

��
ALL

MAX (expression)
DISTINCT

��

The MAX function returns the maximum value in a set of values.

The argument values can be of any built-in data type other than a BLOB, CLOB, or
DBCLOB. The expression must not have a length attribute greater than 255 for a
character column or 127 for a graphic column.

The data type and length attribute of the result are the same as the data type and
length attribute of the argument values. When the argument is a string, the result
has the same CCSID as the argument.

The function is applied to the set of values derived from the argument values by
the elimination of null values.

The result can be null. If the set of values is empty, the result is the null value.
Otherwise, the result is the maximum value in the set.

The specification of DISTINCT has no effect on the result and is not advised.

Examples
v Using the EMPLOYEE table, set the host variable MAX_SALARY

(DECIMAL(7,2)) to the maximum monthly salary (SALARY / 12) value.
SELECT MAX(SALARY) / 12
INTO :MAX_SALARY
FROM EMPLOYEE

Results in MAX_SALARY being set to 4395.83.
v Using the PROJECT table, set the host variable LAST_PROJ (CHAR(24)) to the

project name (PROJNAME) that comes last in the sort sequence.
SELECT MAX(PROJNAME)
INTO :LAST_PROJ
FROM PROJECT

Results in LAST_PROJ being set to '
WELD LINE PLANNING

'.

MAX

Chapter 3. Built-in functions 139

MIN

��
ALL

MIN (expression)
DISTINCT

��

The MIN function returns the minimum value in a set of values.

The argument values can be of any built-in data type other than a BLOB, CLOB, or
DBCLOB. The expression must not have a length attribute greater than 255 for a
character column or 127 for a graphic column.

The data type and length attribute of the result are the same as the data type and
length attribute of the argument values. When the argument is a string, the result
has the same CCSID as the argument.

The function is applied to the set of values derived from the argument values by
the elimination of null values.

The result can be null. If the set of values is empty, the result is the null value.
Otherwise, the result is the minimum value in the set.

The specification of DISTINCT has no effect on the result and is not advised.

Examples
v Using the EMPLOYEE table, set the host variable COMM_SPREAD

(DECIMAL(7,2)) to the difference between the maximum and minimum
commission (COMM) for the members of department (WORKDEPT) ‘D11’.

SELECT MAX(COMM) - MIN(COMM)
INTO :COMM_SPREAD
FROM EMPLOYEE
WHERE WORKDEPT = ’D11’

Results in COMM_SPREAD being set to 1118 (that is, 2580 - 1462).
v Using the PROJECT table, set the host variable FIRST_FINISHED (CHAR(10)) to

the estimated ending date (PRENDATE) of the first project scheduled to be
completed.

SELECT MIN(PRENDATE)
INTO :FIRST_FINISHED
FROM PROJECT

Results in FIRST_FINISHED being set to ‘1982-09-15’.

MIN

140 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

STDDEV

The STDDEV function returns the biased population standard deviation (/n) of a
set of numbers. The formula used to calculate STDDEV is logically equivalent to:
STDDEV = SQRT(VAR)

where SQRT(VAR) is the square root of the variance.

The argument values must be of any built-in numeric data type.

The data type of the result is double-precision floating point.

The function is applied to the set of values derived from the argument values by
the elimination of null values. If DISTINCT is specified, redundant duplicate
values are eliminated.

The result can be null. If the set of values is empty, the result is a null value.
Otherwise, the result is the standard deviation of the values in the set.

The order in which the values are aggregated is undefined, but every intermediate
result must be within the range of the result data type.

Example
v Using the EMPLOYEE table, set the host variable DEV (double-precision floating

point) to the standard deviation of the salaries for those employees in
department A00.

SELECT STDDEV(SALARY)
INTO :DEV
FROM EMPLOYEE
WHERE WORKDEPT = ’A00’;

Results in DEV being set to approximately 9742.43.

�� STDDEV
ALL

(numeric-expression)
DISTINCT

��

STDDEV

Chapter 3. Built-in functions 141

SUM

��
ALL

SUM (numeric-expression)
DISTINCT

��

The SUM function returns the sum of a set of numbers.

The argument values can be of any built-in numeric data type.

The data type of the result is the same as the data type of the argument values
except that the result is:
v A double-precision floating point if the argument values are single-precision

floating point
v A large integer if the argument values are small integers.
v A decimal with precision 31 and scale s if the argument values are decimal

numbers with precision p and scale s.38 In DB2 UDB for z/OS and OS/390, the
precision of the result is min(31, p+10).

The function is applied to the set of values derived from the argument values by
the elimination of null values. If DISTINCT is specified, redundant duplicate
values are eliminated.

The result can be null. If the set of values is empty, the result is the null value.
Otherwise, the result is the sum of the values in the set.

The order in which the values are aggregated is undefined, but every intermediate
result must be within the range of the result data type.

Example
v Using the EMPLOYEE table, set the host variable JOB_BONUS (DECIMAL(9,2))

to the total bonus (BONUS) paid to clerks (JOB='CLERK').
SELECT SUM(BONUS)

INTO :JOB_BONUS
FROM EMPLOYEE
WHERE JOB = ’CLERK’

Results in JOB_BONUS being set to 2800.

38. For DB2 UDB for z/OS and OS/390, the formulas used in this book are those that apply when the DEC31 option is in effect or
the precision of an operand is greater than 15.

SUM

142 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

VARIANCE or VAR

The VARIANCE functions return the biased population variance (/n) of a set of
numbers. The formula used to calculate VARIANCE is logically equivalent to:

VARIANCE = SUM(X**2)/COUNT(X) - (SUM(X)/COUNT(X))**2

The argument values can be of any built-in numeric data type.

The data type of the result is double-precision floating point.

The function is applied to the set of values derived from the argument values by
the elimination of null values. If DISTINCT is specified, redundant duplicate
values are eliminated.

The result can be null. If the set of values is empty, the result is a null value.
Otherwise, the result is the variance of the values in the set.

The order in which the values are aggregated is undefined, but every intermediate
result must be within the range of the result data type.

Example
v Using the EMPLOYEE table, set the host variable VARNCE (double-precision

floating point) to the variance of the salaries for those employees in department
A00.

SELECT VARIANCE(SALARY)
INTO :VARNCE
FROM EMPLOYEE
WHERE WORKDEPT = ’A00’;

Results in VARNCE being set to approximately 98 763 888.88.

�� VARIANCE
VAR

ALL
(numeric-expression)

DISTINCT
��

VARIANCE or VAR

Chapter 3. Built-in functions 143

Scalar functions
A scalar function can be used wherever an expression can be used. The restrictions
on the use of column functions do not apply to scalar functions, because a scalar
function is applied to single set of parameter values rather than to sets of values.
The argument of a scalar function can be a function. However, the restrictions that
apply to the use of expressions and column functions also apply when an
expression or column function is used within a scalar function. For example, the
argument of a scalar function can be a column function only if a column function
is allowed in the context in which the scalar function is used.

Example
The result of the following SELECT statement has as many rows as there are
employees in department D01:

SELECT EMPNO, LASTNAME, YEAR(CURRENT DATE - BIRTHDATE)
FROM EMPLOYEE
WHERE WORKDEPT = ’D01’

Scalar functions

144 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

ABS

The ABS function returns the absolute value of a number.

The argument must be an expression that returns a value of any built-in numeric
data type.

The data type and length attribute of the result are the same as the data type and
length attribute of the argument value. In DB2 UDB for iSeries the result is an
INTEGER if the argument value is a small integer and the result is
double-precision floating point if the argument value is single-precision floating
point.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Note
Syntax alternatives: ABSVAL is a synonym for ABS. It is supported only for
compatibility with previous DB2 releases.

Example
v Assume the host variable PROFIT is a large integer with a value of -50000.

SELECT ABS(:PROFIT)
FROM SYSIBM.SYSDUMMY1

Returns the value 50000.

�� ABS (numeric-expression) ��

ABS

Chapter 3. Built-in functions 145

G
G
G
G

ACOS

The ACOS function returns the arc cosine of the argument as an angle expressed in
radians. The ACOS and COS functions are inverse operations.

The argument must be an expression that returns a value of any built-in numeric
data type. The value must be greater than or equal to -1 and less than or equal to
1.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

The result is greater than or equal to 0 and less than or equal to π.

Example
v Assume the host variable ACOSINE is a DECIMAL(10,9) host variable with a

value of 0.070737202.
SELECT ACOS(:ACOSINE)
FROM SYSIBM.SYSDUMMY1

Returns the approximate value 1.49.

�� ACOS (numeric-expression) ��

ACOS

146 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

ASIN

The ASIN function returns the arc sine of the argument as an angle expressed in
radians. The ASIN and SIN functions are inverse operations.

The argument must be an expression that returns a value of any built-in numeric
data type. The value must be greater than or equal to -1 and less than or equal to
1.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

The result is greater than or equal to -π/2 and less than or equal to π/2.

Example
v Assume the host variable ASINE is a DECIMAL(10,9) host variable with a value

of 0.997494987.
SELECT ASIN(:ASINE)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 1.50.

�� ASIN (numeric-expression) ��

ASIN

Chapter 3. Built-in functions 147

ATAN

The ATAN function returns the arc tangent of the argument as an angle expressed
in radians. The ATAN and TAN functions are inverse operations.

The argument must be an expression that returns a value of any built-in numeric
data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

The result is greater than or equal to -π/2 and less than or equal to π/2.

Example
v Assume the host variable ATANGENT is a DECIMAL(10,8) host variable with a

value of 14.10141995.
SELECT ATAN(:ATANGENT)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 1.50.

�� ATAN (numeric-expression) ��

ATAN

148 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

ATANH

The ATANH function returns the hyperbolic arc tangent of a number, in radians.
The ATANH and TANH functions are inverse operations.

The argument must be an expression that returns a value of any built-in numeric
data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable HATAN is a DECIMAL(10,9) host variable with a

value of 0.905148254.
SELECT ATANH(:HATAN)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 1.50.

�� ATANH (numeric-expression) ��

ATANH

Chapter 3. Built-in functions 149

ATAN2

The ATAN2 function returns the arc tangent of x and y coordinates as an angle
expressed in radians. The first and second arguments specify the x and y
coordinates, respectively.

Each argument must be an expression that returns the value of any built-in
numeric data type. Both arguments must not be 0.

The data type of the result is double-precision floating point. If any argument can
be null, the result can be null; if any argument is null, the result is the null value.

Example
v Assume that host variables HATAN2A and HATAN2B are DOUBLE host

variables with values of 1 and 2, respectively.
SELECT ATAN2(:HATAN2A,:HATAN2B)

FROM SYSIBM.SYSDUMMY1

Returns a double-precision floating-point number with an approximate value of
1.107 148 7.

�� ATAN2 (numeric-expression-1 , numeric-expression-2) ��

ATAN2

150 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

BLOB

The BLOB function returns a BLOB representation of a string of any type.

The result of the function is a BLOB. If the first argument can be null, the result
can be null; if the first argument is null, the result is the null value.

string-expression
An expression that returns a value that is a built-in character, graphic, or
binary string data type.

integer
Specifies the length attribute for the resulting binary string. The value must be
between 1 and 2 147 483 647. For more information, see Table 39 on page 552.

If integer is not specified, the length attribute of the result is the same as the
length attribute of the first argument, unless the argument is a graphic string.
In this case, the length attribute of the result is twice the length attribute of the
argument. If integer is not specified, the string-expression must not be the empty
string constant.

The actual length of the result is the minimum of the length attribute of the
result and the actual length of the expression (or twice the length of the
expression when the input is graphic data). If the length of the string-expression
is greater than the length attribute of the result, truncation is performed.

Note
Syntax alternatives: When the length attribute is specified, the CAST specification
should be used for maximal portability. For more information, see “CAST
specification” on page 112.

Examples
v The following function returns a BLOB for the string ’This is a BLOB’.

SELECT BLOB(’This is a BLOB’)
FROM SYSIBM.SYSDUMMY1

v The following function returns a BLOB for the large object that is identified by
locator myclob_locator.

SELECT BLOB(:myclob_locator)
FROM SYSIBM.SYSDUMMY1

v Assume that a table has a BLOB column named TOPOGRAPHIC_MAP and a
VARCHAR column named MAP_NAME. Locate any maps that contain the
string ’Pellow Island’ and return a single binary string with the map name
concatenated in front of the actual map. The following function returns a BLOB
for the large object that is identified by locator myclob_locator.

SELECT BLOB(MAP_NAME CONCAT ’: ’) CONCAT TOPOGRAPHIC_MAP
FROM ONTARIO_SERIES_4
WHERE TOPOGRAPHIC_MAP LIKE ’%Pellow Island%’

�� BLOB (string-expression)
, integer

��

BLOB

Chapter 3. Built-in functions 151

CEILING

The CEIL or CEILING function returns the smallest integer value that is greater
than or equal to numeric-expression.

The argument must be an expression that returns a value of any built-in numeric
data type.

The result of the function has the same data type and length attribute of the
argument except that the scale is 0 if the argument is DECIMAL. For example, an
argument with a data type of DECIMAL(5,5) will result in DECIMAL(5,0).

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Examples
v Find the highest monthly salary for all the employees. Round the result up to

the next integer. The SALARY column has a decimal data type.
SELECT CEIL(MAX(SALARY)/12)
FROM EMPLOYEE

This example returns 000004396. because the highest paid employee is Christine
Haas who earns $52750.00 per year. Her average monthly salary before applying
the CEIL function is 4395.83.

v Use CEILING on both positive and negative numbers.
SELECT CEILING(3.5),

CEILING(3.1),
CEILING(-3.1),
CEILING(-3.5)

FROM SYSIBM.SYSDUMMY1

This example returns (leading zeroes are shown to demonstrate the precision
and scale of the result):
04. 04. -03. -03.

respectively.

�� CEILING (numeric-expression)
CEIL

��

CEILING

152 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

CHAR

The CHAR function returns a fixed-length character-string representation of:
v An integer number if the first argument is a SMALLINT or INTEGER.
v A decimal number if the first argument is a decimal number.
v A double-precision floating-point number if the first argument is a DOUBLE or

REAL.
v A character string if the first argument is any type of character string.
v A date value if the first argument is a DATE.
v A time value if the first argument is a TIME.
v A timestamp value if the first argument is a TIMESTAMP.

The first argument must be a built-in data type other than a BLOB, GRAPHIC,
VARGRAPHIC, or DBCLOB.

The result of the function is a fixed-length character string. If the first argument
can be null, the result can be null; if the first argument is null, the result is the null
value.

Datetime to Character

datetime-expression
An expression that is one of the following three built-in data types:

Datetime to Character

�� CHAR (datetime-expression)
, ISO

USA
EUR
JIS

��

Character to Character

�� CHAR (character-expression)
, integer

��

Integer to Character

�� CHAR (integer-expression) ��

Decimal to Character

�� CHAR (decimal-expression)
, decimal-character

��

Floating-point to Character

�� CHAR (floating-point-expression) ��

CHAR

Chapter 3. Built-in functions 153

DATE The result is the character-string representation of the date in the
format specified by the second argument. If the second argument is not
specified, the format used is the default date format. The length of the
result is 10. For more information see “String representations of
datetime values” on page 52.

TIME The result is the character-string representation of the time in the
format specified by the second argument. If the second argument is not
specified, the format used is from the default time format. The length
of the result is 8. For more information see “String representations of
datetime values” on page 52.

TIMESTAMP
The second argument is not applicable and must not be specified.

The result is the character-string representation of the timestamp. The
length of the result is 26.

The CCSID of the string is the default SBCS CCSID at the current server.

ISO, EUR, USA, or JIS
Specifies the date or time format of the resulting character string. For more
information, see “String representations of datetime values” on page 52.

Character to Character

character-expression
An expression that returns a value that is a built-in character-string data type.

integer
Specifies the length attribute for the resulting fixed length character string. The
value must be between 1 and 254. In EBCDIC environments, if the first
argument is mixed data, the second argument cannot be less than 4.

If integer is not specified, the length of the result is the minimum of 254 and
the length attribute of character-expression. The character-expression must not be
the empty string constant.

The actual length is the same as the length attribute of the result. If the length
of the character-expression is less than the length of the result, the result is
padded with blanks up to the length of the result. If the length of the
character-expression is greater than the length attribute of the result, truncation
is performed.

The CCSID of the string is the CCSID of the character-expression.

Integer to Character

integer-expression
An expression that returns a value that is an built-in integer data type (either
SMALLINT or INTEGER).

The result is the fixed-length character-string representation of the argument in the
form of an SQL integer constant. The result consists of n characters that are the
significant digits that represent the value of the argument with a preceding minus
sign if the argument is negative. The result is left justified.
v If the argument is a small integer:

The length of the result is 6. If the number of characters in the result is less than
6, then the result is padded on the right with blanks.

v If the argument is a large integer:

CHAR

154 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

The length of the result is 11. If the number of characters in the result is less
than 11, then the result is padded on the right with blanks.

The CCSID of the string is the default SBCS CCSID at the current server.

Decimal to Character

decimal-expression
An expression that returns a value that is a built-in DECIMAL or NUMERIC
data type. If a different precision and scale is desired, the DECIMAL scalar
function can be used to make the change.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal
digits in the result character string. The character must be a period or comma.
If the second argument is not specified, the decimal point is the default
decimal point. For more information, see “Decimal point” on page 77.

The result is a fixed-length character-string representation of the argument. The
result includes a decimal character and up to p digits, where p is the precision of
the decimal-expression with a preceding minus sign if the argument is negative.
Leading zeros are not returned. Trailing zeros are returned. In DB2 UDB for z/OS
and OS/390 and DB2 UDB for LUW leading zeroes are returned. In DB2 UDB for
z/OS and OS/390, a leading blank is returned from the CHAR function for
positive decimal values. The leading blank is not returned for
CAST(decimal-expression AS CHAR(n)).

The length of the result is 2+p where p is the precision of the decimal-expression.
This means that a positive value will always include at least one trailing blank.

The CCSID of the string is the default SBCS CCSID at the current server.

Floating-point to Character

floating-point expression
An expression that returns a value that is a built-in floating-point data type
(DOUBLE or REAL).

The single-byte character constant used to delimit the decimal digits in
character-expression from the whole part of the number is the default decimal
point. For more information, see “Decimal point” on page 77.

The result is a fixed-length character-string representation of the argument in the
form of a floating-point constant. The length of the result is 24. If the argument is
negative, the first character of the result is a minus sign. Otherwise, the first
character is a digit. If the argument is zero, the result is 0E0. Otherwise, the result
includes the smallest number of characters that can be used to represent the value
of the argument such that the mantissa consists of a single digit other than zero
followed by a period and a sequence of digits.

If the number of characters in the result is less than 24, then the result is padded
on the right with blanks.

The CCSID of the string is the default SBCS CCSID at the current server.

CHAR

Chapter 3. Built-in functions 155

G
G
G
G
G

Note
Syntax alternatives: When the first argument is numeric, or the first argument is a
string and the length attribute is specified; the CAST specification should be used
for maximal portability. For more information, see “CAST specification” on
page 112.

Examples
v Assume the column PRSTDATE has an internal value equivalent to 1988-12-25.

SELECT CHAR(PRSTDATE, USA)
FROM PROJECT

Results in the value ‘12/25/1988’.
v Assume the column STARTING has an internal value equivalent to 17:12:30, the

host variable HOUR_DUR (DECIMAL(6,0)) is a time duration with a value of
050000 (that is, 5 hours).

SELECT CHAR(STARTING, USA)
FROM CL_SCHED

Results in the value ‘5:12 PM’.
SELECT CHAR(STARTING + :HOUR_DUR, JIS)

FROM CL_SCHED

Results in the value ‘10:12:00’.
v Assume the column RECEIVED (TIMESTAMP) has an internal value equivalent

to the combination of the PRSTDATE and STARTING columns.
SELECT CHAR(RECEIVED)

FROM IN_TRAY

Results in the value ‘1988-12-25-17.12.30.000000’.
v Use the CHAR function to make the type fixed length character and reduce the

length of the displayed results to 10 characters for the LASTNAME column
(defined as VARCHAR(15)) of the EMPLOYEE table.

SELECT CHAR(LASTNAME,10)
FROM EMPLOYEE

For rows having a LASTNAME with a length greater than 10 characters
(excluding trailing blanks), a warning that the value is truncated is returned.

v Use the CHAR function to return the values for EDLEVEL (defined as
SMALLINT) as a fixed length string.

SELECT CHAR(EDLEVEL)
FROM EMPLOYEE

An EDLEVEL of 18 would be returned as the CHAR(6) value ’18����’ (blank
padded on the right with 4 blanks).

v Assume the same SALARY column subtracted from 20000.25 is to be returned
with a comma as the decimal character.

SELECT CHAR(20000.25 − SALARY, ’,’)
FROM EMPLOYEE

returns the value ’-1642,75���’ (blank padded on the right with 3 blanks).
v Assume a host variable, DOUBLE_NUM, has a double-precision floating-point

data type and a value of -987.654321E-35.
SELECT CHAR(:DOUBLE_NUM)

FROM SYSIBM.SYSDUMMY1

CHAR

156 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Results in the character value ’-9.8765432100000002E-33 ’.39

39. Note that since floating-point numbers are approximate, the resulting character string will vary slightly based on that
approximation.

CHAR

Chapter 3. Built-in functions 157

CLOB

�� CLOB (character-expression
, integer

) ��

The CLOB function returns a CLOB representation of a character string.

character-expression
An expression that returns a value that is a built-in CHAR, VARCHAR, or
CLOB data type. The argument must not be bit data.

integer
Specifies the length attribute for the resulting varying-length character string.
The value must be between 1 and 2 147 483 647. In EBCDIC environments, if
the first argument is mixed data, the second argument cannot be less than 4.

If integer is not specified the length attribute of the result is the same as the
length attribute of the first argument. The character-expression must not be the
empty string constant.

The actual length of the result is the minimum of the length attribute of the result
and the actual length of character-expression. If the length of the character-expression
is greater than the length attribute of the result, truncation is performed.

The result of the function is a CLOB. If the first argument can be null, the result
can be null; if the first argument is null, the result is the null value.

The CCSID of the result is the same as the CCSID of the first argument.

Note
Syntax alternatives: When the length attribute is specified, the CAST specification
should be used for maximal portability. For more information, see “CAST
specification” on page 112.

Example
v The following function returns a CLOB for the string ’This is a CLOB’.

SELECT CLOB(’This is a CLOB’)
FROM SYSIBM.SYSDUMMY1

CLOB

158 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

COALESCE

�� �COALESCE (expression , expression) ��

The COALESCE function returns the value of the first non-null expression.

The arguments must be compatible. For more information on data type
compatibility, see “Assignments and comparisons” on page 60. The arguments can
be of either a built-in or user-defined data type.40

The arguments are evaluated in the order in which they are specified, and the
result of the function is the first argument that is not null. The result can be null
only if all arguments can be null, and the result is null only if all arguments are
null.

The selected argument is converted, if necessary, to the attributes of the result. The
attributes of the result are determined by all the operands as explained in “Rules
for result data types” on page 70.

Examples
v When selecting all the values from all the rows in the DEPARTMENT table, if

the department manager (MGRNO) is missing (that is, null), then return a value
of 'ABSENT'.

SELECT DEPTNO, DEPTNAME, COALESCE(MGRNO, ’ABSENT’), ADMRDEPT
FROM DEPARTMENT

v When selecting the employee number (EMPNO) and salary (SALARY) from all
the rows in the EMPLOYEE table, if the salary is missing (that is null), then
return a value of zero.

SELECT EMPNO, COALESCE(SALARY,0)
FROM EMPLOYEE

40. This function cannot be used as a source function when creating a user-defined function. Because it accepts any compatible data
types as arguments, it is not necessary to create additional signatures to support distinct types.

COALESCE

Chapter 3. Built-in functions 159

CONCAT

The CONCAT function combines two string arguments. The arguments must be
compatible strings. For more information on data type compatibility, see
“Assignments and comparisons” on page 60.

The result of the function is a string that consists of the first argument string
followed by the second. If either argument can be null, the result can be null; if
either argument is null, the result is the null value.

The CONCAT function is identical to the CONCAT operator. For more information,
see “With the concatenation operator” on page 101.

Example
v Concatenate the column FIRSTNME with the column LASTNAME.

SELECT CONCAT(FIRSTNME, LASTNAME)
FROM EMPLOYEE
WHERE EMPNO = ’000010’

Returns the value ’CHRISTINEHAAS’.

�� CONCAT (string-expression-1 , string-expression-2) ��

CONCAT

160 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

COS

The COS function returns the cosine of the argument, where the argument is an
angle expressed in radians. The COS and ACOS functions are inverse operations.

The argument must be an expression that returns a value of any built-in numeric
data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable COSINE is a DECIMAL(2,1) host variable with a value

of 1.5.
SELECT COS(:COSINE)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 0.07.

�� COS (numeric-expression) ��

COS

Chapter 3. Built-in functions 161

COSH

The COSH function returns the hyperbolic cosine of the argument, where the
argument is an angle expressed in radians.

The argument must be an expression that returns a value of any built-in numeric
data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable HCOS is a DECIMAL(2,1) host variable with a value

of 1.5.
SELECT COSH(:HCOS)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 2.35.

�� COSH (numeric-expression) ��

COSH

162 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

DATE

�� DATE (expression) ��

The DATE function returns a date from a value.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, a character string, or any numeric data
type.
v If expression is a character string, it must not be a CLOB and its value must be

one of the following:
– A valid character-string representation of a date or timestamp with an actual

length that is not greater than 255 bytes. For the valid formats of string
representations of dates and timestamps, see “String representations of
datetime values” on page 52.

– A character string with an actual length of 7 that represents a valid date in
the form yyyynnn, where yyyy are digits denoting a year, and nnn are digits
between 001 and 366 denoting a day of that year.

v If expression is a number, it must be greater than or equal to one and less than or
equal to 3652059.

The result of the function is a date. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a timestamp:

The result is the date part of the timestamp.
v If the argument is a date:

The result is that date.
v If the argument is a number:

The result is the date that is n-1 days after January 1, 0001, where n is the
integral part of the number.

v If the argument is a character string:
The result is the date represented by the string or the date part of the timestamp
value represented by the string.
When a string representation of a date is SBCS with a CCSID that is not the
same as the default CCSID for SBCS data, that value is converted to adhere to
the default CCSID for SBCS data before it is interpreted and converted to a date
value.
When a string representation of a date is mixed data with a CCSID that is not
the same as the default CCSID for mixed data, that value is converted to adhere
to the default CCSID for mixed data before it is interpreted and converted to a
date value.

Note
Syntax alternatives: When the argument is a date, timestamp, or character string,
the CAST specification should be used for maximal portability. For more
information, see “CAST specification” on page 112.

DATE

Chapter 3. Built-in functions 163

Examples
v Assume that the column RECEIVED (TIMESTAMP) has an internal value

equivalent to ‘1988-12-25-17.12.30.000000’.
SELECT DATE(RECEIVED)

FROM IN_TRAY
WHERE SOURCE = ’BADAMSON’

Results in an internal representation of ‘1988-12-25’.
v The following DATE scalar function applied to an ISO string representation of a

date:
SELECT DATE(’1988-12-25’)

FROM SYSIBM.SYSDUMMY1

Results in an internal representation of ‘1988-12-25’.
v The following DATE scalar function applied to an EUR string representation of a

date:
SELECT DATE(’25.12.1988’)

FROM SYSIBM.SYSDUMMY1

Results in an internal representation of ‘1988-12-25’.
v The following DATE scalar function applied to a positive number:

SELECT DATE(35)
FROM SYSIBM.SYSDUMMY1

Results in an internal representation of ‘0001-02-04’.

DATE

164 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

DAY

�� DAY (expression) ��

The DAY function returns the day part of a value.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, a character string, or a numeric data type.
v If expression is a character string, it must not be a CLOB and its value must be a

valid character-string representation of a date or timestamp with an actual
length that is not greater than 255 bytes. For the valid formats of string
representations of dates and timestamps, see “String representations of datetime
values” on page 52.

v If expression is a number, it must be a date duration or timestamp duration. For
the valid formats of datetime durations, see “Datetime operands and durations”
on page 103.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a date, timestamp, or valid character-string representation of a

date or timestamp:
The result is the day part of the value, which is an integer between 1 and 31.

v If the argument is a date duration or timestamp duration:
The result is the day part of the value, which is an integer between −99 and 99.
A nonzero result has the same sign as the argument.

Examples
v Using the PROJECT table, set the host variable END_DAY (SMALLINT) to the

day that the WELD LINE PLANNING project (PROJNAME) is scheduled to stop
(PRENDATE).

SELECT DAY(PRENDATE)
INTO :END_DAY
FROM PROJECT
WHERE PROJNAME = ’WELD LINE PLANNING’

Results in END_DAY being set to 15.
v Return the day part of the difference between two dates:

SELECT DAY(DATE(’2000-03-15’) - DATE(’1999-12-31’))
FROM SYSIBM.SYSDUMMY1

Results in the value 15.

DAY

Chapter 3. Built-in functions 165

DAYOFWEEK

The DAYOFWEEK function returns an integer between 1 and 7 that represents the
day of the week, where 1 is Sunday and 7 is Saturday. For another alternative, see
“DAYOFWEEK_ISO” on page 167.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a character string.

If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp with an actual length
that is not greater than 255 bytes. For the valid formats of string representations of
dates and timestamps, see “String representations of datetime values” on page 52.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Examples
v Using the EMPLOYEE table, set the host variable DAY_OF_WEEK (INTEGER) to

the day of the week that Christine Haas (EMPNO=‘000010’) started
(HIREDATE).

SELECT DAYOFWEEK(HIREDATE)
INTO :DAY_OF_WEEK
FROM EMPLOYEE
WHERE EMPNO = ’000010’

Results in DAY_OF_WEEK being set to 6, which represents Friday.
v The following query returns four values: 1, 2, 1, and 2.

SELECT DAYOFWEEK(CAST(’10/11/1998’ AS DATE)),
DAYOFWEEK(TIMESTAMP(’10/12/1998’,’01.02’)),
DAYOFWEEK(CAST(CAST(’10/11/1998’ AS DATE)) AS CHAR(20))),
DAYOFWEEK(CAST(TIMESTAMP(’10/12/1998’,’01.02’) AS CHAR(20))),

FROM SYSIBM.SYSDUMMY1

�� DAYOFWEEK (expression) ��

DAYOFWEEK

166 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

DAYOFWEEK_ISO

The DAYOFWEEK_ISO function returns an integer between 1 and 7 that represents
the day of the week, where 1 is Monday and 7 is Sunday. For another alternative,
see “DAYOFWEEK” on page 166.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a character string.

If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp with an actual length
that is not greater than 255 bytes. For the valid formats of string representations of
dates and timestamps, see “String representations of datetime values” on page 52.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Examples
v Using the EMPLOYEE table, set the host variable DAY_OF_WEEK (INTEGER) to

the day of the week that Christine Haas (EMPNO=‘000010’) started
(HIREDATE).

SELECT DAYOFWEEK_ISO(HIREDATE)
INTO :DAY_OF_WEEK
FROM EMPLOYEE
WHERE EMPNO = ’000010’

Results in DAY_OF_WEEK being set to 5, which represents Friday.
v The following query returns four values: 7, 1, 7, and 1.

SELECT DAYOFWEEK_ISO(CAST(’10/11/1998’ AS DATE)),
DAYOFWEEK_ISO(TIMESTAMP(’10/12/1998’,’01.02’)),
DAYOFWEEK_ISO(CAST(CAST(’10/11/1998’ AS DATE)) AS CHAR(20))),
DAYOFWEEK_ISO(CAST(TIMESTAMP(’10/12/1998’,’01.02’) AS CHAR(20))),

FROM SYSIBM.SYSDUMMY1

�� DAYOFWEEK_ISO (expression) ��

DAYOFWEEK_ISO

Chapter 3. Built-in functions 167

DAYOFYEAR

The DAYOFYEAR function returns an integer between 1 and 366 that represents
the day of the year where 1 is January 1.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a character string.

If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp with an actual length
that is not greater than 255 bytes. For the valid formats of string representations of
dates and timestamps, see “String representations of datetime values” on page 52.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Example
v Using the EMPLOYEE table, set the host variable AVG_DAY_OF_YEAR

(INTEGER) to the average of the day of the year that employees started on
(HIREDATE).

SELECT AVG(DAYOFYEAR(HIREDATE))
INTO :AVG_DAY_OF_YEAR
FROM EMPLOYEE

Results in AVG_DAY_OF_YEAR being set to 202.

�� DAYOFYEAR (expression) ��

DAYOFYEAR

168 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

DAYS

�� DAYS (expression) ��

The DAYS function returns an integer representation of a date.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a character string.

If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp with an actual length
that is not greater than 255 bytes. For the valid formats of string representations of
dates and timestamps, see “String representations of datetime values” on page 52.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The result is 1 more than the number of days from January 1, 0001 to D, where D
is the date that would occur if the DATE function were applied to the argument.

Examples
v Using the PROJECT table, set the host variable EDUCATION_DAYS (INTEGER)

to the number of elapsed days (PRENDATE - PRSTDATE) estimated for the
project (PROJNO) ‘IF2000’.

SELECT DAYS(PRENDATE) - DAYS(PRSTDATE)
INTO :EDUCATION_DAYS
FROM PROJECT
WHERE PROJNO = ’IF2000’

Results in EDUCATION_DAYS being set to 396.
v Using the PROJECT table, set the host variable TOTAL_DAYS (INTEGER) to the

sum of elapsed days (PRENDATE - PRSTDATE) estimated for all projects in
department (DEPTNO) ‘E21’.

SELECT SUM(DAYS(PRENDATE) - DAYS(PRSTDATE))
INTO :TOTAL_DAYS
FROM PROJECT
WHERE DEPTNO = ’E21’

Results in TOTAL_DAYS being set to 1584.

DAYS

Chapter 3. Built-in functions 169

DBCLOB

The DBCLOB function returns a DBCLOB representation of a graphic string
expression.

graphic-expression
An expression that returns a value that is a built-in GRAPHIC, VARGRAPHIC,
or DBCLOB data type.

integer
Specifies the length attribute for the resulting varying-length graphic string.
The value must be between 1 and 1 073 741 823.

If integer is not specified the length attribute of the result is the same as the
length attribute of the first argument. The graphic-expression must not be the
empty string constant.

The actual length of the result is the minimum of the length attribute of the result
and the actual length of graphic-expression. If the length of the graphic-expression is
greater than the length attribute of the result, truncation is performed.

The result of the function is a DBCLOB string. If the expression can be null, the
result can be null. If the expression is null, the result is the null value.

The CCSID of the result is the same as the CCSID of the first argument.

Note
Syntax alternatives: When the length attribute is specified, the CAST specification
should be used for maximal portability. For more information, see “CAST
specification” on page 112.

Example
v Using the EMPLOYEE table, set the host variable VAR_DESC

(VARGRAPHIC(24)) to the DBCLOB equivalent of the first name (FIRSTNME)
for employee number (EMPNO) ’000050’.

SELECT DBCLOB(FIRSTNME)
INTO :VAR_DESC
FROM EMPLOYEE
WHERE EMPNO = ’000050’

�� DBCLOB (graphic-expression
, integer

) ��

DBCLOB

170 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

DECIMAL or DEC

The DECIMAL function returns a decimal representation of:
v A number
v A character-string representation of a decimal number
v A character-string representation of an integer

Numeric to Decimal

numeric-expression
An expression that returns a value of any built-in numeric data type.

precision
An integer constant with a value greater than or equal to 1 and less than or
equal to 31.

The default for precision depends on the data type of the numeric-expression:
v 15 for floating point or decimal
v 11 for large integer
v 5 for small integer

scale
An integer constant that is greater than or equal to 0 and less than or equal to
precision. If not specified, the default is 0.

The result is the same number that would occur if the first argument were
assigned to a decimal column or variable with a precision of p and a scale of s. An
error is returned if the number of significant decimal digits required to represent
the whole part of the number is greater than p-s.

Character to Decimal

character-expression
An expression that must contain a character-string representation of a number.
Leading and trailing blanks are eliminated and the resulting string must
conform to the rules for forming an integer or decimal constant. The
expression must not be a CLOB and must have an actual length that is not
greater than 255 bytes.

Numeric to Decimal

�� DECIMAL
DEC

(numeric-expression)
, precision

, scale

��

Character to Decimal

�� DECIMAL
DEC

�

� (character-expression)
, precision

, scale
, decimal-character

��

DECIMAL

Chapter 3. Built-in functions 171

precision
An integer constant that is greater than or equal to 1 and less than or equal to
31. If not specified, the default is 15.

scale
An integer constant that is greater than or equal to 0 and less than or equal to
precision. If not specified, the default is 0.

decimal-character
Specifies the single-byte character constant that was used to delimit the
decimal digits in character-expression from the whole part of the number. The
character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal separator character. For more
information, see “Decimal point” on page 77.

The result is the same number that would result from CAST(character-expression AS
DECIMAL(p,s)). Digits are truncated from the end of the decimal number if the
number of digits to the right of the decimal separator character is greater than the
scale s. An error is returned if the number of significant digits to the left of the
decimal character (the whole part of the number) in character-expression is greater
than p-s. The default decimal character is not valid in the substring if a different
decimal-character is specified.

The result of the function is a decimal number with precision of p and scale of s,
where p and s are the second and third arguments. If the first argument can be
null, the result can be null; if the first argument is null, the result is the null value.

Note
Syntax alternatives: When the precision is specified, the CAST specification should
be used for maximal portability. For more information, see “CAST specification” on
page 112.

Examples
v Use the DECIMAL function in order to force a DECIMAL data type (with a

precision of 5 and a scale of 2) to be returned in a select list for the EDLEVEL
column (data type = SMALLINT) in the EMPLOYEE table. The EMPNO column
should also appear in the select list.

SELECT EMPNO, DECIMAL(EDLEVEL,5,2)
FROM EMPLOYEE

v Using the PROJECT table, select all of the starting dates (PRSTDATE) that have
been incremented by a duration that is specified in a host variable. Assume the
host variable PERIOD is of type INTEGER. Then, in order to use its value as a
date duration it must be “cast” as DECIMAL(8,0).

SELECT PRSTDATE + DECIMAL(:PERIOD,8)
FROM PROJECT

v Assume that updates to the SALARY column are input through a window as a
character string using comma as a decimal character (for example, the user
inputs 21400,50). Once validated by the application, it is assigned to the host
variable newsalary which is defined as CHAR(10).

UPDATE STAFF
SET SALARY = DECIMAL(:newsalary, 9, 2, ’,’)
WHERE ID = :empid

The value of SALARY becomes 21 400.50.

DECIMAL

172 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

DEGREES

The DEGREES function returns the number of degrees of the argument which is an
angle expressed in radians.

The argument must be an expression that returns the value of any built-in numeric
data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable RAD is a DECIMAL(4,3) host variable with a value of

3.142.
SELECT DEGREES(:RAD)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 180.0.

�� DEGREES (numeric-expression) ��

DEGREES

Chapter 3. Built-in functions 173

DIGITS

�� DIGITS (numeric-expression) ��

The DIGITS function returns a character-string representation of the absolute value
of a number.

The argument must be a built-in numeric data type of SMALLINT, INTEGER,
DECIMAL, or NUMERIC.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The result of the function is a fixed-length character string representing the
absolute value of the argument without regard to its scale. The result does not
include a sign or a decimal point. Instead, it consists exclusively of digits,
including, if necessary, leading zeros to fill out the string. The length of the string
is:
v 5 if the argument is a small integer
v 10 if the argument is a large integer
v p if the argument is a decimal number with a precision of p.

The CCSID of the character string is the default CCSID at the current server.

Examples
v Assume that a table called TABLEX contains an INTEGER column called

INTCOL containing 10-digit numbers. List all combinations of the first four
digits contained in column INTCOL.

SELECT DISTINCT SUBSTR(DIGITS(INTCOL),1,4)
FROM TABLEX

v Assume that COLUMNX has the DECIMAL(6,2) data type, and that one of its
values is -6.28. Then, for this value:

SELECT DIGITS(COLUMNX)
FROM TABLEX

returns the value '000628'.

The result is a string of length six (the precision of the column) with leading
zeros padding the string out to this length. Neither sign nor decimal point
appear in the result.

DIGITS

174 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

DOUBLE_PRECISION or DOUBLE

The DOUBLE_PRECISION and DOUBLE functions return a floating-point
representation of:
v A number
v A character-string representation of a decimal number
v A character-string representation of an integer
v A character-string representation of a floating-point number

Numeric to Double

numeric-expression
An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the expression were
assigned to a double-precision floating-point column or variable.

Character to Double

character-expression
An expression that returns a value of a built-in character-string data type. The
argument must not be a CLOB and must have an actual length that is not
greater than 255 bytes.

The result is the same number that would result from
CAST(character-expression AS DOUBLE PRECISION).

Leading and trailing blanks are eliminated and the resulting string must
conform to the rules for forming a floating-point, integer, or decimal constant.

The single-byte character constant used to delimit the decimal digits in
character-expression from the whole part of the number must be the default
decimal point. For more information, see “Decimal point” on page 77.

The result of the function is a double-precision floating-point number. If the
argument can be null, the result can be null; if the argument is null, the result is
the null value.

Note
Syntax alternatives: FLOAT is a synonym for DOUBLE_PRECISION and DOUBLE.

The CAST specification should be used for maximal portability. For more
information, see “CAST specification” on page 112.

Numeric to Double

�� DOUBLE_PRECISION
DOUBLE

(numeric-expression) ��

Character to Double

�� DOUBLE (character-expression) ��

DOUBLE_PRECISION or DOUBLE

Chapter 3. Built-in functions 175

Example
v Using the EMPLOYEE table, find the ratio of salary to commission for

employees whose commission is not zero. The columns involved (SALARY and
COMM) have DECIMAL data types. To eliminate the possibility of out-of-range
results, DOUBLE_PRECISION is applied to SALARY so that the division is
carried out in floating point:

SELECT EMPNO, DOUBLE_PRECISION(SALARY)/COMM
FROM EMPLOYEE
WHERE COMM > 0

DOUBLE_PRECISION or DOUBLE

176 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

EXP

The EXP function returns a value that is the base of the natural logarithm (e)
raised to a power specified by the argument. The EXP and LN functions are
inverse operations.

The argument must be an expression that returns the value of any built-in numeric
data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable E is a DECIMAL(10,9) host variable with a value of

3.453789832.
SELECT EXP(:E)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 31.62.

�� EXP (numeric-expression) ��

EXP

Chapter 3. Built-in functions 177

FLOAT

The FLOAT function returns a floating-point representation of a number.

FLOAT is a synonym for the DOUBLE_PRECISION and DOUBLE functions. For
more information, see “DOUBLE_PRECISION or DOUBLE” on page 175.

�� FLOAT (numeric-expression) ��

FLOAT

178 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

FLOOR

The FLOOR function returns the largest integer value less than or equal to
numeric-expression.

The argument must be an expression that returns a value of any built-in numeric
data type.

The result of the function has the same data type and length attribute of the
argument except that the scale is 0 if the argument is a decimal number. For
example, an argument with a data type of DECIMAL(5,5) will result in
DECIMAL(5,0).

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Examples
v Use the FLOOR function to truncate any digits to the right of the decimal point.

SELECT FLOOR(SALARY)
FROM EMPLOYEE
WHERE LASTNAME = ’HAAS’

This example returns 52 750.
v Use FLOOR on both positive and negative numbers.

SELECT FLOOR(3.5),
FLOOR(3.1),
FLOOR(-3.1),
FLOOR(-3.5)

FROM SYSIBM.SYSDUMMY1

This example returns (leading zeroes are shown to demonstrate the precision
and scale of the result):
03. 03. -04. -04.

respectively.

�� FLOOR (numeric-expression) ��

FLOOR

Chapter 3. Built-in functions 179

GRAPHIC

The GRAPHIC function returns a fixed-length graphic-string representation of a
graphic-string expression.

graphic-expression
An expression that returns a value of a built-in graphic-string data type.

integer
Specifies the length attribute of the result and must be an integer constant
between 1 and 127. If the length of graphic-expression is less than integer, the
result is padded with double-byte blanks to the length of the result.

If integer is not specified, the length of the result is the minimum of 127 and
the length attribute of graphic-expression.

If the length of the graphic-expression is greater than the length attribute of the
result, truncation is performed.

The result of the function is a fixed-length graphic string (GRAPHIC).

If the first argument can be null, the result can be null; if the first argument is null,
the result is the null value.

The CCSID of the result is the same as the CCSID of the first argument.

Note
Syntax alternatives: If the length attribute is specified, the CAST specification
should be used for maximal portability. For more information, see “CAST
specification” on page 112.

Example
v Using the EMPLOYEE table, set the host variable DESC (GRAPHIC(24)) to the

GRAPHIC equivalent of the first name (FIRSTNME) for employee number
(EMPNO) ’000050’.

SELECT GRAPHIC(VARGRAPHIC(FIRSTNME))
INTO :DESC
FROM EMPLOYEE
WHERE EMPNO = ’000050’

�� GRAPHIC (graphic-expression
, integer

) ��

GRAPHIC

180 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

HEX

�� HEX (expression) ��

The HEX function returns a hexadecimal representation of a value.

The argument must be an expression that returns a value of any built-in data type
other than a character or binary string with a length attribute greater than 255 or a
graphic string with a length attribute greater than 127.

The result of the function is a character string. If the argument can be null, the
result can be null; if the argument is null, the result is a null value.

The result is a string of hexadecimal digits, the first two digits represent the first
byte of the argument, the next two digits represent the second byte of the
argument, and so forth. If the argument is a datetime value, the result is the
hexadecimal representation of the internal form of the argument.

If the argument is not a graphic string, the length of the result is twice the length
of the argument. If the argument is a graphic string, the length of the result is four
times the length of the argument.

If the argument is a fixed-length string and the length of the result is less than the
product-specific maximum length attribute of CHAR (or GRAPHIC), the result is a
fixed-length string. For more information on the product-specific maximum length,
see Appendix A, “SQL limits”, on page 551. Otherwise, the result is a
varying-length string whose length attribute depends on the following:
v If the argument is a character or binary string, the length attribute of the result

is twice the length attribute of the argument.
v If the argument is a graphic string, the length attribute of the result is four times

the length attribute of the argument.

The CCSID of the string is the default SBCS CCSID at the current server.

Example
v Use the HEX function to return a hexadecimal representation of the education

level for each employee.
SELECT FIRSTNME, MIDINIT, LASTNAME, HEX(EDLEVEL)

FROM EMPLOYEE

HEX

Chapter 3. Built-in functions 181

HOUR

�� HOUR (expression) ��

The HOUR function returns the hour part of a value.

The argument must be an expression that returns a value of one of the following
built-in data types: a time, a timestamp, a character string or a numeric data type.
v If expression is a character string, it must not be a CLOB and its value must be a

valid character-string representation of a time or timestamp with an actual
length that is not greater than 255 bytes. For the valid formats of string
representations of times and timestamps, see “String representations of datetime
values” on page 52.

v If expression is a number, it must be a time duration or timestamp duration. For
the valid formats of datetime durations, see “Datetime operands and durations”
on page 103.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a time, timestamp, or valid character-string representation of a

time or timestamp:
The result is the hour part of the value, which is an integer between 0 and 24.

v If the argument is a time duration or timestamp duration:
The result is the hour part of the value, which is an integer between −99 and 99.
A nonzero result has the same sign as the argument.

Example
v Using the CL_SCHED sample table, select all the classes that start in the

afternoon.
SELECT *

FROM CL_SCHED
WHERE HOUR(STARTING) BETWEEN 12 AND 17

HOUR

182 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

IDENTITY_VAL_LOCAL

IDENTITY_VAL_LOCAL is a non-deterministic function that returns the most
recently assigned value for an identity column.

The function has no input parameters. The result of the function is DECIMAL(31,0)
regardless of the actual data type of the identity column that the result value
corresponds to.

The value returned is the value that was assigned to the identity column of the
table identified in the most recent INSERT statement for a table containing an
identity column. The INSERT statement has to be issued at the same level; that is,
the value has to be available locally within the level at which it was assigned until
it is replaced by the next assigned value. A new level is initiated when a trigger,
function, or stored procedure is invoked. A trigger condition is at the same level as
the associated triggered action.

The assigned value can be a value supplied by the user (if the identity column is
defined as GENERATED BY DEFAULT) or an identity value that was generated by
the database manager.

The result can be null. The result is null if an INSERT statement has not been
issued for a table containing an identity column at the current processing level.
This includes invoking the function in a before or after insert trigger. 41

The result of the IDENTITY_VAL_LOCAL function is not affected by the following
statements:
v An INSERT statement for a table which does not contain an identity column42

v An UPDATE statement
v A ROLLBACK statement with a TO SAVEPOINT clause
v A COMMIT or ROLLBACK statement 41

Notes
The following notes explain the behavior of the function when it is invoked in
various situations:

Invoking the function within the VALUES clause of an INSERT statement
Expressions in an INSERT statement are evaluated before values are
assigned to the target columns of the INSERT statement. Thus, when you
invoke IDENTITY_VAL_LOCAL in an INSERT statement, the value that is
used is the most recently assigned value for an identity column from a
previous INSERT statement. The function returns the null value if no such
INSERT statement had been executed within the same level as the
invocation of the IDENTITY_VAL_LOCAL function.

Invoking the function following a failed INSERT statement
The function returns an unpredictable result when it is invoked after the
unsuccessful execution of an INSERT statement for a table with an identity

41. In DB2 UDB for z/OS and OS/390 and DB2 UDB for LUW, a COMMIT or ROLLBACK of a unit of work since the most recent
INSERT statement that assigned a value will also cause the result to be null. In DB2 UDB for iSeries, COMMIT and ROLLBACK
do not affect the value.

42. In DB2 UDB for z/OS and OS/390 and DB2 UDB for LUW, an INSERT statement with a subselect does not affect the value.

�� IDENTITY_VAL_LOCAL () ��

IDENTITY_VAL_LOCAL

Chapter 3. Built-in functions 183

column. The value might be the value that would have been returned from
the function had it been invoked before the failed INSERT or the value that
would have been assigned had the INSERT succeeded. The actual value
returned depends on the point of failure and is therefore unpredictable.

Invoking the function within the SELECT statement of a cursor
Because the results of the IDENTITY_VAL_LOCAL function are not
deterministic, the result of an invocation of the IDENTITY_VAL_LOCAL
function from within the SELECT statement of a cursor can vary for each
FETCH statement.

Invoking the function within the trigger condition of an insert trigger
The result of invoking the IDENTITY_VAL_LOCAL function from within
the condition of an insert trigger is the null value.

Invoking the function within a triggered action of an insert trigger
Multiple before or after insert triggers can exist for a table. In such cases,
each trigger is processed separately, and identity values generated by SQL
statements issued within a triggered action are not available to other
triggered actions using the IDENTITY_VAL_LOCAL function. This is the
case even though the multiple triggered actions are conceptually defined at
the same level.

Do not use the IDENTITY_VAL_LOCAL function in the triggered action of
a before insert trigger. The result of invoking the IDENTITY_VAL_LOCAL
function from within the triggered action of a before insert trigger is the
null value. The value for the identity column of the table for which the
trigger is defined cannot be obtained by invoking the
IDENTITY_VAL_LOCAL function within the triggered action of a before
insert trigger. However, the value for the identity column can be obtained
in the triggered action by referencing the trigger transition variable for the
identity column.

The result of invoking the IDENTITY_VAL_LOCAL function in the
triggered action of an after insert trigger is the value assigned to an
identity column of the table identified in the most recent INSERT statement
invoked in the same triggered action for a table containing an identity
column. If an INSERT statement for a table containing an identity column
was not executed within the same triggered action before invoking the
IDENTITY_VAL_LOCAL function, then the function returns a null value.

Invoking the function following an INSERT with triggered actions
The result of invoking the function after an INSERT that activates triggers
is the value actually assigned to the identity column (that is, the value that
would be returned on a subsequent SELECT statement). This value is not
necessarily the value provided in the INSERT statement or a value
generated by the database manager. The assigned value could be a value
that was specified in a SET transition-variable statement within the
triggered action of a before insert trigger for a trigger transition variable
associated with the identity column.

Examples
v Set the variable IVAR to the value assigned to the identity column in the

EMPLOYEE table. The value returned from the function in the VALUES
statement should be 1.

CREATE TABLE EMPLOYEE2
(EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
NAME CHAR(30),
SALARY DECIMAL(5,2),

IDENTITY_VAL_LOCAL

184 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

DEPT SMALLINT)

INSERT INTO EMPLOYEE2
(NAME, SALARY, DEPTNO)
VALUES(’Rupert’, 989.99, 50)

VALUES IDENTITY_VAL_LOCAL() INTO :IVAR

v Assume two tables, T1 and T2, have an identity column named C1. The database
manager generates values 1, 2, 3,...for the C1 column in table T1, and values 10,
11, 12,...for the C1 column in table T2.

CREATE TABLE T1
(C1 SMALLINT GENERATED ALWAYS AS IDENTITY,
C2 SMALLINT)

CREATE TABLE T2
(C1 DECIMAL(15,0) GENERATED BY DEFAULT AS IDENTITY (START WITH 10) ,
C2 SMALLINT)

INSERT INTO T1 (C2) VALUES(5)

INSERT INTO T1 (C2) VALUES(5)

SELECT * FROM T1

C1 C2

1 5

2 5

VALUES IDENTITY_VAL_LOCAL() INTO :IVAR

At this point, the IDENTITY_VAL_LOCAL function would return a value of 2 in
IVAR. The following INSERT statement inserts a single row into T2 where
column C2 gets a value of 2 from the IDENTITY_VAL_LOCAL function.

INSERT INTO T2 (C2) VALUES(IDENTITY_VAL_LOCAL())

SELECT * FROM T2
WHERE C1 = DECIMAL(IDENTITY_VAL_LOCAL(), 15, 0)

C1 C2

10 2

Invoking the IDENTITY_VAL_LOCAL function after this INSERT would result
in a value of 10, which is the value generated by the database manager for
column C1 of T2. Assume another single row is inserted into T2. For the
following INSERT statement, the database manager assigns a value of 13 to
identity column C1 and gives C2 a value of 10 from IDENTITY_VAL_LOCAL.
Thus, C2 is given the last identity value that was inserted into T2.

INSERT INTO T2 (C2, C1) VALUES(IDENTITY_VAL_LOCAL(), 13)

SELECT * FROM T2
WHERE C1 = DECIMAL(IDENTITY_VAL_LOCAL(), 15, 0)

C1 C2

13 10

v The IDENTITY_VAL_LOCAL function can also be invoked in an INSERT
statement that both invokes the IDENTITY_VAL_LOCAL function and causes a
new value for an identity column to be assigned. The next value to be returned

IDENTITY_VAL_LOCAL

Chapter 3. Built-in functions 185

is thus established when the IDENTITY_VAL_LOCAL function is invoked after
the INSERT statement completes. For example, consider the following table
definition:

CREATE TABLE T3
(C1 SMALLINT GENERATED BY DEFAULT AS IDENTITY,
C2 SMALLINT)

For the following INSERT statement, specify a value of 25 for the C2 column,
and the database manager generates a value of 1 for C1, the identity column.
This establishes 1 as the value that will be returned on the next invocation of the
IDENTITY_VAL_LOCAL function.

INSERT INTO T3 (C2) VALUES(25)

In the following INSERT statement, the IDENTITY_VAL_LOCAL function is
invoked to provide a value for the C2 column. A value of 1 (the identity value
assigned to the C1 column of the first row) is assigned to the C2 column, and
the database manager generates a value of 2 for C1, the identity column. This
establishes 2 as the value that will be returned on the next invocation of the
IDENTITY_VAL_LOCAL function.

INSERT INTO T3 (C2) VALUES(IDENTITY_VAL_LOCAL())

In the following INSERT statement, the IDENTITY_VAL_LOCAL function is
again invoked to provide a value for the C2 column, and the user provides a
value of 11 for C1, the identity column. A value of 2 (the identity value assigned
to the C1 column of the second row) is assigned to the C2 column. The
assignment of 11 to C1 establishes 11 as the value that will be returned on the
next invocation of the IDENTITY_VAL_LOCAL function.

INSERT INTO T3 (C2, C1) VALUES(IDENTITY_VAL_LOCAL(), 11)

After the 3 INSERT statements have been processed, table T3 contains the
following:

C1 C2

1 25

2 1

11 2

The contents of T3 illustrate that the expressions in the VALUES clause are
evaluated before the assignments for the columns of the INSERT statement.
Thus, an invocation of an IDENTITY_VAL_LOCAL function invoked from a
VALUES clause of an INSERT statement uses the most recently assigned value
for an identity column in a previous INSERT statement.

IDENTITY_VAL_LOCAL

186 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

INTEGER or INT

The INTEGER function returns an integer representation of:
v A number
v A character-string representation of an integer

Numeric to Integer

numeric-expression
An expression that returns a numeric value of any built-in numeric data type.

The result is the same number that would occur if the argument were assigned
to a large integer column or variable. If the whole part of the argument is not
within the range of integers, an error is returned. The fractional part of the
argument is truncated.

Character to Integer

character-expression
An expression that returns a value that is a character-string representation of
an integer. The expression must not be a CLOB and must have an actual length
that is not greater than 255 bytes.

The result is the same number that would result from CAST(
character-expression AS INTEGER). Leading and trailing blanks are eliminated
and the resulting string must conform to the rules for forming an integer
constant. If the whole part of the argument is not within the range of integers,
an error is returned.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Note
Syntax alternatives: The CAST specification should be used for maximal
portability. For more information, see “CAST specification” on page 112.

Example
v Using the EMPLOYEE table, select a list containing salary (SALARY) divided by

education level (EDLEVEL). Truncate any decimal in the calculation. The list
should also contain the values used in the calculation and the employee number
(EMPNO).

SELECT INTEGER(SALARY / EDLEVEL), SALARY, EDLEVEL, EMPNO
FROM EMPLOYEE

Numeric to Integer

�� INTEGER
INT

(numeric-expression) ��

Character to Integer

�� INTEGER
INT

(character-expression) ��

INTEGER

Chapter 3. Built-in functions 187

JULIAN_DAY

The JULIAN_DAY function returns an integer value representing a number of days
from January 1, 4713 B.C. (the start of the Julian date calendar) to the date
specified in the argument.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a valid character-string representation
of a date or timestamp. An argument with a character-string data type must not be
a CLOB and must have an actual length that is not greater than 255 bytes. For the
valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 52.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Examples
v Using sample table EMPLOYEE, set the integer host variable JDAY to the Julian

day of the day that Christine Haas (EMPNO = ’000010’) was employed
(HIREDATE = ’1965-01-01’).

SELECT JULIAN_DAY(HIREDATE)
INTO :JDAY
FROM EMPLOYEE
WHERE EMPNO = ’000010’

The result is that JDAY is set to 2 438 762.
v Set integer host variable JDAY to the Julian day for January 1, 1998.

SELECT JULIAN_DAY(’1998-01-01’)
INTO :JDAY
FROM SYSIBM.SYSDUMMY1

The result is that JDAY is set to 2 450 815.

�� JULIAN_DAY (expression) ��

JULIAN_DAY

188 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

LCASE

The LCASE function returns a string in which all the characters have been
converted to lowercase characters, based on the CCSID of the argument.

The LCASE function is identical to the LOWER function. For more information, see
“LOWER” on page 196.

�� LCASE (string-expression) ��

LCASE

Chapter 3. Built-in functions 189

LEFT

The LEFT function returns the leftmost integer bytes of string-expression.

string-expression
An expression that specifies the string from which the result is derived.
string-expression must be a character string or a binary string with a built-in
data type. If string-expression is a BLOB or CLOB, it must not have a length
attribute greater than 1M. Otherwise, string-expression must not have a length
attribute greater than 4000. A substring of string-expression is zero or more
contiguous bytes of string-expression.43

integer
An expression that specifies the length of the result. integer must be an integer
greater than or equal to 0 and less than or equal to n, where n is the length
attribute of string-expression. It must not, however, be the integer constant 0.

The string-expression is effectively padded on the right with the necessary
number of blank characters (or hexadecimal zeroes for binary strings) so that
the specified substring of string-expression always exists.

The result of the function is a varying-length string with a length attribute that is
the same as the length attribute of string-expression and a data type that depends
on the data type of string-expression:
v VARCHAR if string-expression is CHAR or VARCHAR
v CLOB if string-expression is CLOB
v BLOB if string-expression is BLOB

In DB2 UDB for iSeries if integer is an integer constant and the argument is not a
BLOB, CLOB, or DBCLOB, the result of the function is a fixed-length string. In
DB2 UDB for LUW the length attribute is 4000 if the data type is VARCHAR and
1M if the data type is CLOB or BLOB.

The actual length of the result is integer.

If any argument can be null, the result can be null; if any argument is null, the
result is the null value.

The CCSID of the result is the same as that of string-expression.

Example
v Assume the host variable NAME (VARCHAR(50)) has a value of 'KATIE

AUSTIN' and the host variable FIRSTNAME_LEN (INTEGER) has a value of 5.
SELECT LEFT(:NAME, :FIRSTNAME_LEN)

FROM SYSIBM.SYSDUMMY1

Returns the value 'KATIE'

43. In EBCDIC environments, if the string-expression contains mixed data, the LEFT function operates on a strict byte-count basis.
Because LEFT operates on a strict byte-count basis, the result is not necessarily a properly formed mixed data character string.

�� LEFT (string-expression , integer) ��

LEFT

190 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
G
G

LENGTH

�� LENGTH (expression) ��

The LENGTH function returns the length of a value.

The argument must be an expression that returns a value of any built-in data type.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The result is the length of the argument. The length of strings includes blanks. The
length of a varying-length string is the actual length, not the length attribute.

The length of a graphic string is the number of double-byte characters (the number
of bytes divided by 2). The length of all other values is the number of bytes used
to represent the value:
v 2 for small integer
v 4 for large integer
v The integer part of (p/2)+1 for packed decimal numbers with precision p

v p for zoned decimal numbers with precision p.
v 4 for single-precision float
v 8 for double-precision float
v The length of the string for strings
v 4 for date
v 3 for time
v 10 for timestamp

Examples
v Assume the host variable ADDRESS is a varying-length character string with a

value of ‘895 Don Mills Road’.
SELECT LENGTH(:ADDRESS)

FROM SYSIBM.SYSDUMMY1

Returns the value 18.
v Assume that PRSTDATE is a column of type DATE.

SELECT LENGTH(PRSTDATE)
FROM PROJECT
WHERE PROJNO = ’AD3111’

Returns the value 4.
v Assume that PRSTDATE is a column of type DATE.

SELECT LENGTH(CHAR(PRSTDATE, EUR))
FROM PROJECT
WHERE PROJNO = ’AD3111’

Returns the value 10.

LENGTH

Chapter 3. Built-in functions 191

LN

The LN function returns the natural logarithm of a number. The LN and EXP
functions are inverse operations.

The argument must be an expression that returns a value of any built-in numeric
data type. The value of the argument must be greater than zero.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable NATLOG is a DECIMAL(4,2) host variable with a

value of 31.62.
SELECT LN(:NATLOG)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 3.45.

�� LN (numeric-expression) ��

LN

192 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

LOCATE

The LOCATE function returns the starting position of the first occurrence of one
string (called the search-string) within another string (called the source-string). If the
search-string is not found and neither argument is null, the result is zero. If the
search-string is found, the result is a number from 1 to the actual length of the
source-string. If the optional start is specified, it indicates the character position in
the source-string at which the search is to begin.

search-string
An expression that specifies the string that is to be searched for. The search
string must be a character or binary string with an actual length that is no
greater than 4000 bytes. It must be compatible with the source-string. The
expression can be specified by any of the following:
v A constant
v A special register
v A host variable
v A scalar function whose arguments are a constant, a special register, or a

host variable (though nested function invocations cannot be used)
v An expression that concatenates any of the above

source-string
An expression that specifies the source string in which the search is to take
place. The source string must be a character or binary string with an actual
length that is no greater than 4000 bytes. The expression can be specified by
any of the following:
v A constant
v A special register
v A host variable
v A scalar function whose arguments are a constant, a special register, or a

host variable (though nested function invocations cannot be used)
v A column name
v An expression that concatenates any of the above

start
An expression that specifies the position within source-string at which the
search is to start. It must be an integer that is greater than or equal to zero.

If start is specified, the function is similar to:
POSSTR(SUBSTR(source-string, start), search-string)

If start is not specified, the function is equivalent to:
POSSTR(source-string, search-string)

For more information, see “POSSTR” on page 204.

The result of the function is a large integer. If any of the arguments can be null, the
result can be null; if any of the arguments is null, the result is the null value.

If the CCSID of the search-string is different than the CCSID of the source-string, it is
converted to the CCSID of the source-string.

�� LOCATE (search-string , source-string)
, start

��

LOCATE

Chapter 3. Built-in functions 193

Example
v Select RECEIVED and SUBJECT columns as well as the starting position of the

words ’GOOD’ within the NOTE_TEXT column for all entries in the IN_TRAY
table that contain these words.

SELECT RECEIVED, SUBJECT, LOCATE(’GOOD’, NOTE_TEXT)
FROM IN_TRAY
WHERE LOCATE(’GOOD’, NOTE_TEXT) <> 0

LOCATE

194 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

LOG10

The LOG10 function returns the common logarithm (base 10) of a number.

The argument value must be of any built-in numeric data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable L is a DECIMAL(4,2) host variable with a value of

31.62.
SELECT LOG10(:L)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 1.49.

�� LOG10 (numeric-expression) ��

LOG10

Chapter 3. Built-in functions 195

LOWER

The LOWER function returns a string in which all the characters have been
converted to lowercase characters, based on the CCSID of the argument. Only
SBCS or Unicode characters are converted. The characters A-Z are converted to a-z,
and characters with diacritical marks are converted to their lowercase equivalent, if
any.

string-expression
An expression that specifies the string to be converted. String-expression must
be a character string or Unicode graphic string. An argument with a
character-string data type must not be a CLOB and must have an actual length
that is not greater than 255 bytes. An argument with a graphic-string data type
must not be a DBCLOB and must have an actual length that is not greater than
127 bytes.

The result of the function has the same data type, length attribute, actual length,
and CCSID as the argument. If the argument can be null, the result can be null. If
the argument is null, the result is the null value.

Note
Syntax alternatives: LCASE is a synonym for LOWER.

Example
v Ensure that the characters in the value of host variable NAME are lowercase.

NAME has a data type of VARCHAR(30) and a value of ’Christine Smith’.
SELECT LOWER(:NAME)

FROM SYSIBM.SYSDUMMY1

The result is the value ’christine smith’.

�� LOWER (string-expression) ��

LOWER

196 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

LTRIM

The LTRIM function removes blanks from the beginning of a string expression.

The argument must be an expression that returns a value that is a built-in
character string data type or graphic string data type. The argument must not be a
CLOB or DBCLOB. The characters that are interpreted as leading blanks depend
on the data type and the encoding scheme of the data:
v If the argument is a DBCS graphic string, then the leading DBCS blanks are

removed.
v If the first argument is a Unicode graphic string, then the leading Unicode

blanks are removed
v Otherwise, leading SBCS blanks are removed.

The data type of the result depends on the data type of string-expression:

Data type of string-expression Data type of the Result

CHAR or VARCHAR VARCHAR

GRAPHIC or VARGRAPHIC VARGRAPHIC

The length attribute of the result is the same as the length attribute of
string-expression. The actual length of the result is the length of the expression
minus the number of blanks removed. If all characters are removed, the result is an
empty string.

If the first argument can be null, the result can be null; if the first argument is null,
the result is the null value.

The CCSID of the result is the same as that of the string.

Example
v Assume the host variable HELLO of type CHAR(9) has a value of ’ Hello’.

SELECT LTRIM(:HELLO)
FROM SYSIBM.SYSDUMMY1

Results in: ’Hello’.

�� LTRIM (string-expression) ��

LTRIM

Chapter 3. Built-in functions 197

MICROSECOND

�� MICROSECOND (expression) ��

The MICROSECOND function returns the microsecond part of a value.

The argument must be an expression that returns a value of one of the following
built-in data types: a timestamp, a character string, or a numeric data type.
v If expression is a character string, it must not be a CLOB and its value must be a

valid character-string representation of a timestamp with an actual length that is
not greater than 255 bytes. For the valid formats of string representations of
timestamps, see “String representations of datetime values” on page 52.

v If expression is a number, it must be a timestamp duration. For the valid formats
of datetime durations, see “Datetime operands and durations” on page 103.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a timestamp or a valid character-string representation of a

timestamp:
The result is the microsecond part of the value, which is an integer between 0
and 999 999.

v If the argument is a duration:
The result is the microsecond part of the value, which is an integer between
−999 999 and 999 999. A nonzero result has the same sign as the argument.

Example
v Assume a table TABLEA contains two columns, TS1 and TS2, of type

TIMESTAMP. Select all rows in which the microseconds portion of TS1 is not
zero and the seconds portion of TS1 and TS2 are identical.

SELECT * FROM TABLEA
WHERE MICROSECOND(TS1) <> 0 AND SECOND(TS1) = SECOND(TS2)

MICROSECOND

198 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

MIDNIGHT_SECONDS

The MIDNIGHT_SECONDS function returns an integer value that is greater than
or equal to 0 and less than or equal to 86,400 representing the number of seconds
between midnight and the time value specified in the argument.

The argument must be an expression that returns a value of one of the following
built-in data types: time, a timestamp, or a valid character-string representation of
a time or timestamp. An argument with a character-string data type must not be a
CLOB and must have an actual length that is not greater than 255 bytes. For the
valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 52.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Examples
v Find the number of seconds between midnight and 00:01:00, and midnight and

13:10:10. Assume that host variable XTIME1 has a value of ’00:01:00’, and that
XTIME2 has a value of ’13:10:10’.

SELECT MIDNIGHT_SECONDS(:XTIME1), MIDNIGHT_SECONDS(:XTIME2)
FROM SYSIBM.SYSDUMMY1

This example returns 60 and 47 410. Because there are 60 seconds in a minute
and 3600 seconds in an hour, 00:01:00 is 60 seconds after midnight ((60 * 1) + 0),
and 13:10:10 is 47 410 seconds ((3600 * 13) + (60 * 10) + 10).

v Find the number of seconds between midnight and 24:00:00, and midnight and
00:00:00.

SELECT MIDNIGHT_SECONDS(’24:00:00’), MIDNIGHT_SECONDS(’00:00:00’)
FROM SYSIBM.SYSDUMMY1

This example returns 86 400 and 0. Although these two values represent the
same point in time, different values are returned.

�� MIDNIGHT_SECONDS (expression) ��

MIDNIGHT_SECONDS

Chapter 3. Built-in functions 199

MINUTE

�� MINUTE (expression) ��

The MINUTE function returns the minute part of a value.

The argument must be an expression that returns a value of one of the following
built-in data types: a time, a timestamp, a character string, or a numeric data type.
v If expression is a character string, it must not be a CLOB and its value must be a

valid character-string representation of a time or timestamp with an actual
length that is not greater than 255 bytes. For the valid formats of string
representations of times and timestamps, see “String representations of datetime
values” on page 52.

v If expression is a number, it must be a time duration or timestamp duration. For
the valid formats of datetime durations, see “Datetime operands and durations”
on page 103.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a time, a timestamp, or a valid character-string representation

of a time or timestamp:
The result is the minute part of the value, which is an integer between 0 and 59.

v If the argument is a time duration or timestamp duration:
The result is the minute part of the value, which is an integer between −99 and
99. A nonzero result has the same sign as the argument.

Example
v Using the CL_SCHED sample table, select all classes with a duration less than 50

minutes.
SELECT *

FROM CL_SCHED
WHERE HOUR(ENDING - STARTING) = 0 AND

MINUTE(ENDING - STARTING) < 50

MINUTE

200 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

MOD

The MOD function divides the first argument by the second argument and returns
the remainder.

The formula used to calculate the remainder is:
MOD(x,y) = x - (x/y) * y

where x/y is the truncated integer result of the division. The result is negative
only if first argument is negative.

The arguments must be each be an expression that returns a built-in INTEGER or
SMALLINT data type. numeric-expression-2 cannot be zero.

If an argument can be null, the result can be null; if an argument is null, the result
is the null value.

The result of the function is a large integer. In DB2 UDB for LUW if both
arguments are small integers, the result is a small integer.

Examples
v Assume the host variable M1 is an integer host variable with a value of 5, and

host variable M2 is an integer host variable with a value of 2.
SELECT MOD(:M1,:M2)

FROM SYSIBM.SYSDUMMY1

Returns the value 1.

�� MOD (numeric-expression-1 , numeric-expression-2) ��

MOD

Chapter 3. Built-in functions 201

G
G

MONTH

�� MONTH (expression) ��

The MONTH function returns the month part of a value.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, a character string, or a numeric data type.
v If expression is a character string, it must not be a CLOB and its value must be a

valid character-string representation of a date or timestamp with an actual
length that is not greater than 255 bytes. For the valid formats of string
representations of dates and timestamps, see “String representations of datetime
values” on page 52.

v If expression is a number, it must be a date duration or timestamp duration. For
the valid formats of datetime durations, see “Datetime operands and durations”
on page 103.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a date, a timestamp, or a valid character-string representation

of a date or timestamp:
The result is the month part of the value, which is an integer between 1 and 12.

v If the argument is a date duration or timestamp duration:
The result is the month part of the value, which is an integer between −99 and
99. A nonzero result has the same sign as the argument.

Example
v Select all rows from the EMPLOYEE table for people who were born

(BIRTHDATE) in December.
SELECT *

FROM EMPLOYEE
WHERE MONTH(BIRTHDATE) = 12

MONTH

202 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

NULLIF

The NULLIF function returns a null value if the arguments compare equal,
otherwise it returns the value of the first argument.

The arguments must be compatible and comparable built-in data types. Neither
argument can be a BLOB, CLOB, or DBCLOB. Character-string arguments are
compatible and comparable with datetime values.

The attributes of the result are the attributes of the first argument. The result can
be null. The result is null if the first argument is null or if both arguments are
equal.

The result of using NULLIF(e1,e2) is the same as using the expression
CASE WHEN e1=e2 THEN NULL ELSE e1 END

Note that when e1=e2 evaluates to unknown (because one or both arguments is
NULL), CASE expressions consider this not true. Therefore, in this situation,
NULLIF returns the value of the first operand, e1.

Example
v Assume host variables PROFIT, CASH, and LOSSES have DECIMAL data types

with the values 4500.00, 500.00, and 5000.00 respectively:
SELECT NULLIF (:PROFIT + :CASH, :LOSSES)

FROM SYSIBM.SYSDUMMY1

Returns the null value.

�� NULLIF (expression , expression) ��

NULLIF

Chapter 3. Built-in functions 203

POSSTR

The POSSTR function returns the starting position of the first occurrence of one
string (called the search-string) within another string (called the source-string). If the
search-string is not found and neither argument is null, the result is zero. If the
search-string is found, the result is a number from 1 to the actual length of the
source-string. See the related function, “LOCATE” on page 193.

source-string
An expression that specifies the source string in which the search is to take
place. source-string must return a value that is a built-in character string data
type, graphic string data type, or binary string data type. The expression can
be specified by any of the following:
v A constant
v A special register
v A host variable (including a LOB locator variable)
v A scalar function whose arguments are a constant, a special register, or a

host variable (though nested function invocations cannot be used)
v A column name
v An expression that concatenates any of the above

search-string
An expression that specifies the string that is to be searched for. search-string
must return a value that is a built-in character or graphic-string data type that
is not a LOB. The expression must have an actual length that is no greater than
4000 bytes. It must be compatible with the source-string. The expression can be
specified by any of the following:
v A constant
v A special register
v A host variable
v A scalar function whose arguments are a constant, a special register, or a

host variable (though nested function invocations cannot be used)
v An expression that concatenates any of the above

The result of the function is a large integer. If either of the arguments can be null,
the result can be null. If either of the arguments is null, the result is the null value.

The POSSTR function accepts mixed data strings. However, POSSTR operates on a
strict byte-count basis without regard to single-byte or double-byte characters.44

If the CCSID of the search-string is different than the CCSID of the source-string, it is
converted to the CCSID of the source-string.

If the search-string has a length of zero, the result returned by the function is 1.
Otherwise:
v if the source-string has a length of zero, the result returned by the function is 0.
v Otherwise,

44. For example, in EBCDIC environments, if the source-string contains mixed data, the search-string will only be found if any shift-in
and shift-out characters are also found in the source-string in exactly the same positions.

�� POSSTR (source-string , search-string) ��

POSSTR

204 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

– If the value of search-string is equal to an identical length of substring of
contiguous positions within the value of source-string, then the result returned
by the function is the starting position of the first such substring within the
source-string value.

– Otherwise, the result returned by the function is 0.45

Example
v Select RECEIVED and SUBJECT columns as well as the starting position of the

words ’GOOD’ within the NOTE_TEXT column for all entries in the IN_TRAY
table that contain these words.

SELECT RECEIVED, SUBJECT, POSSTR(NOTE_TEXT, ’GOOD’)
FROM IN_TRAY
WHERE POSSTR(NOTE_TEXT, ’GOOD’) <> 0

45. This includes the case where the search-string is longer than the source-string.

POSSTR

Chapter 3. Built-in functions 205

POWER

The POWER function returns the result of raising the first argument to the power
of the second argument. 46

Each argument must be an expression that returns the value of any built-in
numeric data type. If the value of numeric-expression-1 is equal to zero, then
numeric-expression-2 must be greater than or equal to zero. If both arguments are 0,
the result is 1. If the value of numeric-expression-1 is less than zero, then
numeric-expression-2 must be an integer value.

The result of the function is a double-precision floating-point number. In DB2 UDB
for z/OS and OS/390 and DB2 UDB for LUW the result is INTEGER if both
arguments are either INTEGER or SMALLINT. If an argument can be null, the
result can be null; if an argument is null, the result is the null value.

Example
v Assume the host variable HPOWER is an integer with value 3.

SELECT POWER(2,:HPOWER)
FROM SYSIBM.SYSDUMMY1

Returns the value 8.

46. The result of the POWER function is exactly the same as the result of exponentiation: numeric-expression-1 ** numeric-expression-2.

�� POWER (numeric-expression-1 , numeric-expression-2) ��

POWER

206 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
G

QUARTER

The QUARTER function returns an integer between 1 and 4 that represents the
quarter of the year in which the date resides. For example, any dates in January,
February, or March will return the integer 1.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a character string.

If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp with an actual length
that is not greater than 255 bytes. For the valid formats of string representations of
dates and timestamps, see “String representations of datetime values” on page 52.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Example
v Using the PROJECT table, set the host variable QUART (INTEGER) to the

quarter in which project ‘PL2100’ ended (PRENDATE).
SELECT QUARTER(PRENDATE)

INTO :QUART
FROM PROJECT
WHERE PROJNO = ’PL2100’

Results in QUART being set to 3.

�� QUARTER (expression) ��

QUARTER

Chapter 3. Built-in functions 207

RADIANS

The RADIANS function returns the number of radians for an argument that is
expressed in degrees.

The argument must be an expression that returns the value of any built-in numeric
data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume that host variable HDEG is an INTEGER with a value of 180. The

following statement:
SELECT RADIANS(:HDEG)

FROM SYSIBM.SYSDUMMY1

Returns a double-precision floating-point number with an approximate value of
3.1415926536.

�� RADIANS (numeric-expression) ��

RADIANS

208 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

RAND

The RAND function returns a floating point value between 0 and 1.

If an expression is specified, it is used as the seed value. The expression must be a
built-in SMALLINT or INTEGER data type with a value between 0 and
2 147 483 646.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

A specific seed value, other than zero, will produce the same sequence of random
numbers for a specific instance of a RAND function in a query each time the query
is executed. If a seed value is not specified, a different sequence of random
numbers is produced each time the query is executed. The result with a seed value
of zero is product-specific.

RAND is a non-deterministic function.

Examples
v Assume that host variable HRAND is an INTEGER with a value of 100. The

following statement:
SELECT RAND(:HRAND)
FROM SYSIBM.SYSDUMMY1

Returns a random floating-point number between 0 and 1, such as the
approximate value .0121398.

v To generate values in a numeric interval other than 0 to 1, multiply the RAND
function by the size of the desired interval. For example, to get a random
number between 0 and 10, such as the approximate value 5.8731398, multiply
the function by 10:

SELECT RAND(:HRAND) * 10
FROM SYSIBM.SYSDUMMY1

�� RAND ()
numeric-expression

��

RAND

Chapter 3. Built-in functions 209

G
G

REAL

The REAL function returns a single-precision floating-point representation of a
number.

numeric-expression
An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the argument were assigned
to a single-precision floating-point column or variable. If the numeric value of
the argument is not within the range of single-precision floating-point, an error
is returned.

The result of the function is a single-precision floating-point number. If the
argument can be null, the result can be null; if the argument is null, the result is
the null value.

Note
Syntax alternatives: The CAST specification should be used for maximal
portability. For more information, see “CAST specification” on page 112.

Example
v Using the EMPLOYEE table, find the ratio of salary to commission for

employees whose commission is not zero. The columns involved (SALARY and
COMM) have DECIMAL data types. To eliminate the possibility of out-of-range
results, REAL is applied to SALARY so that the division is carried out in floating
point:

SELECT EMPNO, REAL(SALARY)/COMM
FROM EMPLOYEE
WHERE COMM > 0

�� REAL (numeric-expression) ��

REAL

210 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

ROUND

The ROUND function returns numeric-expression–1 rounded to numeric-expression–2
places to the right or left of the decimal point.

numeric-expression–1
An expression that returns a value of any built-in numeric data type.

numeric-expression–2
An expression that returns a value of a built-in small integer data type or large
integer data type. The absolute value of the numeric-expression–2 specifies the
number of places to the right of the decimal point for the result if
numeric-expression–2 is not negative, or to left of the decimal point if
numeric-expression–2 is negative.

If numeric-expression–2 is not negative, numeric-expression–1 is rounded to the
numeric-expression–2 number of places to the right of the decimal point. A digit
value of 5 is rounded to the next higher positive number.

If numeric-expression–2 is negative, numeric-expression–1 is rounded to 1 + (the
absolute value of numeric-expression–2) number of places to the left of the
decimal point. A digit value of 5 is rounded to the next lower negative
number. If the absolute value of numeric-expression–2 is greater than the
number of digits to the left of the decimal point, the result is 0.

The data type and length attribute of the result are the same as the data type and
length attribute of the first argument, except that precision is increased by one if
numeric-expression–1 is DECIMAL or NUMERIC and the precision is less than 31.
For example, an argument with a data type of DECIMAL(5,2) will result in
DECIMAL(6,2). An argument with a data type of DECIMAL(31,2) will result in
DECIMAL(31,2).

If either argument can be null, the result can be null. If either argument is null, the
result is the null value.

Examples
v Calculate the number 873.726 rounded to 2, 1, 0, -1, -2, -3, and -4 decimal places

respectively.
SELECT ROUND(873.726, 2),

ROUND(873.726, 1),
ROUND(873.726, 0),
ROUND(873.726, -1),
ROUND(873.726, -2),
ROUND(873.726, -3),
ROUND(873.726, -4)

FROM SYSIBM.SYSDUMMY1

This example returns (leading zeroes are shown to demonstrate the precision
and scale of the result):
0873.730 0873.700 0874.000 0870.000 0900.000 1000.000 0000.000

respectively.
v Calculate both positive and negative numbers.

�� ROUND (numeric-expression-1 , numeric-expression-2) ��

ROUND

Chapter 3. Built-in functions 211

SELECT ROUND(3.5, 0),
ROUND(3.1, 0),
ROUND(-3.1, 0),
ROUND(-3.5, 0)

FROM TABLEX

This example returns:
04.0 03.0 -03.0 -04.0

respectively.

ROUND

212 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

RTRIM

The RTRIM function removes blanks from the end of a string expression.

The argument must be an expression that returns a value of any built-in character
string data type or graphic-string data type, other than a CLOB or DBCLOB. The
characters that are interpreted as leading blanks depend on the data type and the
encoding scheme of the data:
v If the argument is a DBCS graphic string, then the trailing DBCS blanks are

removed.
v If the first argument is a Unicode graphic string, then the trailing Unicode

blanks are removed
v Otherwise, trailing SBCS blanks are removed.

The data type of the result depends on the data type of string-expression:

Data type of string-expression Data type of the Result

CHAR or VARCHAR VARCHAR

GRAPHIC or VARGRAPHIC VARGRAPHIC

The length attribute of the result is the same as the length attribute of
string-expression. The actual length of the result is the length of the expression
minus the number of blanks removed. If all characters are removed, the result is an
empty string.

If the first argument can be null, the result can be null; if the first argument is null,
the result is the null value.

The CCSID of the result is the same as that of the string.

Example
v Assume the host variable HELLO of type CHAR(9) has a value of ’Hello ’.

SELECT RTRIM(:HELLO)
FROM SYSIBM.SYSDUMMY1

Results in: ’Hello’.

�� RTRIM (string-expression) ��

RTRIM

Chapter 3. Built-in functions 213

SECOND

�� SECOND (expression) ��

The SECOND function returns the seconds part of a value.

The argument must be an expression that returns a value of one of the following
built-in data types: a time, a timestamp, a character string, or a numeric data type.
v If expression is a character string, it must not be a CLOB and its value must be a

valid character-string representation of a time or timestamp with an actual
length that is not greater than 255 bytes. For the valid formats of string
representations of times and timestamps, see “String representations of datetime
values” on page 52.

v If expression is a number, it must be a time duration or timestamp duration. For
the valid formats of datetime durations, see “Datetime operands and durations”
on page 103.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a time, a timestamp, or a valid character-string representation

of a time or timestamp:
The result is the seconds part of the value, which is an integer between 0 and 59.

v If the argument is a time duration or timestamp duration:
The result is the seconds part of the value, which is an integer between −99 and
99. A nonzero result has the same sign as the argument.

Examples
v Assume that the host variable TIME_DUR (DECIMAL(6,0)) has the value 153045.

SELECT SECOND(:TIME_DUR)
FROM SYSIBM.SYSDUMMY1

Returns the value 45.
v Assume that the column RECEIVED (TIMESTAMP) has an internal value

equivalent to 1988-12-25-17.12.30.000000.
SELECT SECOND(RECEIVED)

FROM IN_TRAY
WHERE SOURCE = ’BADAMSON’

Returns the value 30.

SECOND

214 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SIGN

The SIGN function returns an indicator of the sign of expression. The returned
value is:

–1 if the argument is less than zero

0 if the argument is zero

1 if the argument is greater than zero

The argument must be an expression that returns a value of any built-in numeric
data type, except DECIMAL(31,31).

The result has the same data type and length attribute as the argument, except that
precision is increased by one if the argument is DECIMAL or NUMERIC and the
scale of the argument is equal to its precision. For example, an argument with a
data type of DECIMAL(5,5) will result in DECIMAL(6,5). In DB2 UDB for LUW
the result is DOUBLE if the argument is DECIMAL or REAL.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Example
v Assume that host variable PROFIT is a large integer with a value of 50 000.

SELECT SIGN(:PROFIT)
FROM SYSIBM.SYSDUMMY1

This example returns the value 1.

�� SIGN (numeric-expression) ��

SIGN

Chapter 3. Built-in functions 215

G
G

SIN

The SIN function returns the sine of the argument, where the argument is an angle
expressed in radians. The SIN and ASIN functions are inverse operations.

The argument must be an expression that returns the value of any built-in numeric
data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable SINE is a DECIMAL(2,1) host variable with a value of

1.5.
SELECT SIN(:SINE)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 0.99.

�� SIN (numeric-expression) ��

SIN

216 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SINH

The SINH function returns the hyperbolic sine of the argument, where the
argument is an angle expressed in radians.

The argument must be an expression that returns the value of any built-in numeric
data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable HSINE is a decimal (2,1) host variable with a value of

1.5.
SELECT SINH(:HSINE)
FROM SYSIBM.SYSDUMMY1

Returns the approximate value 2.12.

�� SINH (numeric-expression) ��

SINH

Chapter 3. Built-in functions 217

SMALLINT

The SMALLINT function returns an integer representation of:
v A number
v A character-string representation of an integer

Numeric to Smallint

numeric-expression
An expression that returns a numeric value of any built-in numeric data type.

The result is the same number that would occur if the argument were assigned
to a small integer column or variable. If the whole part of the argument is not
within the range of small integers, an error is returned. The fractional part of
the argument is truncated.

Character to Smallint

character-expression
An expression that returns a value that is a character-string representation of
an integer. The expression must not be a CLOB and must have an actual length
that is not greater than 255 bytes.

The result is the same number that would result from CAST(
character-expression AS SMALLINT). Leading and trailing blanks are eliminated
and the resulting string must conform to the rules for forming an integer
constant. If the whole part of the argument is not within the range of small
integers, an error is returned.

The result of the function is a small integer. If the argument can be null, the result
can be null. If the argument is null, the result is the null value.

Note
Syntax alternatives: The CAST specification should be used for maximal
portability. For more information, see “CAST specification” on page 112.

Example
v Using the EMPLOYEE table, select a list containing salary (SALARY) divided by

education level (EDLEVEL). Truncate any decimal in the calculation. The list
should also contain the values used in the calculation and the employee number
(EMPNO).

SELECT SMALLINT(SALARY / EDLEVEL), SALARY, EDLEVEL, EMPNO
FROM EMPLOYEE

Numeric to Smallint

�� SMALLINT (numeric-expression) ��

Character to Smallint

�� SMALLINT (character-expression) ��

SMALLINT

218 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SPACE

The SPACE function returns a character string that consists of the number of SBCS
blanks that the argument specifies.

The argument must be an expression that returns a value that is a built-in
INTEGER data type. The integer specifies the number of SBCS blanks for the
result, and it must be between 0 and 4000. If numeric-expression is a constant, it
must not be the constant 0.

The result of the function is a varying-length character string (VARCHAR) that
contains SBCS data.

If numeric-expression is a constant, the length attribute of the result is the constant.
Otherwise, the length attribute of the result is 4000. In DB2 UDB for LUW the
length attribute is always 4000. The actual length of the result is the value of
numeric-expression. The actual length of the result must not be greater than the
length attribute of the result.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The CCSID of the result is the default CCSID at the current server.

Example
v The following statement returns a character string that consists of 5 blanks.

SELECT SPACE(5)
FROM SYSIBM.SYSDUMMY1

�� SPACE (numeric-expression) ��

SPACE

Chapter 3. Built-in functions 219

G
G

SQRT

The SQRT function returns the square root of a number.

The argument must be an expression that returns a value of any built-in numeric
data type. The value of numeric-expression must be greater than or equal to zero.
The argument is converted to double-precision floating point for processing by the
function.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable SQUARE is a DECIMAL(2,1) host variable with a

value of 9.0.
SELECT SQRT(:SQUARE)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 3.00.

�� SQRT (numeric-expression) ��

SQRT

220 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SUBSTR

�� SUBSTR (string-expression , start)
,length

��

The SUBSTR function returns a substring of a string.

string-expression
An expression that specifies the string from which the result is derived.
string-expression must be a built-in character, graphic, or binary string. If
string-expression is a character string, the result of the function is a character
string. If it is a graphic string, the result of the function is a graphic string. If it
is a binary string, the result of the function is a binary string.

A substring of string-expression is zero or more contiguous characters of
string-expression. If string-expression is a graphic string, a character is a DBCS or
Unicode character. If string-expression is a character string or binary string, a
character is a byte. The SUBSTR function accepts mixed data strings. However,
because SUBSTR operates on a strict byte-count basis for character strings, the
result will not necessarily be a properly formed mixed data string.

start
An expression that specifies the position within string-expression of the first
character (or byte) of the result. The expression must return a value that is a
built-in INTEGER data type. The value must be greater than zero and less than
or equal to the length attribute of string-expression.

length
An expression that specifies the length of the result. If specified, length must be
an expression that returns a value that is a built-in INTEGER data type. The
value must be greater than or equal to 0 and less than or equal to n, where n is
the length attribute of string-expression - start + 1. It must not, however, be the
integer constant 0.

If length is explicitly specified, string-expression is effectively padded on the
right with the necessary number of blank characters so that the specified
substring of string-expression always exists. Hexadecimal zeroes are used as the
padding character when string-expression is a binary string.

If string-expression is a fixed-length string, omission of length is an implicit
specification of LENGTH(string-expression) - start + 1, which is the number of
characters (or bytes) from the character (or byte) specified by start to the last
character (or byte) of string-expression. If string-expression is a varying-length
string, omission of length is an implicit specification of the greater of zero or
LENGTH(string-expression) - start + 1. If the resulting length is zero, the result
is the empty string.

SUBSTR

Chapter 3. Built-in functions 221

The data type of the result depends on the data type of string-expression:

Data type of string-expression Data Type of the Result for SUBSTR

CHAR or VARCHAR CHAR, if:

v length is explicitly specified by an integer constant that
is less than the product-specific maximum of a
character-string. See Table 39 on page 552 for more
information.

v length is not explicitly specified, but string-expression is a
fixed-length string and start is an integer constant.

VARCHAR, in all other cases.

CLOB CLOB

GRAPHIC or VARGRAPHIC GRAPHIC, if:

v length is explicitly specified by an integer constant that
is less than the product-specific maximum of a
graphic-string. See Table 39 on page 552 for more
information.

v length is not explicitly specified, but string-expression is a
fixed-length string and start is an integer constant.

VARGRAPHIC, in all other cases.

DBCLOB DBCLOB

BLOB BLOB

If string-expression is not a LOB, the length attribute of the result depends on length,
start, and the attributes of string-expression.
v If length is explicitly specified by an integer constant, the length attribute of the

result is length.
v If length is not explicitly specified, but string-expression is a fixed-length string

and start is an integer constant, the length attribute of the result is
LENGTH(string-expression) - start + 1.

In all other cases, the length attribute of the result is the same as the length
attribute of string-expression. (Remember that if the actual length of string-expression
is less than the value for start, the actual length of the substring is zero.)

If any argument of the SUBSTR function can be null, the result can be null; if any
argument is null, the result is the null value.

The CCSID of the result is the same as that of string-expression.

Examples
v Assume the host variable NAME (VARCHAR(50)) has a value of 'KATIE

AUSTIN' and the host variable SURNAME_POS (INTEGER) has a value of 7.
SELECT SUBSTR(:NAME, :SURNAME_POS)

FROM SYSIBM.SYSDUMMY1

Returns the value 'AUSTIN'
SELECT SUBSTR(:NAME, :SURNAME_POS, 1)

FROM SYSIBM.SYSDUMMY1

Returns the value 'A'.
v Select all rows from the PROJECT table for which the project name

(PROJNAME) starts with the word 'OPERATION '.

SUBSTR

222 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SELECT *
FROM PROJECT
WHERE SUBSTR(PROJNAME,1,10) = ’OPERATION ’

The space at the end of the constant is necessary to preclude initial words such
as 'OPERATIONS'.

SUBSTR

Chapter 3. Built-in functions 223

TAN

The TAN function returns the tangent of the argument, where the argument is an
angle expressed in radians. The TAN and ATAN functions are inverse operations.

The argument must be an expression that returns the value of any built-in numeric
data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable TANGENT is a DECIMAL(2,1) host variable with a

value of 1.5.
SELECT TAN(:TANGENT)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 14.10.

�� TAN (numeric-expression) ��

TAN

224 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

TANH

The TANH function returns the hyperbolic tangent of the argument, where the
argument is an angle expressed in radians. The TANH and ATANH functions are
inverse operations.

The argument must be an expression that returns the value of any built-in numeric
data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable HTANGENT is a DECIMAL(2,1) host variable with a

value of 1.5.
SELECT TANH(:HTANGENT)
FROM SYSIBM.SYSDUMMY1

Returns the approximate value 0.90.

�� TANH (numeric-expression) ��

TANH

Chapter 3. Built-in functions 225

TIME

�� TIME (expression) ��

The TIME function returns a time from a value.

The argument must be an expression that returns a value of one of the following
built-in data types: a time, a timestamp, or a character string.

If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a time or timestamp with an actual length
that is not greater than 255 bytes. For the valid formats of string representations of
dates and timestamps, see “String representations of datetime values” on page 52.

The result of the function is a time. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a time:

The result is that time.
v If the argument is a timestamp:

The result is the time part of the timestamp.
v If the argument is a character string:

The result is the time or time part of the timestamp represented by the character
string. When a string representation of a time is SBCS with a CCSID that is not
the same as the default CCSID for SBCS data, that value is converted to adhere
to the default CCSID for SBCS data before it is interpreted and converted to a
time value.
When a string representation of a time is mixed data with a CCSID that is not
the same as the default CCSID for mixed data, that value is converted to adhere
to the default CCSID for mixed data before it is interpreted and converted to a
time value.

Note
Syntax alternatives: The CAST specification should be used for maximal
portability. For more information, see “CAST specification” on page 112.

Example
v Select all notes from the IN_TRAY sample table that were received at least one

hour later in the day (any day) than the current time.
SELECT *

FROM IN_TRAY
WHERE TIME(RECEIVED) >= CURRENT TIME + 1 HOUR

TIME

226 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

TIMESTAMP

�� TIMESTAMP (expression-1)
,expression-2

��

The TIMESTAMP function returns a timestamp from its argument or arguments.

The rules for the arguments depend on whether the second argument is specified.
v If only one argument is specified:

The argument must be an expression that returns a value of one of the following
built-in data types: a timestamp or a character string.
If expression-1 is a character string, it must not be a CLOB and its value must be
one of the following:
– A valid character-string representation of a timestamp with an actual length

that is not greater than 255 bytes. For the valid formats of string
representations of timestamps, see “String representations of datetime values”
on page 52.

– A character string with an actual length of 14 that represents a valid date and
time in the form yyyyxxddhhmmss, where yyyy is year, xx is month, dd is
day, hh is hour, mm is minute, and ss is seconds.

v If both arguments are specified:
The first argument must be an expression that returns a value of one of the
following built-in data types: a date or a character string. The second argument
must be an expression that returns a value of one of the following built-in data
types: a time or a character string.
If expression-1 is a character string, it must not be a CLOB and its value must be
a valid character-string representation of a date with an actual length that is not
greater than 255 bytes. If expression-2 is a character string, it must not be a CLOB
and its value must be a valid character-string representation of a time with an
actual length that is not greater than 255 bytes. For the valid formats of string
representations of dates and times, see “String representations of datetime
values” on page 52.

The result of the function is a timestamp. If either argument can be null, the result
can be null; if either argument is null, the result is the null value.

The other rules depend on whether the second argument is specified:
v If both arguments are specified:

The result is a timestamp with the date specified by the first argument and the
time specified by the second argument. The microsecond part of the timestamp
is zero.

v If only one argument is specified and it is a timestamp:
The result is that timestamp.

v If only one argument is specified and it is a character string:
The result is the timestamp represented by that character string. If the argument
is a character string of length 14, the timestamp has a microsecond part of zero.

When a string representation of a timestamp is SBCS with a CCSID that is not the
same as the default CCSID for SBCS data, that value is converted to adhere to the
default CCSID for SBCS data before it is interpreted and converted to a timestamp
value.

TIMESTAMP

Chapter 3. Built-in functions 227

When a string representation of a timestamp is mixed data with a CCSID that is
not the same as the default CCSID for mixed data, that value is converted to
adhere to the default CCSID for mixed data before it is interpreted and converted
to a timestamp value.

Note
Syntax alternatives: If only one argument is specified, the CAST specification
should be used for maximal portability. For more information, see “CAST
specification” on page 112.

Example
v Assume the following date and time values:

SELECT TIMESTAMP(DATE(’1988-12-25’), TIME(’17.12.30’))
FROM SYSIBM.SYSDUMMY1

Returns the value ’1988-12-25-17.12.30.000000’.

TIMESTAMP

228 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

TRANSLATE

�� TRANSLATE �

� (string-expression)
, to-string

, from-string
, pad

��

The TRANSLATE function returns a value in which one or more characters in
string-expression may have been converted into other characters.

string-expression
An expression that specifies the string to be converted. string-expression must
be an expression that returns a value that is a built-in character-string data
type. A character string argument must not be a CLOB and must have an
actual length that is not greater than 255.

to-string
A string that specifies the characters to which certain characters in
string-expression are to be converted. This string is sometimes called the output
translation table.

The string must be a character string constant. A character string argument
must not have an actual length that is greater than 255.

If the length attribute of the to-string is less than the length attribute of the
from-string, then the to-string is padded to the longer length using the pad
character if it is specified or a blank if a pad character is not specified. If the
length attribute of the to-string is greater than the length attribute of the
from-string, the extra characters in to-string are ignored without warning.

from-string
A string that specifies the characters that if found in string-expression are to be
converted. This string is sometimes called the input translation table. When a
character in from-string is found, the character in string-expression is converted
to the character in to-string that is in the corresponding position of the
character in from-string.

The string must be a character string constant. A character string argument
must not have an actual length that is greater than 255.

If from-string contains duplicate characters, the left-most one is used and no
warning is issued. The default value for from-string is a string of all bit
representations starting with X’00’ and ending with X’FF’ (decimal 255).

pad
A string that specifies the character with which to pad to-string if its length is
less than from-string. The string must be a character string constant with a
length of 1. The default is an SBCS blank.

If only the first argument is specified, the SBCS characters of the argument are
converted to uppercase, based on the CCSID of the argument. Only SBCS
characters are converted. The characters a-z are converted to A-Z, and characters
with diacritical marks are converted to their uppercase equivalent, if any. For more
information, see “UPPER” on page 234.

If more than one argument is specified, the result string is built character by
character from string-expression, converting characters in from-string to the
corresponding character in to-string. For each character in string-expression, the

TRANSLATE

Chapter 3. Built-in functions 229

same character is searched for in from-string. If the character is found to be the nth
character in from-string, the resulting string will contain the nth character from
to-string. If to-string is less than n characters long, the resulting string will contain
the pad character. If the character is not found in from-string, it is moved to the
result string unconverted.

The result of the function has the same data type, length attribute, actual length,
and CCSID as the argument. If the first argument can be null, the result can be
null. If the argument is null, the result is the null value.

Examples
v Monocase the string ’abcdef’.

SELECT TRANSLATE(’abcdef’)
FROM SYSIBM.SYSDUMMY1

Returns the value ’ABCDEF’.
v In an EBCDIC environment, monocase the mixed data character string.

SELECT TRANSLATE()

Returns the value
v Given that the host variable SITE is a varying-length character string with a

value of ’Pivabiska Lake Place’:
SELECT TRANSLATE(:SITE, ’$’, ’L’)

FROM SYSIBM.SYSDUMMY1

v Given the same host variable SITE with a value of ’Pivabiska Lake Place’:
SELECT TRANSLATE(:SITE, ’$$’, ’Ll’)

FROM SYSIBM.SYSDUMMY1

Returns the value ’Pivabiska $ake P$ace’.
v Given the same host variable SITE with a value of ’Pivabiska Lake Place’:

SELECT TRANSLATE(:SITE, ’pLA’, ’Place’, ’.’)
FROM SYSIBM.SYSDUMMY1

Returns the value ’pivAbiskA LAk. pLA..’.

TRANSLATE

230 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

TRUNCATE or TRUNC

The TRUNCATE function returns numeric-expression–1 truncated to
numeric-expression–2 places to the right or left of the decimal point.

numeric-expression–1
An expression that returns a value of any built-in numeric data type.

numeric-expression–2
An expression that returns a small or large integer. The absolute value of
integer specifies the number of places to the right of the decimal point for the
result if numeric-expression–2 is not negative, or to left of the decimal point if
numeric-expression–2 is negative.

If numeric-expression–2 is not negative, numeric-expression–1 is truncated to the
numeric-expression–2 number of places to the right of the decimal point.

If numeric-expression–2 is negative, numeric-expression–1 is truncated to 1 + (the
absolute value of numeric-expression–2) number of places to the left of the
decimal point. If 1 + (the absolute value of numeric-expression–2) is greater than
or equal to the number of digits to the left of the decimal point, the result is 0.

The data type and length attribute of the result are the same as the data type and
length attribute of the first argument. In DB2 UDB for LUW the result is INTEGER
if the first argument is SMALLINT or INTEGER. Otherwise, the result is DOUBLE.

If either argument can be null, the result can be null. If either argument is null, the
result is the null value.

Examples
v Calculate the average monthly salary for the highest paid employee. Truncate

the result to two places to the right of the decimal point.
SELECT TRUNCATE(MAX(SALARY/12, 2)

FROM EMPLOYEE

Because the highest paid employee in the sample EMPLOYEE table earns
$52750.00 per year, the example returns the value 4395.83.

v Calculate the number 873.726 truncated to 2, 1, 0, -1, -2, and -3 decimal places
respectively.

SELECT TRUNCATE(873.726, 2),
TRUNCATE(873.726, 1),
TRUNCATE(873.726, 0),
TRUNCATE(873.726, -1),
TRUNCATE(873.726, -2),
TRUNCATE(873.726, -3),
TRUNCATE(873.726, -4)

FROM SYSIBM.SYSDUMMY1

This example returns (leading zeroes are shown to demonstrate the precision
and scale of the result):
0873.720 0873.700 0873.000 0870.000 0800.000 0000.000 0000.000

respectively.
v Calculate both positive and negative numbers.

�� TRUNCATE (numeric-expression-1 , numeric-expression-2)
TRUNC

��

TRUNCATE

Chapter 3. Built-in functions 231

G
G

SELECT TRUNCATE(3.5, 0),
TRUNCATE(3.1, 0),
TRUNCATE(-3.1, 0),
TRUNCATE(-3.5, 0)

FROM TABLEX

This example returns:
3.0 3.0 -3.0 -3.0

respectively.

TRUNCATE

232 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

UCASE

The UCASE function returns a string in which all the characters have been
converted to uppercase characters, based on the CCSID of the argument.

The UCASE function is identical to the UPPER function. For more information, see
“UPPER” on page 234.

�� UCASE (string-expression) ��

UCASE

Chapter 3. Built-in functions 233

UPPER

The UPPER function returns a string in which all the characters have been
converted to uppercase characters, based on the CCSID of the argument. Only
SBCS or Unicode characters are converted. The characters a-z are converted to A-Z,
and characters with diacritical marks are converted to their uppercase equivalent, if
any.

string-expression
An expression that specifies the string to be converted. String-expression must
return a value that is a built-in character or Unicode graphic-string data type.
An argument with a character-string data type must not be a CLOB and must
have an actual length that is not greater than 255 bytes. An argument with a
graphic-string data type must not be a DBCLOB and must have an actual
length that is not greater than 127 bytes.

The result of the function has the same data type, length attribute, actual length,
and CCSID as the argument. If the argument can be null, the result can be null; if
the argument is null, the result is the null value.

Note
Syntax alternatives: UCASE is a synonym for UPPER.

Examples
v Make the string ’abcdef’ uppercase using the UPPER scalar function.

SELECT UPPER(’abcdef’)
FROM SYSIBM.SYSDUMMY1

Returns the value ’ABCDEF’.
v In EBCDIC environments, make the mixed data character string uppercase using

the UPPER scalar function.

UPPER()

Returns the value:

�� UPPER (string-expression) ��

UPPER

234 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

VALUE

�� �VALUE (expression , expression) ��

The VALUE function returns the value of the first non-null expression.

The VALUE function is identical to the COALESCE function. For more
information, see “COALESCE” on page 159.

VALUE

Chapter 3. Built-in functions 235

VARCHAR

The VARCHAR function returns a varying-length character-string representation
of:
v A character string if the first argument is any type of character string
v A graphic string if the first argument is a Unicode graphic string

The result of the function is a varying-length string. If the first argument can be
null, the result can be null; if the first argument is null, the result is the null value.

Character to Varchar

character-expression
An expression that returns a value that is a built-in character-string data type.
The argument must not be a CLOB and must have an actual length that is not
greater than 32672 bytes.

length
Specifies the length attribute for the resulting varying length character string.
The value must be between 1 and 32672. In EBCDIC environments, if the first
argument is mixed data, the second argument cannot be less than 4.

If the second argument is not specified:
v If the character-expression is an empty string constant, the length attribute of

the result is 1. In DB2 UDB for LUW the length attribute is 0.
v Otherwise, the length attribute of the result is the same as the length

attribute of the first argument.

The actual length of the result is the minimum of the length attribute of the
result and the actual length of character-expression. If the length of the
character-expression is greater than the length attribute of the result, truncation
is performed.

The CCSID of the result is the same as the CCSID of character-expression.

Graphic to Varchar

graphic-expression
An expression that returns a value that is a built-in Unicode graphic-string
data type. The argument must not be a DBCLOB and must have an actual
length that is not greater than 16336 characters.

length
Specifies the length attribute for the resulting varying length character string.

Character to Varchar

�� VARCHAR (character-expression
, length

) ��

Graphic to Varchar

�� VARCHAR (graphic-expression
, length

) ��

VARCHAR

236 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G

The value must be between 1 and 32672. In EBCDIC environments, if the result
is mixed data, the second argument cannot be less than 4.

If the second argument is not specified, the length attribute of the result is
determined as follows (where n is the length attribute of the first argument):
v If the graphic-expression is the empty graphic string constant, the length

attribute of the result is 1. In DB2 UDB for LUW the length attribute is 0.
v If the result is SBCS data, the length attribute of the result is n.
v If the result is mixed data, the length attribute of the result is

product-specific.

The actual length of the result is the minimum of the length attribute of the
result and the actual length of graphic-expression. If the length of the
character-expression is greater than the length attribute of the result, truncation
is performed.

The CCSID of the result is the default CCSID at the current server.

Note
Syntax alternatives: If the length attribute is specified, the CAST specification
should be used for maximal portability. For more information, see “CAST
specification” on page 112.

Example
v Make EMPNO varying-length with a length of 10.

SELECT VARCHAR(EMPNO,10)
INTO :VARHV
FROM EMPLOYEE

VARCHAR

Chapter 3. Built-in functions 237

G

G

VARGRAPHIC

The VARGRAPHIC function returns a varying-length graphic-string representation
of a string.

The result of the function is a varying-length graphic string (VARGRAPHIC).

If the expression can be null, the result can be null. If the expression is null, the
result is the null value. If the expression is an empty string or the EBCDIC string
X’0E0F’, the result is an empty string.

Character to Vargraphic

character-expression
An expression that returns a value that is a built-in character-string data type.
It cannot be bit data.47

If the expression is an empty string or the EBCDIC string X’0E0F’, the length
attribute of the result is 1. In DB2 UDB for LUW the length attribute of an
empty string is 0. Otherwise, the length attribute of the result is the same as
the length attribute of the first argument.

The actual length of the result is the minimum of the length attribute of the
result and the actual length of character-expression. If the length of
character-expression, as measured in single-byte characters, is greater than the
specified length of the result, as measured in double-byte characters, the result
is truncated.

The CCSID of the result is determined by a mixed data CCSID. Let M denote that
mixed data CCSID.

In the following rules, S denotes one of the following:
v If the string expression is a host variable containing data in a foreign encoding

scheme, S is the result of the expression after converting the data to a CCSID in
a native encoding scheme. (See “Character conversion” on page 20 for more
information.)

v If the string expression is data in a native encoding scheme, S is that string
expression.

M is determined as follows:
v If the CCSID of S is a mixed CCSID, M is that CCSID.
v If the CCSID of S is an SBCS CCSID:

47. Although DB2 UDB for z/OS and OS/390 supports storing ASCII data, expression can only be in the EBCDIC encoding scheme.

Character to Vargraphic

�� VARGRAPHIC (character-expression) ��

Graphic to Vargraphic

�� VARGRAPHIC (graphic-expression
, length

) ��

VARGRAPHIC

238 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

– If the CCSID of S has an associated mixed CCSID, M is that CCSID.
– Otherwise the operation is not allowed.

The following table summarizes the result CCSID based on M.

M Result
CCSID

Description DBCS Substitution
Character

930 300 Japanese EBCDIC X'FEFE'

932 301 Japanese ASCII X'FCFC'

933 834 Korean EBCDIC X'FEFE'

934 926 Korean ASCII X'BFFC'

935 837 S-Chinese EBCDIC X'FEFE'

936 928 S-Chinese ASCII X'FCFC'

937 835 T-Chinese EBCDIC X'FEFE'

938 927 T-Chinese ASCII X'FCFC'

939 300 Japanese EBCDIC X'FEFE'

942 301 Japanese ASCII X'FCFC'

943 941 Japanese ASCII X'FCFC'

944 926 Korean ASCII X'BFFC'

946 928 S-Chinese ASCII X'FCFC'

948 927 T-Chinese ASCII X'FCFC'

949 951 Korean ASCII X'AFFE'

950 947 T-Chinese ASCII (Big-5) X'C8FE'

954 13488 Japanese ASCII EUC X'FFFD'

964 13488 T-Chinese ASCII EUC X'FFFD'

970 971 Korean ASCII EUC X'AFFE'

1208 1200 Unicode Not applicable

1363 1362 Korean ASCII EUC X'AFFE'

1364 4930 Korean EBCDIC X'FEFE'

1371 9027 T-Chinese EBCDIC X'FEFE'

1381 1380 S-Chinese ASCII GB-Code X'FEFE'

1383 1382 S-Chinese ASCII EUC X'A1A1'

1386 1385 S-Chinese ASCII EUC X'A1A1'

1388 4933 S-Chinese EBCDIC X'FEFE'

1390 16684 Japanese EBCDIC X'FEFE'

1399 16684 Japanese EBCDIC X'FEFE'

5026 4396 Japanese EBCDIC X'FEFE'

5035 4396 Japanese EBCDIC X'FEFE'

5039 1351 Japanese ASCII X'FFFD'

5307 1351 Japanese ASCII X'FFFD'

The equivalence of SBCS and DBCS characters depends on M.

VARGRAPHIC

Chapter 3. Built-in functions 239

Each character of the argument determines a character of the result. Regardless of
the character set identified by M, every double-byte code point in the argument is
considered a DBCS character, and every single-byte code point in the argument is
considered an SBCS character with the exception of the EBCDIC mixed data shift
codes X'0E' and X'0F'.
v If the nth character of the argument is a DBCS character, the nth character of the

result is that DBCS character.
v If the nth character of the argument is an SBCS character that has an equivalent

DBCS character, the nth character of the result is that equivalent DBCS character.
v If the nth character of the argument is an SBCS character that does not have an

equivalent DBCS character, the nth character of the result is the DBCS
substitution character.

v In the ASCII environment, if the last byte of the argument is a DBCS introducer
byte, the last character of the result is the DBCS substitution character.

Graphic to Vargraphic

graphic-expression
An expression that returns a value that is a built-in graphic-string data type.

length
Specifies the length attribute of the result and must be an integer constant
between 1 and 16336.

If the second argument is not specified,
v If the expression is an empty string, the length attribute of the result is 1. In

DB2 UDB for LUW the length attribute is 0.
v Otherwise, the length attribute of the result is the same as the length

attribute of the first argument.

The actual length of the result depends on the number of characters in
graphic-expression. If the length of graphic-expression is greater than the length
specified, the result is truncated.

The CCSID of the result is the CCSID of graphic-expression.

Note
Syntax alternatives: If the first argument is graphic-expression and the length
attribute is specified, the CAST specification should be used for maximal
portability. For more information, see “CAST specification” on page 112.

Example
v Using the EMPLOYEE table, set the host variable VAR_DESC

(VARGRAPHIC(24)) to the VARGRAPHIC equivalent of the first name
(FIRSTNME) for employee number (EMPNO) '000050'.

SELECT VARGRAPHIC(FIRSTNME)
INTO :VAR_DESC
FROM EMPLOYEE
WHERE EMPNO = '000050'

VARGRAPHIC

240 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

WEEK

The WEEK function returns an integer between 1 and 54 that represents the week
of the year. The week starts with Sunday, and January 1 is always in the first week.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a character string.

If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp with an actual length
that is not greater than 255 bytes. For the valid formats of string representations of
dates and timestamps, see “String representations of datetime values” on page 52.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Examples
v Using the PROJECT table, set the host variable WEEK (INTEGER) to the week

that project (‘PL2100’) ended.
SELECT WEEK(PRENDATE)

INTO :WEEK
FROM PROJECT
WHERE PROJNO = ’PL2100’

Results in WEEK being set to 38.
v Assume that table X has a DATE column called DATE_1 with various dates from

the list below.
SELECT DATE_1, WEEK(DATE_1)

FROM X

Results in the following list shows what is returned by the WEEK function for
various dates.

1997-12-28 53
1997-12-31 53
1998-01-01 1
1999-01-01 1
1999-01-04 2
1999-12-31 53
2000-01-01 1
2000-01-03 2
2000-12-31 54

�� WEEK (expression) ��

WEEK

Chapter 3. Built-in functions 241

WEEK_ISO

The WEEK_ISO function returns an integer between 1 and 53 that represents the
week of the year. The week starts with Monday. Week 1 is the first week of the
year to contain a Thursday, which is equivalent to the first week containing
January 4. Thus, it is possible to have up to 3 days at the beginning of the year
appear as the last week of the previous year or to have up to 3 days at the end of
a year appear as the first week of the next year.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a character string.

If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp with an actual length
that is not greater than 255 bytes. For the valid formats of string representations of
dates and timestamps, see “String representations of datetime values” on page 52.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Examples
v Using the PROJECT table, set the host variable WEEK (INTEGER) to the week

that project (‘AD2100’) ended.
SELECT WEEK_ISO(PRENDATE)
INTO :WEEK
FROM PROJECT
WHERE PROJNO = ’AD3100’

Results in WEEK being set to 5.
v Assume that table X has a DATE column called DATE_1 with various dates from

the list below.
SELECT DATE_1, WEEK_ISO(DATE_1)

FROM X

Results in the following:
1997-12-28 52
1997-12-31 1
1998-01-01 1
1999-01-01 53
1999-01-04 1
1999-12-31 52
2000-01-01 52
2000-01-03 1
2000-12-31 52

�� WEEK_ISO (expression) ��

WEEK_ISO

242 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

YEAR

�� YEAR (expression) ��

The YEAR function returns the year part of a value.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, a character string, or a numeric data type.
v If expression is a character string, it must not be a CLOB and its value must be a

valid character-string representation of a date or timestamp with an actual
length that is not greater than 255 bytes. For the valid formats of string
representations of dates and timestamps, see “String representations of datetime
values” on page 52.

v If expression is a number, it must be a date duration or timestamp duration. For
the valid formats of datetime durations, see “Datetime operands and durations”
on page 103.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a date or a timestamp or a valid character-string

representation of a date or timestamp:
The result is the year part of the value, which is an integer between 1 and 9999.

v If the argument is a date duration or timestamp duration:
The result is the year part of the value, which is an integer between −9999 and
9999. A nonzero result has the same sign as the argument.

Examples
v Select all the projects in the PROJECT table that are scheduled to start

(PRSTDATE) and end (PRENDATE) in the same calendar year.
SELECT *

FROM PROJECT
WHERE YEAR(PRSTDATE) = YEAR(PRENDATE)

v Select all the projects in the PROJECT table that are scheduled to take less than
one year to complete.

SELECT *
FROM PROJECT
WHERE YEAR(PRENDATE - PRSTDATE) < 1

YEAR

Chapter 3. Built-in functions 243

YEAR

244 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Chapter 4. Queries

A query specifies a result table or an intermediate result table. A query is a
component of certain SQL statements. The three forms of a query are the subselect,
the fullselect, and the select-statement. There is another SQL statement that can be
used to retrieve at most a single row described under “SELECT INTO” on
page 499.

Authorization
For any form of a query, the privileges held by the authorization ID of the
statement must include at least one of the following:
v For each table or view identified in the statement, one of the following:

The SELECT privilege on the table or view
Ownership of the table or view

v Administrative authority.

© Copyright IBM Corp. 1982, 2003 245

subselect

�� select-clause from-clause
where-clause group-by-clause

�

�
having-clause

��

The subselect is a component of the fullselect and the CREATE VIEW statement. It
is also a component of certain predicates which, in turn, are components of a
subselect.

A subselect specifies a result table derived from the tables or views identified in
the FROM clause. The derivation can be described as a sequence of operations in
which the result of each operation is input for the next. (This is only a way of
describing the subselect. The method used to perform the derivation may be quite
different from this description.)

The logical sequence of the operations is:
1. FROM clause
2. WHERE clause
3. GROUP BY clause
4. HAVING clause
5. SELECT clause.

subselect

246 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

select-clause

�� SELECT
ALL

DISTINCT

�

*
,

expression
AS

column-name
table-name.*
view-name.*
correlation-name.*

��

The SELECT clause specifies the columns of the final result table. The column
values are produced by the application of the select list to R. The select list is the
names or expressions specified in the SELECT clause, and R is the result of the
previous operation of the subselect. For example, if the only clauses specified are
SELECT, FROM, and WHERE, R is the result of that WHERE clause.

ALL
Retains all rows of the final result table and does not eliminate redundant
duplicates. This is the default.

DISTINCT
Eliminates all but one of each set of duplicate rows of the final result table.
Two rows are duplicates of one another only if each value in the first row is
equal to the corresponding value in the second row. (For determining duplicate
rows, two null values are considered equal.)

DISTINCT must not be used more than once in a subselect. This restriction
includes SELECT DISTINCT and the use of DISTINCT in a column function of
the select list or HAVING clause, but does not include subqueries of the
subselect.

When SELECT DISTINCT is specified, no column in the list of column names
can be a VARCHAR with length greater than 255, a VARGRAPHIC with length
greater than 127 or a LOB.

Select list notation
* Represents a list of columns of table R in the order the columns are produced

by the FROM clause. The list of names is established when the statement
containing the SELECT clause is prepared. Therefore, * does not identify any
columns that have been added to a table after the statement has been
prepared.

expression
Specifies the values of a result column. Each column-name in the expression must
unambiguously identify a column of R.

column-name or AS column-name
Names or renames the result column. The name must not be qualified and
does not have to be unique.

name.*
Represents a list of columns of name in the order the columns are produced by
the FROM clause. The name can be a table name, view name, or correlation
name, and must designate an exposed table, view, or correlation name in the
FROM clause immediately following the SELECT clause. The first name in the

select-clause

Chapter 4. Queries 247

list identifies the first column of the table or view, the second name in the list
identifies the second column of the table or view, and so on.

The list of names is established when the statement containing the SELECT
clause is prepared. Therefore, * does not identify any columns that have been
added to a table after the statement has been prepared.

In all the products, SQL statements can be implicitly or explicitly rebound
(prepared again). The effect of a rebind on statements that include * or name.* is as
follows:
v In DB2 UDB for z/OS and OS/390 and DB2 UDB for LUW, the list of names is

reestablished. Therefore, the number of columns returned by the statement may
change.

v In DB2 UDB for iSeries, the list of names is normally not reestablished.
Therefore, the number of columns returned by the statement will not change.
There are cases, however, where the list of names is reestablished. See the
product documentation for details.

The number of columns in the result of SELECT is the same as the number of
expressions in the operational form of the select list (that is, the list established
when the statement is prepared). The number of columns in the list must not
exceed 750. See Table 41 on page 554 for more information.

Applying the select list
The results of applying the select list to R depend on whether or not GROUP BY
or HAVING is used:

If GROUP BY or HAVING is used:

v Each column-name in the select list must identify a grouping column, be specified
within a column function, or be a correlated reference.

v The select list is applied to each group of R, and the result contains as many
rows as there are groups in R. When the select list is applied to a group of R,
that group is the source of the arguments of the column functions in the select
list.

If neither GROUP BY nor HAVING is used:

v The select must not include any column functions, or each column-name must be
specified within a column function or be a correlated reference.

v If the select list does not include column functions, it is applied to each row of
R, and the result contains as many rows as there are rows in R.

v If the select list is a list of column functions, R is the source of the arguments of
the functions and the result of applying the select list is one row.

In either case the nth column of the result contains the values specified by
applying the nth expression in the operational form of the select list.

Null attributes of result columns
Result columns allow null values if they are derived from:
v Any column function but COUNT or COUNT_BIG
v A column that allows null values
v A scalar function or expression with an operand that allows nulls
v A host variable that has an indicator variable, or in the case of Java, a host

variable or expression whose type is able to represent a Java null value

select-clause

248 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
G

G
G
G
G

v A result of a UNION if at least one of the corresponding items in the select list
is nullable

v An arithmetic expression in an outer select list
v A user-defined scalar function.

Names of result columns
v If the AS clause is specified, the name of the result column is the name specified

on the AS clause.
v If the AS clause is not specified and a column list is specified in the correlation

clause, the name of the result column is the corresponding name in the
correlation column list.

v If neither an AS clause nor a column list in the correlation clause is specified
and the result column is derived only from a single column (without any
functions or operators), then the result column name is the unqualified name of
that column.

v All other result column names are unnamed.

Data types of result columns
Each column of the result of SELECT acquires a data type from the expression
from which it is derived.

When the expression is: The data type of the result column is:

the name of any numeric
column

the same as the data type of the column, with the same
precision and scale for decimal columns.

an integer constant INTEGER.

a decimal or floating-point
constant

the same as the data type of the constant, with the same
precision and scale for decimal constants.

the name of any numeric host
variable

the same as the data type of the variable, with the same
precision and scale for decimal variables. If the data type of
the variable is not identical to an SQL data type (for
example, DISPLAY SIGN LEADING SEPARATE in COBOL),
the result column is decimal.

an expression see “Expressions” on page 99 for a description of data type
attributes.

any function The data type of the result of the function. For a built-in
function, see Chapter 3, “Built-in functions”, on page 131 to
determine the data type of the result. For a user-defined
function, the data type of the result is what was defined in
the CREATE FUNCTION statement for the function.

the name of any string
column

the same as the data type of the column, with the same
length attribute.

the name of any string host
variable

the same as the data type of the variable, with a length
attribute equal to the length of the variable. If the data type
of the variable is not identical to an SQL data type (for
example, a NUL-terminated string in C), the result column
is a varying-length string.

a character-string constant of
length n

VARCHAR(n)

a graphic-string constant of
length n

VARGRAPHIC(n)

the name of a datetime
column

the same as the data type of the column.

select-clause

Chapter 4. Queries 249

When the expression is: The data type of the result column is:

the name of a distinct type
column

the same as the distinct type of the column, with the same
length, precision, and scale attributes, if any.

select-clause

250 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

from-clause

�� FROM �

,

table-reference ��

The FROM clause specifies an intermediate result table.

If only one table-reference is specified, the intermediate result table is simply the
result of that table-reference. If more than one table-reference is specified in the FROM
clause, the intermediate result table consists of all possible combinations of the
rows of the specified table-reference (the Cartesian product). Each row of the result
is a row from the first table-reference concatenated with a row from the second
table-reference, concatenated in turn with a row from the third, and so on. The
number of rows in the result is the product of the number of rows in all the
individual table-references.

table-reference

�� single-table
nested-table-expression
table-function
joined-table

��

single-table:

table-name
view-name correlation-clause

nested-table-expression:

(subselect) correlation-clause

table-function:

TABLE (function-invocation) correlation-clause

correlation-clause:

�

AS
correlation-name

,

(column-name)

A table-reference specifies an intermediate result table.
v If a single table or view is identified, the intermediate result table is simply that

table or view.

from-clause

Chapter 4. Queries 251

v A subselect in parenthesis is called a nested table expression.48 If a nested table
expression is specified, the result table is the result of that nested table
expression. The columns of the result do not need unique names, but a column
with a non-unique name cannot be explicitly referenced.

v If a function-name is specified, the intermediate result table is the set of rows
returned by the table function.

v If a joined-table is specified, the intermediate result table is the result of one or
more join operations. For more information, see “joined-table” on page 253.

The list of names in the FROM clause must conform to these rules:
v Each table-name and view-name must identify an existing table or view at the

current server.
v The exposed names must be unique. An exposed name is a correlation-name, a

table-name that is not followed by a correlation-name, or a view-name that is not
followed by a correlation-name.

v Each function-name, together with the types of its arguments, must resolve to a
table function that exists at the current server. An algorithm called function
resolution, which is described in “Function resolution” on page 94, uses the
function name and the arguments to determine the exact function to use. Unless
given column names in the correlation-clause, the column names for a table
function are those specified on the RETURNS clause of the CREATE FUNCTION
statement. This is analogous to the column names of a table, which are defined
in the CREATE TABLE statement.

Each correlation-name is defined as a designator of the intermediate result table
specified by the immediately preceding table-reference. A correlation-name must be
specified for nested table expressions and table functions.

The exposed names of all table references must be unique. An exposed name is:
v A correlation-name

v A table-name or view-name that is not followed by a correlation-name

Any qualified reference to a column for a table, view, nested table expression, or
table function must use the exposed name. If the same table name or view name is
specified twice, at least one specification must be followed by a correlation-name.
The correlation-name is used to qualify references to the columns of the table or
view. When a correlation-name is specified, column-names can also be specified to
give names to the columns of the table-name, view-name, nested-table-expression, or
table-function. If a column list is specified, there must be a name in the column list
for each column in the table or view and for each result column in the
nested-table-expression or table-function. For more information, see “Correlation
names” on page 81.

In general, nested-table-expressions and table-functions can be specified in any FROM
clause. Columns from the nested table expressions and table functions can be
referenced in the select list and in the rest of the subselect using the correlation
name which must be specified. The scope of this correlation name is the same as
correlation names for other table or view names in the FROM clause. A nested
table expression can be used:
v in place of a view to avoid creating the view (when general use of the view is

not required)

48. A nested table expression is also called a derived table.

from-clause

252 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

v when the desired result table is based on host variables.

Correlated references in table-references: Correlated references can be used in
nested-table-expressions. The basic rule that applies is that the correlated reference
must be from a table-reference at a higher level in the hierarchy of subqueries. This
hierarchy includes the table-references that have already been resolved in the
left-to-right processing of the FROM clause. For more information see “Column
name qualifiers to avoid ambiguity” on page 83

A table function can contain one or more correlated references to other tables in the
same FROM clause if the referenced tables precede the reference in the left-to-right
order of the tables in the FROM clause. Otherwise, only references to higher levels
in the hierarchy of subqueries are allowed.

Example 1: The following example is valid:
SELECT D.DEPTNO, D.DEPTNAME, EMPINFO.AVGSAL, EMPINFO.EMPCOUNT

FROM DEPARTMENT D,
(SELECT AVG(E.SALARY) AS AVGSAL, COUNT (*) AS EMPCOUNT

FROM EMPLOYEE E
WHERE E.WORKDEPT =

(SELECT X.DEPTNO
FROM DEPARTMENT X
WHERE X.DEPTNO = E.WORKDEPT) GROUP BY E.WORKDEPT)

AS EMPINFO
WHERE D.DEPTNO = EMPINFO.DEPT

The following example is not valid because the reference to D.DEPTNO in the
WHERE clause of the nested-table-expression attempts to reference a table that is
outside the hierarchy of subqueries:
SELECT D.DEPTNO, D.DEPTNAME, ┌───────────┐

EMPINFO.AVGSAL, EMPINFO.EMPCOUNT │ INCORRECT │
FROM DEPARTMENT D, └───────────┘
(SELECT AVG(E.SALARY) AS AVGSAL, COUNT (*) AS EMPCOUNT

FROM EMPLOYEE E
WHERE E.WORKDEPT = D.DEPTNO)) AS EMPINFO

Example 2: The following example of a table function is valid:
SELECT t.c1, z.c5

FROM t, TABLE(tf3 (t.c2)) AS z
WHERE t.c3 = z.c4

The following example is not valid because the reference to t.c2 is for a table that
is to the right of the table function in the FROM clause:
SELECT t.c1, z.c5 ┌───────────┐

FROM TABLE(tf6 (t.c2)) AS z, t │ INCORRECT │
WHERE t.c3 = z.c4 └───────────┘

joined-table

INNER
table-reference JOIN table-reference ON join-condition

OUTER
LEFT
RIGHT

(joined-table)

A joined-table specifies an intermediate result table that is the result of either an
inner join or outer join. The table is derived by applying one of the join operators:
INNER, LEFT OUTER or RIGHT OUTER to its operands.

from-clause

Chapter 4. Queries 253

If a join-operator is not specified, INNER is implicit. The order in which multiple
joins are specified can affect the result. Joins can be nested within other joins. The
order of processing for joins is generally from left to right, but based on the
position of the required join-condition. Parentheses are recommended to make the
order of nested joins more readable. For example:

TB1 LEFT JOIN TB2 ON TB1.C1=TB2.C1
LEFT JOIN TB3 LEFT JOIN TB4 ON TB3.C1=TB4.C1

ON TB1.C1=TB3.C1

is the same as
(TB1 LEFT JOIN TB2 ON TB1.C1=TB2.C1)

LEFT JOIN (TB3 LEFT JOIN TB4 ON TB3.C1=TB4.C1)
ON TB1.C1=TB3.C1

An inner join combines each row of the left table with each row of the right table
keeping only the rows where the join-condition is true. Thus, the result table may
be missing rows from either or both of the joined tables. Outer joins include the
rows produced by the inner join as well as the missing rows, depending on the
type of outer join as follows:
v A left outer join includes the rows from the left table that were missing from the

inner join.
v A right outer join includes the rows from the right table that were missing from

the inner join.

A joined table can be used in any context in which any form of the SELECT
statement is used. A view or a cursor is read-only if its SELECT statement includes
a joined table.

Join condition: The join-condition is a search-condition that must conform to these
rules:
v It cannot contain any subqueries.
v any column referenced in an expression of the join-condition must be a column of

one of the operand tables of the associated join (in the scope of the same
joined-table clause).

v Each column name must unambiguously identify a column in one of the tables
in the from-clause.

v Column functions cannot be used in the expression.
v It cannot include an SQL function.

For any type of join, column references in an expression of the join-condition are
resolved using the rules for resolution of column name qualifiers specified in
“Column names” on page 81 before any rules about which tables the columns must
belong to are applied.

Join operations: A join-condition specifies pairings of T1 and T2, where T1 and T2
are the left and right operand tables of the JOIN operator of the join-condition. For
all possible combinations of rows of T1 and T2, a row of T1 is paired with a row of
T2 if the join-condition is true. When a row of T1 is joined with a row of T2, a row
in the result consists of the values of that row of T1 concatenated with the values
of that row of T2. In the case of OUTER joins, the execution might involve the
generation of a null row of an operand table. The null row of a table consists of a
null value for each column of the table, regardless of whether the columns allow
null values.

from-clause

254 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

INNER JOIN or JOIN
The result of T1 INNER JOIN T2 consists of their paired rows.

Using the INNER JOIN syntax with a join-condition will produce the same
result as specifying the join by listing two tables in the FROM clause separated
by commas and using the where-clause to provide the join condition.

LEFT JOIN or LEFT OUTER JOIN
The result of T1 LEFT OUTER JOIN T2 consists of their paired rows and, for
each unpaired row of T1, the concatenation of that row with the null row of
T2. All columns derived from T2 allow null values.

RIGHT JOIN or RIGHT OUTER JOIN
The result of T1 RIGHT OUTER JOIN T2 consists of their paired rows and, for
each unpaired row of T2, the concatenation of that row with the null row of
T1. All columns derived from T1 allow null values.

from-clause

Chapter 4. Queries 255

where-clause

�� WHERE search-condition ��

The WHERE clause specifies an intermediate result table that consists of those
rows of R for which the search-condition is true. R is the result of the FROM clause
of the subselect.

The search-condition must conform to the following rules:
v Each column-name must unambiguously identify a column of R or be a correlated

reference. A column-name is a correlated reference if it identifies a column of a
table, view, or nested-table-expression identified in an outer subselect.

v A column function must not be specified unless the WHERE clause is specified
in a subquery of a HAVING clause and the argument of the function is a
correlated reference to a group.

Any subquery in the search-condition is effectively executed for each row of R, and
the results are used in the application of the search-condition to the given row of R.
A subquery is executed for each row of R if it includes a correlated reference to a
column of R. A subquery with no correlated references is typically executed just
once.

where-clause

256 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

group-by-clause

�� GROUP BY �

,

column-name ��

The GROUP BY clause specifies an intermediate result table that consists of a
grouping of the rows of R. R is the result of the previous clause of the subselect.

Each column-name must unambiguously identify a column of R other than a
column that is a VARCHAR with length greater than 255, a VARGRAPHIC with
length greater than 127 or a LOB. Each identified column is called a grouping
column.

The result of GROUP BY is a set of groups of rows. In each group of more than
one row, all values of each grouping column are equal; and all rows with the same
set of values of the grouping columns are in the same group. For grouping, all null
values within a grouping column are considered equal.

Because every row of a group contains the same value of any grouping column,
the name of a grouping column can be used in a search condition in a HAVING
clause or an expression in a SELECT clause. In each case, the reference specifies
only one value for each group.

If the grouping column contains varying-length strings with trailing blanks, the
values in the group can differ in the number of trailing blanks and may not all
have the same length. In that case, a reference to the grouping column still
specifies only one value for each group, but the value for a group is chosen
arbitrarily from the available set of values. Thus, the actual length of the result
value is unpredictable.

GROUP BY cannot be used in a subquery of a basic predicate or if R is derived
from a view whose outer subselect includes GROUP BY or HAVING clauses.

The number of columns must not exceed 120 and the sum of their length attributes
must not exceed 4000. See Table 41 on page 554 for more information.

group-by-clause

Chapter 4. Queries 257

having-clause

�� HAVING search-condition ��

The HAVING clause specifies an intermediate result table that consists of those
groups of R for which the search-condition is true. R is the result of the previous
clause of the subselect. If this clause is not GROUP BY, R is considered a single
group with no grouping columns.

Each column-name in the search condition must do one of the following:
v Unambiguously identify a grouping column of R.
v Be specified within a column function.
v Be a correlated reference. A column-name is a correlated reference if it identifies a

column of a table, view, or nested-table-expression identified in an outer subselect.

A group of R to which the search condition is applied supplies the argument for
each column function in the search condition, except for any function whose
argument is a correlated reference.

If the search condition contains a subquery, the subquery can be thought of as
being executed each time the search condition is applied to a group of R, and the
results used in applying the search condition. In actuality, the subquery is executed
for each group only if it contains a correlated reference. For an illustration of the
difference, see “Example 6” on page 259 and “Example 7” on page 259.

A correlated reference to a group of R must either identify a grouping column or
be contained within a column function.

The HAVING clause must not be used in a subquery of a basic predicate or if R is
derived from a view whose outer subselect includes GROUP BY or HAVING
clauses. When HAVING is used without GROUP BY, any column name in the
select list must appear within a column function.

having-clause

258 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Examples of a subselect

Example 1
Select all columns and rows from the EMPLOYEE table.

SELECT * FROM EMPLOYEE

Example 2
Join the EMPPROJACT. and EMPLOYEE tables, select all the columns from the
EMPPROJACT table and add the employee’s surname (LASTNAME) from the
EMPLOYEE table to each row of the result.

SELECT EMPPROJACT.*, LASTNAME
FROM EMPPROJACT, EMPLOYEE
WHERE EMPPROJACT.EMPNO = EMPLOYEE.EMPNO

Example 3
Join the EMPLOYEE and DEPARTMENT tables, select the employee number
(EMPNO), employee surname (LASTNAME), department number (WORKDEPT in
the EMPLOYEE table and DEPTNO in the DEPARTMENT table) and department
name (DEPTNAME) of all employees who were born (BIRTHDATE) earlier than
1930.

SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAME
FROM EMPLOYEE, DEPARTMENT
WHERE WORKDEPT = DEPTNO
AND YEAR(BIRTHDATE) < 1930

Example 4
Select the job (JOB) and the minimum and maximum salaries (SALARY) for each
group of rows with the same job code in the EMPLOYEE table, but only for groups
with more than one row and with a maximum salary greater than or equal to
27000.

SELECT JOB, MIN(SALARY), MAX(SALARY)
FROM EMPLOYEE
GROUP BY JOB
HAVING COUNT(*) > 1 AND MAX(SALARY) >= 27000

Example 5
Select all the rows of EMPPROJACT table for employees (EMPNO) in department
(WORKDEPT) ‘E11’. (Employee department numbers are shown in the EMPLOYEE
table.)

SELECT * FROM EMPPROJACT
WHERE EMPNO IN (SELECT EMPNO FROM EMPLOYEE

WHERE WORKDEPT = ’E11’)

Example 6
From the EMPLOYEE table, select the department number (WORKDEPT) and
maximum departmental salary (SALARY) for all departments whose maximum
salary is less than the average salary for all employees.

SELECT WORKDEPT, MAX(SALARY)
FROM EMPLOYEE
GROUP BY WORKDEPT
HAVING MAX(SALARY) < (SELECT AVG(SALARY)

FROM EMPLOYEE)

The subquery in the HAVING clause would only be executed once in this example.

Example 7
Using the EMPLOYEE table, select the department number (WORKDEPT) and
maximum departmental salary (SALARY) for all departments whose maximum
salary is less than the average salary in all other departments.

having-clause

Chapter 4. Queries 259

SELECT WORKDEPT, MAX(SALARY)
FROM EMPLOYEE EMP_COR
GROUP BY WORKDEPT
HAVING MAX(SALARY) < (SELECT AVG(SALARY)

FROM EMPLOYEE
WHERE NOT WORKDEPT = EMP_COR.WORKDEPT)

In contrast to example 6, the subquery in the HAVING clause would need to be
executed for each group.

Example 8
Join the EMPLOYEE and EMPPROJACT tables, select all of the employees and
their project numbers. Return even those employees that do not have a project
number currently assigned.

SELECT EMPLOYEE.EMPNO, PROJNO
FROM EMPLOYEE LEFT OUTER JOIN EMPPROJACT
ON EMPLOYEE.EMPNO = EMPPROJACT.EMPNO

Any employee in the EMPLOYEE table that does not have a project number in the
EMPPROJACT table will return one row in the result table containing the EMPNO
value and the null value in the PROJNO column.

having-clause

260 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

fullselect

�� subselect
(fullselect)

�

UNION subselect
UNION ALL (fullselect)

��

The fullselect is a component of the select-statement and the INSERT statement.

A fullselect used that is enclosed in parenthesis is called a subquery. For example, a
subquery can be used in a search condition.

A fullselect specifies a result table. If UNION is not used, the result of the fullselect
is the result of the specified subselect.

UNION or UNION ALL
Derives a result table by combining two other result tables (R1 and R2). If
UNION ALL is specified, the result consists of all rows in R1 and R2. If
UNION is specified without the ALL option, the result is the set of all rows in
either R1 or R2, with the redundant duplicate rows eliminated. In either case,
however, each row of the UNION table is either a row from R1 or a row from
R2.

If the nth column of R1 and the nth column of R2 have the same result column
name, then the nth column of R has the result column name. If the nth column of
R1 and the nth column of R2 do not have the same names, then the result column
is unnamed.

Two rows are duplicates if each value in the first is equal to the corresponding
value of the second. (For determining duplicates, two null values are considered
equal.)

Both UNION and UNION ALL are associative operations. However, when UNION
and UNION ALL are used in the same statement, the result depends on the order
in which the operations are performed. Operations within parenthesis are
performed first. When the order is not specified by parentheses, operations are
performed in left-to-right order.

Rules for columns
R1 and R2 must have the same number of columns, and the data type of the nth
column of R1 must be compatible with the data type of the nth column of R2. If
UNION is specified without the ALL option, R1 and R2 must not include a column
that is a VARCHAR with length greater than 255, a VARGRAPHIC with length
greater than 127 or a LOB.

The nth column of the result of UNION and UNION ALL is derived from the nth
columns of R1 and R2. The attributes of the result columns are determined using
the rules for result columns. For more information see “Rules for result data types”
on page 70.

fullselect

Chapter 4. Queries 261

Examples of a fullselect

Example 1
Select all columns and rows from the EMPLOYEE table.

SELECT * FROM EMPLOYEE

Example 2
List the employee numbers (EMPNO) of all employees in the EMPLOYEE table
whose department number (WORKDEPT) either begins with 'E' or who are
assigned to projects in the EMPPROJACT table whose project number (PROJNO)
equals 'MA2100', 'MA2110', or 'MA2112'.

SELECT EMPNO FROM EMPLOYEE
WHERE WORKDEPT LIKE ’E%’

UNION
SELECT EMPNO FROM EMPPROJACT

WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

Example 3
Make the same query as in example 2, only use UNION ALL so that no duplicate
rows are eliminated.

SELECT EMPNO FROM EMPLOYEE
WHERE WORKDEPT LIKE ’E%’

UNION ALL
SELECT EMPNO FROM EMPPROJACT

WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

fullselect

262 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

select-statement

�� fullselect
order-by-clause fetch-first-clause

�

� �

update-clause
read-only-clause
optimize-clause

isolation-clause
��

Notes:

1. The update-clause and read-only-clause cannot both be specified in the same
select-statement.

2. The update-clause and order-by-clause cannot both be specified in the same
select-statement.

3. Each clause may be specified only once.

The select-statement is the form of a query that can be directly specified in a
DECLARE CURSOR statement, prepared and then referenced in a DECLARE
CURSOR statement, or directly specified in an SQLJ assignment clause. It can also
be issued interactively, using the interactive facility of any of the database
managers. In any case, the result table specified by a select-statement is the result of
the fullselect.

select-statement

Chapter 4. Queries 263

order-by-clause

�� ORDER BY �

,
ASC

sort-key
DESC

��

sort-key:

column-name
integer
sort-key-expression

The ORDER BY clause specifies an ordering of the rows of the result table. If a
single sort specification (one sort-key with associated ascending or descending
ordering specification) is identified, the rows are ordered by the values of that sort
specification. If more than one sort specification is identified, the rows are ordered
by the values of the first identified sort specification, then by the values of the
second identified sort specification, and so on. A column that is a VARCHAR with
length greater than 255, a VARGRAPHIC with length greater than 127 or a LOB
must not be identified.

A named column in the select list may be identified by a sort-key that is an integer
or a column-name. An unnamed column in the select list must be identified by an
integer or, in some cases, by a sort-key-expression that matches the expression in the
select list (see details of sort-key-expression). “Names of result columns” on page 249
defines when result columns are unnamed. If the fullselect includes a UNION
operator, see “fullselect” on page 261 for the rules on named columns in a
fullselect.

Ordering is performed in accordance with the comparison rules described in
Chapter 2. The null value is higher than all other values. If the ordering
specification does not determine a complete ordering, rows with duplicate key
values have an arbitrary order. If the ORDER BY clause is not specified, the rows
of the result table have an arbitrary order.

The number of sort-keys must not exceed 1012 and the sum of their length
attributes must not exceed 4000. See Table 41 on page 554 for more information.

column-name
Must unambiguously identify a column of the result table. The column must
not be a LOB column. Although columns not included in the result table must
not be referenced in the ORDER BY clause, the rules for unambiguous column
references are the same as in the other clauses of the fullselect. See “Column
name qualifiers to avoid ambiguity” on page 83 for more information.

If the fullselect includes a UNION or UNION ALL, the column-name must not
be qualified.

The column-name may also identify a column name of a table, view or
nested-table-expression identified in the FROM clause if the query is a subselect.
An error is returned if the subselect:
v specifies DISTINCT in the select-clause
v includes column functions in the select list
v includes a GROUP BY clause

order-by-clause

264 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

integer
Must be greater than 0 and not greater than the number of columns in the
result table. The integer n identifies the nth column of the result table. This
column must not be a LOB column.

sort-key-expression
An expression that is not simply a column name or an unsigned integer
constant. The query to which ordering is applied must be a subselect to use
this form of sort-key.

The sort-key-expression specified in these clauses must exactly match an
expression in the select list, except that blanks are not significant.

A sort-key-expression may not reference column names specified in an AS clause
in the select list.

The sort-key-expression cannot include a non-deterministic function or a function
with an external action. The sort-key-expression must not be a LOB.

A sort-key-expression cannot be specified if DISTINCT is used in the select list of
the subselect.

If the subselect is grouped, the sort-key-expression can be an expression in the
select list of the subselect or can include a column function, constant or host
variable.

ASC
Uses the values of the column in ascending order. This is the default.

DESC
Uses the values of the column in descending order.

order-by-clause

Chapter 4. Queries 265

fetch-first-clause

��
1

FETCH FIRST
integer

ROW
ROWS

ONLY ��

The fetch-first-clause sets a maximum number of rows that can be retrieved. It lets
the database manager know that only integer rows should be made available to be
retrieved, regardless of how many rows there might be in the result table when
this clause is not specified. An attempt to fetch beyond integer rows is handled the
same way as normal end of data (SQLSTATE 02000). The value of integer must be a
positive integer (not zero).

Limiting the result table to the first integer rows can improve performance. The
database manager will cease processing the query once it has determined the first
integer rows.

If the order-by-clause and the fetch-first-clause are both specified, the FETCH
FIRST operation is always performed on the ordered data. Specification of the
fetch-first-clause in a select-statement makes the result table read-only. A read-only
result table must not be referred to in an UPDATE or DELETE statement. The
fetch-first-clause cannot appear in a statement containing an UPDATE clause.

fetch-first-clause

266 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

update-clause

�� FOR UPDATE

�

,

OF column-name

��

The UPDATE clause identifies the columns that can be updated in a subsequent
Positioned UPDATE statement. Each column-name must be unqualified and must
identify a column of the table or view identified in the first FROM clause of the
fullselect. The clause must not be specified if the result table of the fullselect is
read-only.

If a dynamically prepared select-statement does not contain an UPDATE clause, the
cursor associated with that select-statement cannot be referenced in a Positioned
UPDATE statement.

If a statically prepared select-statement does not contain an UPDATE clause and its
result table is not read-only, Positioned UPDATE statements identifying the cursor
associated with that select-statement can update all updatable columns. 49

If an UPDATE clause is not specified in a statically prepared select-statement used
by an DB2 UDB for iSeries or DB2 UDB for LUW application requester connected
to a DB2 UDB for z/OS and OS/390 application server, its associated cursor
cannot be referenced in a Positioned UPDATE statement.

49. In DB2 UDB for z/OS and OS/390, and DB2 UDB for LUW, a program preparation option must be used if the UPDATE clause
is not specified and the cursor is referenced in subsequent Positioned UPDATE statements. If this program preparation option is
not used and the UPDATE clause is not specified, the cursor cannot be referenced in a Positioned UPDATE statement. For DB2
UDB for z/OS and OS/390 the program preparation option is STDSQL(YES) or NOFOR, for DB2 UDB for LUW it is
LANGLEVEL SQL92E.

update-clause

Chapter 4. Queries 267

G
G
G
G

read-only-clause

�� FOR READ ONLY ��

The READ ONLY clause indicates that the result table is read-only and therefore
the cursor cannot be referred to in Positioned UPDATE and DELETE statements.

Some result tables are read-only by nature. (For example, a table based on a
read-only view.) FOR READ ONLY can still be specified for such tables, but the
specification has no effect.

For result tables in which updates and deletes are allowed, specifying FOR READ
ONLY can possibly improve the performance of FETCH operations by allowing the
database manager to do blocking and avoid exclusive locks. For example, in
programs that contain dynamic SQL statements without the READ ONLY or
ORDER BY clause, the database manager might open cursors as if the UPDATE
clause was specified.

A read-only result table must not be referred to in an UPDATE or DELETE
statement, whether it is read-only by nature or specified as FOR READ ONLY.

Syntax alternatives: FOR FETCH ONLY can be specified in place of FOR READ
ONLY.

read-only-clause

268 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

optimize-clause

�� OPTIMIZE FOR integer ROW
ROWS

��

The optimize-clause tells the database manager to assume that the program does not
intend to retrieve more than integer rows from the result table. Without this clause,
the database manager assumes that all rows of the result table will be retrieved.
Optimizing for integer rows can improve performance. The database manager will
optimize the query based on the specified number of rows.

The clause does not change the result table or the order in which the rows are
fetched. Any number of rows can be fetched, but performance can possibly
degrade after integer fetches.

The value of integer must be a positive integer (not zero).

optimize-clause

Chapter 4. Queries 269

isolation-clause

�� WITH RR
RS
CS
UR

��

The optional isolation-clause specifies the isolation level at which the select
statement is executed.
v RR - Repeatable Read
v RS - Read Stability
v CS - Cursor Stability
v UR - Uncommitted Read

WITH UR can be specified only if the result table is read-only. If isolation-clause is
not specified, the default isolation is used with the exception of a default isolation
level of uncommitted read. With uncommitted read, the default isolation level of
the statement depends on whether the result table is read-only; if the result table is
read-only then the default will be UR; if the result table is not read-only then the
default will be CS. See “Isolation level” on page 16 for a description of how the
default is determined.

isolation-clause

270 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Examples of a select-statement

Example 1
Select all columns and rows from the EMPLOYEE table.

SELECT * FROM EMPLOYEE

Example 2
Select the project name (PROJNAME), start date (PRSTDATE), and end date
(PRENDATE) from the PROJECT table. Order the result table by the end date with
the most recent dates appearing first.

SELECT PROJNAME, PRSTDATE, PRENDATE
FROM PROJECT
ORDER BY PRENDATE DESC

Example 3
Select the department number (WORKDEPT) and average departmental salary
(SALARY) for all departments in the EMPLOYEE table. Arrange the result table in
ascending order by average departmental salary.

SELECT WORKDEPT, AVG(SALARY) AS AVGSAL
FROM EMPLOYEE
GROUP BY WORKDEPT
ORDER BY AVGSAL

Example 4
Declare a cursor named UP_CUR to be used in a C program to update the start
date (PRSTDATE) and the end date (PRENDATE) columns in the PROJECT table.
The program must receive both of these values together with the project number
(PROJNO) value for each row.

EXEC SQL DECLARE UP_CUR CURSOR FOR
SELECT PROJNO, PRSTDATE, PRENDATE

FROM PROJECT
FOR UPDATE OF PRSTDATE, PRENDATE;

Example 5
Select items from a table with an isolation level of Repeatable Read (RS).

SELECT NAME, SALARY
FROM PAYROLL
WHERE DEPT = 704
WITH RS

isolation-clause

Chapter 4. Queries 271

isolation-clause

272 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Chapter 5. Statements

This chapter contains syntax diagrams, semantic descriptions, rules, and examples
of the use of the SQL statements listed in the following tables.

Table 25. SQL Schema Statements

SQL Statement Description Reference

ALTER TABLE Alters the description of a table 281

COMMENT Adds or replaces a comment to the description
of an object

304

CREATE ALIAS Creates an alias 318

CREATE DISTINCT
TYPE

Creates a distinct type 319

CREATE FUNCTION Creates a user-defined function (introduction) 325

CREATE FUNCTION
(External Scalar)

Creates an external scalar function 329

CREATE FUNCTION
(External Table)

Creates an external table function 340

CREATE FUNCTION
(Sourced)

Creates a user-defined function based on
another existing scalar or column function

350

CREATE FUNCTION
(SQL Scalar)

Creates an SQL scalar function 357

CREATE INDEX Creates an index on a table 364

CREATE PROCEDURE Creates a procedure (introduction) 366

CREATE PROCEDURE
(External)

Creates an external procedure 367

CREATE PROCEDURE
(SQL)

Creates an SQL procedure 374

CREATE TABLE Creates a table 379

CREATE TRIGGER Creates a trigger 398

CREATE VIEW Creates a view of one or more tables or views 406

DROP Drops an object 433

GRANT (Distinct Type
Privileges)

Grants privileges on a distinct type 448

GRANT (Function or
Procedure Privileges)

Grants privileges on a function or procedure 450

GRANT (Package
Privileges)

Grants privileges on a package 454

GRANT (Table or View
Privileges)

Grants privileges on a table or view 456

RENAME Renames a table 481

REVOKE (Distinct Type
Privileges)

Revokes the privilege to use a distinct type 483

REVOKE (Function or
Procedure Privileges)

Revokes privileges on a function or procedure 485

© Copyright IBM Corp. 1982, 2003 273

Table 25. SQL Schema Statements (continued)

SQL Statement Description Reference

REVOKE (Package
Privileges)

Revokes the privilege to execute statements in
a package

489

REVOKE (Table or
View Privileges)

Revokes privileges on a table or view 491

Table 26. SQL Data Change Statements

SQL Statement Description Reference

DELETE Deletes one or more rows from a table 424

INSERT Inserts one or more rows into a table 461

UPDATE Updates the values of one or more columns in
one or more rows of a table

508

Table 27. SQL Data Statements

SQL Statement Description Reference

All SQL Data Change statements Table 26

CLOSE Closes a cursor 302

DECLARE CURSOR Defines an SQL cursor 411

FETCH Positions a cursor on a row of the result table
and assigns values from the row to host
variables

444

FREE LOCATOR Removes the association between a LOB locator
variable and its value

447

LOCK TABLE Either prevents concurrent processes from
changing a table or prevents concurrent
processes from using a table

466

OPEN Opens a cursor 467

SELECT Executes a query 498

SELECT INTO Assigns values to host variables 499

SET transition-variable Assigns values to transition variables in a
trigger

506

VALUES Provides a way to invoke a user-defined
function from a trigger

514

VALUES INTO Specifies a result table of no more than one
row and assigns the values to host variables

515

Table 28. SQL Transaction Statements

SQL Statement Description Reference

COMMIT Ends a unit of work and commits the database
changes made by that unit of work

309

RELEASE SAVEPOINT Releases a savepoint within a unit of work 480

ROLLBACK Ends a unit of work and backs out the
database changes made by that unit of work

494

SAVEPOINT Sets a savepoint within a unit of work 496

Statements

274 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 29. SQL Connection Statements

SQL Statement Description Reference

CONNECT (Type 1) Connects to a server and establishes the rules
for remote unit of work

311

CONNECT (Type 2) Connects to a server and establishes the rules
for application-directed distributed unit of
work

315

RELEASE (Connection) Places one or more connections in the
release-pending state

478

SET CONNECTION Establishes the server of the process by
identifying one of its existing connections

501

Table 30. SQL Dynamic Statements

SQL Statement Description Reference

DESCRIBE Describes the result columns of a prepared
statement

429

EXECUTE Executes a prepared SQL statement 439

EXECUTE IMMEDIATE Prepares and executes an SQL statement 442

PREPARE Prepares an SQL statement for execution 471

Table 31. SQL Session Statements

SQL Statement Description Reference

DECLARE GLOBAL
TEMPORARY TABLE

Defines a declared temporary table 416

SET PATH Assigns a value to the CURRENT PATH special
register

503

Table 32. SQL Embedded Host Language Statements

SQL Statement Description Reference

BEGIN DECLARE
SECTION

Marks the beginning of an SQL declare section 295

CALL Calls a procedure 297

END DECLARE
SECTION

Marks the end of an SQL declare section 438

INCLUDE Inserts declarations into a source program 459

WHENEVER Defines actions to be taken on the basis of SQL
return codes

517

Table 33. SQL Control Statements

SQL Statement Description Reference

assignment-statement Assigns a value to an output parameter or to a
local variable

522

CALL Calls a procedure 523

CASE Selects an execution path based on multiple
conditions

525

compound-statement Groups other statements together in an SQL
routine

527

Statements

Chapter 5. Statements 275

Table 33. SQL Control Statements (continued)

SQL Statement Description Reference

GET DIAGNOSTICS Obtains information about the previous SQL
statement that was executed

534

GOTO Branches to a user-defined label within an SQL
routine or trigger

536

IF Provides conditional execution based on the
truth value of a condition

537

LEAVE Continues execution by leaving a block or loop 539

LOOP Repeats the execution of a statement or group
of statements

540

REPEAT Executes a statement or group of statements
until a search condition is true

541

RESIGNAL Resignals an error or warning condition 543

RETURN Returns from a routine 545

SIGNAL Signals an error or warning condition 547

WHILE Repeats the execution of a statement while a
specified condition is true

549

How SQL statements are invoked
The SQL statements described in this chapter are classified as executable or
nonexecutable. The Invocation section in the description of each statement indicates
whether or not the statement is executable.

An executable statement can be invoked in three ways:
v Embedded in an application program
v Dynamically prepared and executed
v Issued interactively.

Note: Statements embedded in REXX are prepared and executed dynamically.

Depending on the statement, some or all of these methods can be used. The
Invocation section in the description of each statement tells which methods can be
used.

A nonexecutable statement can only be embedded in an application program.

Embedding a statement in an application program
SQL statements can be included in a source program that will be submitted to the
precompiler. Such statements are said to be embedded in the program. An
embedded statement can be placed anywhere in the program where a host
language statement is allowed. Each embedded statement must be preceded by a
keyword (or keywords) to indicate that the statement is an SQL statement:
v In C and COBOL, each embedded statement must be preceded by the keywords

EXEC and SQL. For more information, see Appendix H, “Coding SQL statements
in C applications”, on page 635 and Appendix I, “Coding SQL statements in
COBOL applications”, on page 651.

Statements

276 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

v In Java, each embedded statement must be preceded by the keywords #sql. For
more information, see Appendix J, “Coding SQL statements in Java applications”
, on page 669.

v In REXX, each embedded statement must be preceded by the keyword
EXECSQL. For more information, see Appendix K, “Coding SQL statements in
REXX applications”, on page 687.

Executable statements
An executable statement embedded in an application program is executed every
time a statement of the host language would be executed if specified in the same
place. Thus, a statement within a loop is executed every time the loop is executed,
and a statement within a conditional construct is executed only when the condition
is satisfied.

An embedded statement can contain references to host variables. A host variable
referenced in this way can be used in two ways:
v As input (the current value of the host variable is used in the execution of the

statement)
v As output (the variable is assigned a new value as a result of executing the

statement).

In particular, all references to host variables in expressions and predicates are
effectively replaced by current values of the variables; that is, the variables are
used as input. The treatment of other references is described individually for each
statement.

Follow all executable statements with a test of the SQL return state or the SQL
return code. Alternatively, the WHENEVER statement (which is itself
nonexecutable) can be used to change the flow of control immediately after the
execution of an embedded statement.

Objects referenced in SQL statements need not exist when the statements are
bound (statically prepared). 50

Nonexecutable statements
An embedded nonexecutable statement is processed only by the precompiler. The
precompiler reports any errors encountered in the statement. The statement is never
executed, and acts as a no-operation if placed among executable statements of the
application program. Therefore, do not follow such statements with a test of an
SQL return code.

Dynamic preparation and execution
An application program can dynamically build an SQL statement in the form of a
character string placed in a host variable. In general, the statement is built from
some data available to the program (for example, input from a workstation). In C,
COBOL, and REXX, the statement can be prepared for execution by means of the
(embedded) statement PREPARE and executed by means of the (embedded)
statement EXECUTE. Alternatively, the (embedded) statement EXECUTE
IMMEDIATE can be used to prepare and execute a statement in one step. In Java,
the statement can be prepared for execution by means of the Statement,
PreparedStatement, and CallableStatement classes, and executed by means of their
respective execute() methods.

50. In DB2 UDB for z/OS and OS/390, and DB2 UDB for LUW, a program preparation option is available to allow reference to
objects that do not exist when the SQL statements are bound.

Statements

Chapter 5. Statements 277

A statement that is dynamically prepared must not contain references to host
variables. Instead, the statement can contain parameter markers. See “PREPARE”
on page 471 for rules concerning the parameter markers. When the prepared

statement is executed, the parameter markers are effectively replaced by current
values of the host variables specified in the EXECUTE statement. See “EXECUTE”
on page 439 for rules concerning this replacement. Once prepared, a statement can

be executed several times with different values of host variables. Parameter
markers are not allowed in EXECUTE IMMEDIATE.

In C, COBOL, and REXX, the successful or unsuccessful execution of the statement
is indicated by the setting of an SQL return code after the EXECUTE (or EXECUTE
IMMEDIATE) statement. Check the SQL return code as described above. See “SQL
return codes” on page 279 for more information. In Java, the successful or
unsuccessful execution of the statement is handled by Java Exceptions. For more
information see “Handling SQL errors and warnings in Java” on page 680.

Static invocation of a select-statement
A select-statement can be included as a part of the (nonexecutable) statement
DECLARE CURSOR. Such a statement is executed every time the cursor is opened
by means of the (embedded) statement OPEN. After the cursor is open, the result
table can be retrieved one row at a time by successive executions of the FETCH
statement.

Used in this way, the select-statement can contain references to host variables. These
references are effectively replaced by the values that the variables have at the
moment of executing OPEN.

Dynamic invocation of a select-statement
An application program can dynamically build a select-statement in the form of a
character string placed in a host variable. In general, the statement is built from
some data available to the program (for example, a query obtained from a
workstation). The statement so constructed can be prepared for execution by
means of the (embedded) statement PREPARE, and referenced by a
(nonexecutable) statement DECLARE CURSOR. The statement is then executed
every time the cursor is opened by means of the (embedded) statement OPEN.
After the cursor is open, the result table can be retrieved one row at a time by
successive executions of the FETCH statement.

Used in this way, the select-statement must not contain references to host variables.
It can contain parameter markers instead. See “PREPARE” on page 471 for rules
concerning the parameter markers. The parameter markers are effectively replaced
by the values of the host variables specified in the OPEN statement. See “OPEN”
on page 467 for rules concerning this replacement.

Interactive invocation
A capability for entering SQL statements from a workstation is part of the
architecture of the database manager. A statement entered in this way is said to be
issued interactively.

A statement issued interactively must be an executable statement that does not
contain parameter markers or references to host variables, because these make
sense only in the context of an application program.

Statements

278 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SQL return codes
Each host language provides a mechanism for handling SQL return codes:
v In C or COBOL, an application program containing executable SQL statements

must provide at least one of the following:
– A structure named SQLCA.
– A stand-alone CHAR(5) (CHAR(6) in C) variable named SQLSTATE.
– A stand-alone integer variable named SQLCODE.

A stand-alone SQLSTATE or SQLCODE must not be declared in a host structure.
Both a stand-alone SQLSTATE and SQLCODE may be provided.

An SQLCA can be obtained by using the INCLUDE SQLCA statement. If an
SQLCA is provided, neither a stand-alone SQLSTATE or SQLCODE can be
provided. The SQLCA includes a character-string variable named SQLSTATE
and an integer variable named SQLCODE.

Use a stand-alone SQLSTATE to conform with the SQL 1999 Core standard.51

v In Java, for error conditions, the getSQLState method can be used to get the
SQLSTATE and the getErrorCode method can be used to get the SQLCODE. For
more information, see “Handling SQL errors and warnings in Java” on page 680.

v In REXX, an SQLCA is provided automatically.

SQLSTATE
The SQLSTATE is set by the database manager after execution of each SQL
statement. Thus, application programs can check the execution of SQL statements
by testing SQLSTATE instead of SQLCODE.

SQLSTATE provides application programs with common codes for common error
conditions. Furthermore, SQLSTATE is designed so that application programs can
test for specific errors or classes of errors. The format of the SQLSTATE values is
the same for all database managers and is consistent with the SQL 1999 Core
standard. See Appendix E, “SQLSTATE values—common return codes”, on
page 581 for more information and a complete list of the possible values of
SQLSTATE.

SQLCODE
The SQLCODE is also set by the database manager after each SQL statement is
executed as follows:
v If SQLCODE = 0 and SQLWARN0 is blank, execution was successful.
v If SQLCODE = 100, “no data” was found. For example, a FETCH statement

returned no data, because the cursor was positioned after the last row of the
result table.

v If SQLCODE > 0 and not = 100, execution was successful with a warning.
v If SQLCODE = 0 and SQLWARN0 = 'W', execution was successful with a

warning.
v If SQLCODE < 0, execution was not successful.

51. In DB2 UDB for z/OS and OS/390 and DB2 UDB for LUW, a program preparation option must be used to indicate the use of a
stand-alone SQLCODE. In DB2 UDB for z/OS and OS/390, the same option must be used to indicate the use of a stand-alone
SQLSTATE. For DB2 UDB for z/OS and OS/390 use the precompiler option STDSQL(YES). For DB2 UDB for LUW, use the
program preparation option LANGLEVEL SQL92E.

Statements

Chapter 5. Statements 279

SQLCODE values may provide additional product-specific information about an
error or warning. Portable applications should use SQLSTATE values instead of
SQLCODE values.

SQL comments
In C and COBOL, static SQL statements can include host language or SQL
comments. In Java and REXX, static SQL statements cannot include host language
or SQL comments. For more information, see Appendix J, “Coding SQL statements
in Java applications”, on page 669 and Appendix K, “Coding SQL statements in
REXX applications”, on page 687.

SQL comments are introduced by two hyphens.

These rules apply to the use of SQL comments:52

v The two hyphens must be on the same line, not separated by a space.
v Comments can be started wherever a space is valid (except within a delimiter

token or between “EXEC” and “SQL”).
v Comments cannot be continued on the next line.
v Comments are not allowed within statements that are dynamically prepared

(using PREPARE or EXECUTE IMMEDIATE).
v In COBOL, the two hyphens must be preceded by a space.

Example: This example shows how to include comments in a statement:
CREATE VIEW PRJ_MAXPER -- projects with most support personnel
AS SELECT PROJNO, PROJNAME -- number and name of project

FROM PROJECT
WHERE DEPTNO = ’E21’ -- systems support dept code
AND PRSTAFF > 1

52. In DB2 UDB for z/OS and OS/390, the precompiler option STDSQL(YES) must be used to allow SQL comments.

Statements

280 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

ALTER TABLE
The ALTER TABLE statement alters the definition of a table.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The ALTER privilege for the table
v Administrative authority.

If defining a foreign key, the privileges held by the authorization ID of the
statement must include at least one of the following on the parent table:
v The REFERENCES privilege on the table
v The REFERENCES privilege on each column of the specified parent key
v Administrative authority.

If dropping the primary key of table T, the privileges held by the authorization ID
of the statement must include at least one of the following on every table that is a
dependent of T:
v The ALTER privilege on the table
v Administrative authority

If referring to a distinct type, the privileges held by the authorization ID of the
statement must include at least one of the following:
v USAGE privilege on the distinct type
v Administrative authority

Syntax

�� ALTER TABLE table-name �

� � ADD column-definition
COLUMN

ALTER column-alteration
ADD unique-constraint

referential-constraint
check-constraint

(1)
DROP PRIMARY KEY

UNIQUE constraint-name
FOREIGN KEY
CHECK
CONSTRAINT

��

ALTER TABLE

Chapter 5. Statements 281

Notes:

1 The same clause must not be specified more than once, except for the ALTER
COLUMN clause, which can be specified more than once. Do not specify
DROP CONSTRAINT if DROP FOREIGN KEY or DROP CHECK is specified.

column-definition:

column-name data-type �
(1)

default-clause
NOT NULL
column-constraint

Notes:

1 The same clause must not be specified more than once.

data-type:

built-in-type
distinct-type-name

built-in-type:

ALTER TABLE

282 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SMALLINT
INTEGER
INT

(5,0)
DECIMAL
DEC ,0

NUMERIC (integer)
, integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(1)
CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer)
CHAR

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer)

CLOB K
M
G

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME
TIMESTAMP

default-clause:

WITH
DEFAULT constant

USER
NULL
cast-function-name (constant)

USER

column-constraint:

PRIMARY KEY
CONSTRAINT constraint-name UNIQUE

references-clause
CHECK (check-condition)

ALTER TABLE

Chapter 5. Statements 283

column-alteration:

column-name SET DATA TYPE CHARACTER VARYING
CHAR

VARCHAR

(integer)

unique-constraint:

CONSTRAINT constraint-name
UNIQUE
PRIMARY KEY

(�

,

column-name)

referential-constraint:

CONSTRAINT constraint-name
FOREIGN KEY �

,

(column-name) �

� references-clause

references-clause:

REFERENCES table-name

�

,

(column-name)

�

�
ON DELETE NO ACTION

ON DELETE RESTRICT
CASCADE
SET NULL

check-constraint:

CONSTRAINT constraint-name
CHECK (check-condition)

Description
table-name

Identifies the table to be altered. The table-name must identify a table that exists
at the current server. It must not be a view, a catalog table or a declared
temporary table.

ALTER TABLE

284 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

ADD column-definition
Adds a column to the table. If the table has rows, every value of the column is set
to its default value. If the table previously had n columns, the ordinality of the
new column is n+1. The value of n+1 must not exceed 750. 53 See Table 41 on
page 554 for more information.

Adding the new column must not make the total byte count of all columns exceed
the maximum record size. The maximum record size is 32 677. See Table 41 on
page 554 for more information.

For DB2 UDB for z/OS and OS/390, to add a LOB column the table must already
have a ROWID column. For more information, see the product documentation.

column-definition

column-name
Names the column to be added to the table. Do not use the same name for
more than one column name of the table. Do not qualify column-name.

data-type
Specifies the data type of the column. The data type can be a built-in data type
or a distinct type.

built-in-type
Specifies a built-in data type. See “CREATE TABLE” on page 379 for the
description of built-in types.

distinct-type-name
Specifies the data type of a column is a distinct type. The length, precision
and scale of the column are respectively the length, precision, and scale of
the source type of the distinct type. If a distinct type name is specified
without a schema name, the distinct type name is resolved by searching
the schemas in the SQL path.

DEFAULT
Specifies a default value for the column. This clause must not be specified
more than once in the same column-definition.

Omission of NOT NULL and DEFAULT from a column-definition is an implicit
specification of DEFAULT NULL.

constant
Specifies the constant as the default for the column. The specified constant
must represent a value that could be assigned to the column in accordance
with the rules of assignment as described in “Assignments and
comparisons” on page 60. A floating-point constant must not be used for a
SMALLINT, INTEGER, DECIMAL, or NUMERIC column. A decimal
constant must not contain more digits to the right of the decimal point
than the specified scale of the column.

USER
Specifies the value of the USER special register at the time of INSERT as
the default for the column. The data type of the column or the source type
of the distinct type of the column must be CHAR or VARCHAR with a
length attribute that is greater than or equal to the length attribute of the

53. This value is 1 less if the table is a dependent table.

ALTER TABLE

Chapter 5. Statements 285

G
G

USER special register. For existing rows, the value is that of the USER
special register at the time the ALTER TABLE statement is processed.

NULL
Specifies null as the default for the column. If NOT NULL was specified,
DEFAULT NULL must not be specified within the same column-definition.

cast-function-name
Specifies the name of the cast function that matches the name of the
distinct type name of the data type for the column.

The schema name of the cast function, whether it is explicitly specified or
implicitly resolved through function resolution, must be the same as the
explicitly or implicitly specified schema name of the distinct type. This
form of the DEFAULT value can only be used with columns that are
defined as a distinct type.

constant
Specifies a constant as the argument. The constant must conform to the
rules of a constant for the source type of the distinct type.

USER
Specifies the value of the USER special register at the time of INSERT
as the default for the column. The source type of the distinct type of
the column must be CHAR or VARCHAR with a length attribute that
is greater than or equal to the length attribute of the USER special
register. For existing rows, the value is that of the USER special register
at the time the ALTER TABLE statement is processed.

If the value specified is not valid, an error is returned.

NOT NULL
Prevents the column from containing null values. Omission of NOT NULL
implies that the column can contain null values. If NOT NULL is specified in
the column definition, then DEFAULT must also be specified.

column-constraint
The column-constraint of a column-definition provides a shorthand method of
defining a constraint composed of a single column. Thus, if a column-constraint
is specified in the definition of column C, the effect is the same as if that
constraint were specified as a unique-constraint, referential-constraint, or
check-constraint in which C is the only identified column.

CONSTRAINT constraint-name
Names the constraint. A constraint-name must not be the same as a
constraint name that was previously specified in the ALTER TABLE
statement and must not identify a constraint that already exists at the
current server.

If the clause is not specified, a unique constraint name is generated by the
database manager.

PRIMARY KEY
Provides a shorthand method of defining a primary key composed of a
single column. Thus, if PRIMARY KEY is specified in the definition of
column C, the effect is the same as if the PRIMARY KEY(C) clause is
specified as a separate clause. PRIMARY KEY is not supported by DB2
UDB for z/OS and OS/390 for column-constraint.

The NOT NULL clause must be specified with this clause. This clause must
not be specified in more than one column definition and must not be

ALTER TABLE

286 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

specified at all if the UNIQUE clause is specified in the column definition.
The data type of the column must not be a LOB data type or a distinct
type based on a LOB data type.

UNIQUE
Provides a shorthand method of defining a unique key composed of a
single column. Thus, if UNIQUE is specified in the definition of column C,
the effect is the same as if the UNIQUE(C) clause is specified as a separate
clause. UNIQUE is not supported by DB2 UDB for z/OS and OS/390 for
column-constraint.

The NOT NULL clause must be specified with this clause. This clause
cannot be specified more than once in a column definition and must not be
specified if the PRIMARY KEY clause is specified in the column definition.
The data type of the column must not be a LOB data type or a distinct
type based on a LOB data type.

references-clause
The references-clause of a column-definition provides a shorthand method of
defining a foreign key composed of a single column. Thus, if a
references-clause is specified in the definition of column C, the effect is the
same as if that references-clause were specified as part of a FOREIGN KEY
clause in which C is the only identified column. The data type of the
column must not be a LOB data type or a distinct type based on a LOB
data type. For more information, see “REFERENCES clause” on page 289.

CHECK(check-condition)
The CHECK(check-condition) of a column-definition provides a shorthand
method of defining a check constraint whose check-condition only references
a single column. Thus, if CHECK is specified in the column definition of
column C, no columns other than C can be referenced in the check-condition
of the check constraint. The effect is the same as if the check constraint
were specified as a separate clause. For more information, see “CHECK
clause” on page 291.

End of column-definition

ALTER column-alteration
Alters the definition of a column. A column cannot be altered if it is used in a view
or referential constraint, or is the parent key of a referential constraint.

column-alteration

column-name
Identifies the column to be altered. The name must not be qualified and must
identify an existing column in the table that has a VARCHAR data type. The
name must not identify a column that is being added in the same ALTER
TABLE statement.

SET DATA TYPE CHARACTER VARYING (integer) or SET DATA TYPE CHAR
VARYING (integer) or SET DATA TYPE VARCHAR (integer)

Increases the length of an existing VARCHAR column. The data type of
column-name must be VARCHAR and the current maximum length defined for
the column must not be greater than the value for integer. The value for integer
may range up to the maximum length for a VARCHAR, 32 672. See Table 41 on
page 554 for more information.

ALTER TABLE

Chapter 5. Statements 287

G
G

Altering the column must not make the total byte count of all columns exceed
the maximum record size. The maximum record size is 32 677. See Table 41 on
page 554 for more information.

If the column is used in a unique constraint or an index, the new length must
not cause the sum of the stored lengths for the unique constraint or index to
exceed 255. See Table 41 on page 554 for more information.

End of column-alteration

ADD unique-constraint

unique-constraint

CONSTRAINT constraint-name
Names the constraint. A constraint-name must not identify a constraint that
already exists at the current server.

If not specified, a unique constraint name is generated by the database
manager.

UNIQUE (column-name,...)

Defines a unique key composed of the identified columns. Each column-name
must be an unqualified name that identifies a column of the table. The same
column must not be identified more than once. The data type of the column
must not be a LOB data type or a distinct type based on a LOB data type. The
number of identified columns must not exceed 16 and the sum of their length
attributes must not exceed 255. See Table 41 on page 554 for more information.

The set of identified columns cannot be the same as the set of columns
specified in another UNIQUE constraint or PRIMARY KEY on the table. For
example, UNIQUE (A,B) is not allowed if UNIQUE (B,A) or PRIMARY KEY
(A,B) already exists on the table. The identified columns must be defined as
NOT NULL. Any existing values in the set of columns must be unique.

If a unique index already exists on the identified columns, that index is
designated as a unique constraint index. Otherwise, a unique index is created
to support the uniqueness of the unique key.

In DB2 UDB for z/OS and OS/390, the unique index must already exist.

PRIMARY KEY (column-name,...)
Defines a primary key composed of the identified columns. Each column-name
must be an unqualified name that identifies a column of the table. The same
column must not be identified more than once. The data type of the column
must not be a LOB data type or a distinct type based on a LOB data type. The
number of identified columns must not exceed 16 and the sum of their length
attributes must not exceed 255. See Table 41 on page 554 for more information.
The table must not already have a primary key.

The identified columns cannot be the same as the set of columns specified in
another UNIQUE constraint on the table. For example, PRIMARY KEY (A,B) is
not allowed if UNIQUE (B,A) already exists on the table. The identified
columns must be defined as NOT NULL. Any existing values in the set of
columns must be unique.

If a unique index already exists on the identified columns, that index is
designated as a primary index. Otherwise, a primary index is created to
support the uniqueness of the primary key.

ALTER TABLE

288 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G

In DB2 UDB for z/OS and OS/390, the unique index must already exist.

End of unique-constraint

ADD referential-constraint

referential-constraint

CONSTRAINT constraint-name
Names the constraint. A constraint-name must not identify a constraint that
already exists at the current server.

If not specified, a unique constraint name is generated by the database
manager.

FOREIGN KEY
Defines a referential constraint.

Let T1 denote the table being altered.

(column-name,...)
The foreign key of the referential constraint is composed of the identified
columns. Each column-name must be an unqualified name that identifies a
column of T1. The same column must not be identified more than once.
The data type of the column must not be a LOB data type or a distinct
type based on a LOB data type. The number of identified columns must
not exceed 16 and the sum of their length attributes must not exceed 255.
See Table 41 on page 554 for more information.

REFERENCES table-name
The table-name specified in a REFERENCES clause must identify a base
table that exists at the current server, but it must not identify a catalog
table or a declared temporary table.

A referential constraint is a duplicate if its foreign key, parent key, and
parent table are the same as the foreign key, parent key, and parent table of
an existing referential constraint on the table. Duplicate referential
constraints are allowed, but not recommended. In DB2 UDB for z/OS and
OS/390, duplicate referential constraints are ignored with a warning.

Let T2 denote the identified parent table.

In DB2 UDB for z/OS and OS/390, if T1 and T2 are the same table, ON
DELETE CASCADE or ON DELETE NO ACTION must be specified.

(column-name,...)
The parent key of the referential constraint is composed of the identified
columns. Each column-name must be an unqualified name that identifies a
column of T2. The same column must not be identified more than once.
The data type of the column must not be a LOB data type or a distinct
type based on a LOB data type. The number of identified columns must
not exceed 16 and the sum of their length attributes must not exceed 255.
See Table 41 on page 554 for more information.

The list of column names must be identical to the list of column names in
the primary key of T2 or a UNIQUE constraint that exists on T2. The table
must have a unique index with a key that is identical to the primary key.
The keys are identical only if they have the same number of columns and
the nth column name of one is the same as the nth column name of the

ALTER TABLE

Chapter 5. Statements 289

G

G
G

G
G

other. If a column name list is not specified, then T2 must have a primary
key. Omission of the column name list is an implicit specification of the
columns of that primary key.

The specified foreign key must have the same number of columns as the
parent key of T2. The description of the nth column of the foreign key and the
nth column of the parent key must have identical data types and other
attributes.

If a foreign key column is a distinct type, the data type of the corresponding
column of the parent key must have the same distinct type.

Unless the table is empty, the values of the foreign key must be validated
before the table can be used. Values of the foreign key are validated during the
execution of the ALTER TABLE statement. In DB2 UDB for z/OS and OS/390,
the table space of a non-empty table is placed in a check pending status.
Therefore, every value of the foreign key must match some value of the parent
key of T2.

The referential constraint specified by the FOREIGN KEY clause defines a
relationship in which T2 is the parent and T1 is the dependent.

ON DELETE
Specifies what action is to take place on the dependent tables when a row
of the parent table is deleted. There are four possible actions:
v NO ACTION (default) 54

v RESTRICT
v CASCADE
v SET NULL

SET NULL must not be specified unless some column of the foreign key
allows null values. SET NULL must not be specified if T1 has an update
trigger.

CASCADE must not be specified if T1 has a delete trigger.

In DB2 UDB for LUW and DB2 UDB for z/OS and OS/390, a
self-referencing table with a SET NULL or RESTRICT rule must not be a
dependent in a referential constraint with a delete rule of CASCADE.

The delete rule applies when a row of T2 is the object of a DELETE or
propagated delete operation and that row has dependents in T1. Let p
denote such a row of T2.
v If RESTRICT or NO ACTION is specified, an error is returned and no

rows are deleted.
v If CASCADE is specified, the delete operation is propagated to the

dependents of p in T1.
v If SET NULL is specified, each nullable column of the foreign key of

each dependent of p in T1 is set to null.

54. In DB2 UDB for z/OS and OS/390, the default depends on the value of the CURRENT RULES special register when the
CREATE TABLE statement is processed. If the value of the register is ’DB2’, the default is RESTRICT. If the value is ’SQL’, the
default is NO ACTION.

ALTER TABLE

290 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

G
G
G

A cycle involving two or more tables must not cause a table to be
delete-connected to itself unless all of the delete rules in the cycle are
CASCADE. Thus, if the relationship would form a cycle and T2 is already
delete-connected to T1, then the constraint can only be defined if it has a
delete rule of CASCADE and all other delete rules of the cycle are
CASCADE.

If T1 is delete-connected to T2 through multiple paths, those relationships
in which T1 is a dependent and which form all or part of those paths must
have the same delete rule and it must not be SET NULL. Let T3 denote a
table identified in another FOREIGN KEY clause (if any) of the CREATE
TABLE statement. The delete rules of the relationships involving T2 and T3
must be the same and must not be SET NULL if:
v T2 and T3 are the same table, or
v T2 is a descendant of T3 and the deletion of rows from T3 cascades to

T2, or
v T3 is a descendant of T2 and the deletion of rows from T2 cascades to

T3, or
v T2 and T3 are both descendants of the same table and the deletion of

rows from that table cascades to both T2 and T3,

If r is other than SET NULL, the referential constraint can be defined, but
the delete rule that is implicitly or explicitly specified in the FOREIGN
KEY clause must be the same as r.

End of referential-constraint

ADD check-constraint

check-constraint

CONSTRAINT constraint-name

Names the constraint. A constraint-name must not identify a constraint that
already exists at the current server. The constraint-name must be unique within
a schema.

If not specified, a unique constraint name is generated by the database
manager.

CHECK (check-condition)

Defines a check constraint. The check-condition must be true or unknown for
every row of the table. 55

The check-condition is a form of the search-condition, except:
v It can only refer to columns of the table whose data type is not a LOB data

type or a distinct type based on a LOB data type.
v It can be up to 3800 bytes long, not including redundant blanks. See Table 41

on page 554 for more information.
v It must not contain any of the following:

– subqueries
– built-in functions

55. In DB2 UDB for z/OS and OS/390, the value of the CURRENT RULES special register must be ’STD’ to get this behavior.

ALTER TABLE

Chapter 5. Statements 291

– column functions
– host variables
– parameter markers
– special registers
– user-defined functions (except cast functions generated for distinct types)
– CASE expressions

In DB2 UDB for z/OS and OS/390, the check-condition is subject to additional
restrictions. See the product reference for further information.

For more information about search-condition, see “Search conditions” on
page 129.

End of check-constraint

DROP
DROP PRIMARY KEY

Drops the definition of the primary key and all referential constraints in which
the primary key is a parent key. The table must have a primary key.

If a primary index was implicitly created to support uniqueness of the primary
key, it is dropped.

DROP FOREIGN KEY constraint-name
Drops the referential constraint constraint-name. The constraint-name must
identify a referential constraint in which the table is a dependent.

DROP UNIQUE constraint-name

Drops the unique constraint constraint-name and all referential constraints
dependent on this unique constraint. The constraint-name must identify a
unique constraint on the table. DROP UNIQUE will not drop a PRIMARY KEY
unique constraint.

If a primary index was implicitly created to support uniqueness of the primary
key, it is dropped.

DROP CHECK constraint-name

Drops the check constraint constraint-name. The constraint-name must identify a
check constraint on the table.

DROP CONSTRAINT constraint-name
Drops the constraint constraint-name. The constraint-name must identify a
primary key, unique, referential, or check constraint in the table. If the
constraint is a PRIMARY KEY or UNIQUE constraint, all referential constraints
in which the primary key or unique key is a parent are also dropped.

DROP CONSTRAINT must not be used in the same ALTER TABLE statement
as DROP PRIMARY KEY, DROP UNIQUE KEY, DROP FOREIGN KEY or
DROP CHECK.

Notes
Columns not automatically added to views: Any columns added via ALTER
TABLE will not automatically be added to any existing view of the table.

ALTER TABLE

292 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

Invalidation of access plans: Adding or dropping primary, foreign or unique keys
or check constraints or altering column lengths may invalidate access plans. The
rules are product-specific.

Names of indexes created automatically: The rules for generating the name of an
index that is created during the execution of the ALTER TABLE statement are
product-specific.

Order of operations: The order of operations within an ALTER TABLE statement is
product-specific.

Examples
Example 1: Add a new column named RATING, which is one character long, to the
DEPARTMENT table.

ALTER TABLE DEPARTMENT
ADD RATING CHAR

Example 2: Add a new column named PICTURE_THUMBNAIL to the EMPLOYEE
table. Create PICTURE_THUMBNAIL as a varying-length column with a
maximum length of 1000 characters. The values of the column do not have an
associated character set and therefore should not be converted.

ALTER TABLE EMPLOYEE
ADD PICTURE_THUMBNAIL BLOB(1K) FOR BIT DATA

Example 3: Assume a new table EQUIPMENT has been created with the following
columns:

EQUIP_NO INT

EQUIP_DESC VARCHAR(50)

LOCATION VARCHAR(50)

EQUIP_OWNER CHAR(3)

Add a referential constraint to the EQUIPMENT table so that the owner
(EQUIP_OWNER) must be a department number (DEPTNO) that is present in the
DEPARTMENT table. If a department is removed from the DEPARTMENT table,
the owner (EQUIP_OWNER) values for all equipment owned by that department
should become unassigned (or set to null). Give the constraint the name
DEPTQUIP.

ALTER TABLE EQUIPMENT
ADD CONSTRAINT DEPTQUIP

FOREIGN KEY (EQUIP_OWNER)
REFERENCES DEPARTMENT
ON DELETE SET NULL

Example 4: Alter the EMPLOYEE table. Add the check constraint named REVENUE
defined so that each employee must make a total of salary and commission greater
than $16,000.

ALTER TABLE EMPLOYEE
ADD CONSTRAINT REVENUE
CHECK (SALARY + COMM > 16000)

Example 5: Alter EMPLOYEE table. Drop the constraint REVENUE which was
previously defined.

ALTER TABLE EMPLOYEE
DROP CONSTRAINT REVENUE

ALTER TABLE

Chapter 5. Statements 293

G
G

G
G
G

Example 6: Alter the EMPLOYEE table. Alter the column PHONENO to accept up
to 20 characters for a phone number.

ALTER TABLE EMPLOYEE
ALTER COLUMN PHONENO SET DATA TYPE VARCHAR (20)

ALTER TABLE

294 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

BEGIN DECLARE SECTION
The BEGIN DECLARE SECTION statement marks the beginning of an SQL declare
section. An SQL declare section contains declarations of host variables that are
eligible to be used as host variables in SQL statements in a program.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in Java or REXX.

Authorization
None required.

Syntax

�� BEGIN DECLARE SECTION ��

Description
The BEGIN DECLARE SECTION statement is used to indicate the beginning of an
SQL declare section. It can be coded in the application program wherever variable
declarations can appear in accordance with the rules of the host language. It
cannot be coded in the middle of a host structure declaration. An SQL declare
section ends with an END DECLARE SECTION statement, described in “END
DECLARE SECTION” on page 438.

The BEGIN DECLARE SECTION and the END DECLARE SECTION statements
must be paired and must not be nested.

SQL statements must not be included within an SQL declare section, with the
exception of INCLUDE statements that include host variable declarations.

Host variables referenced in SQL statements must be declared in an SQL declare
section in all host languages, other than Java and REXX. Furthermore, the
declaration of each variable must appear before the first reference to the variable.
Host variables are declared without the use of these statements in Java, and they
are not declared at all in REXX.

Variables declared outside an SQL declare section should not have the same name
as variables declared within an SQL declare section.

More than one SQL declare section can be specified in the program.

Examples
Example 1: Define the host variables hv_smint (SMALLINT), hv_vchar24
(VARCHAR(24)), and hv_double (DOUBLE) in a C program.

EXEC SQL BEGIN DECLARE SECTION;
static short hv_smint;
static struct {

short hv_vchar24_len;
char hv_vchar24_value[24];

} hv_vchar24;
static double hv_double;

EXEC SQL END DECLARE SECTION;

BEGIN DECLARE SECTION

Chapter 5. Statements 295

Example 2: Define the host variables HV-SMINT (smallint), HV-VCHAR24
(varchar(24)), and HV-DEC72 (dec(7,2)) in a COBOL program.

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 HV-SMINT PIC S9(4) BINARY.
01 HV-VCHAR24.

49 HV-VCHAR24-LENGTH PIC S9(4) BINARY.
49 HV-VCHAR24-VALUE PIC X(24).

01 HV-DEC72 PIC S9(5)V9(2) PACKED-DECIMAL.
EXEC SQL END DECLARE SECTION END-EXEC.

BEGIN DECLARE SECTION

296 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

CALL
The CALL statement calls a procedure.

Invocation
Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded within
an application program. It is an executable statement that cannot be dynamically
prepared.

Authorization
The authorization ID of the statement must have at least one of the following:
v The EXECUTE privilege on the procedure
v Ownership of the procedure
v Administrative authority

Syntax

�� CALL procedure-name
(1)

host-variable

�

�

�

()
,

host-variable
constant
NULL
special-register
cast-function-name (host-variable)

constant
(1)

USING DESCRIPTOR descriptor-name

��

Notes:

1 DB2 UDB for LUW requires use of a program preparation option. See
description for details.

Description
procedure-name or host-variable56

Identifies the procedure to call by the specified procedure-name or the procedure
name contained in the host-variable. The identified procedure must exist at the
current server.

If a host-variable is specified:
v It must be a CHAR or VARCHAR variable with a length attribute that is not

greater than 254 bytes.
v It must not be followed by an indicator variable.

56. Starting in DB2 UDB for LUW Version 8, the program preparation option CALL_RESOLUTION DEFERRED must be specified to
use a host-variable for the procedure name. When this program preparation option is used, the required privileges must be held
by the run-time authorization ID on the package associated with the the procedure.

CALL

Chapter 5. Statements 297

v The value within the host variable must be left justified and must not
contain any embedded blanks.

v If the host variable is a fixed length string, the value within the host variable
must be padded on the right with blanks if its length is less than that of the
host variable.

v The value within the host variable must be in uppercase characters unless
the procedure name is a delimited name.

If the procedure name is unqualified, it is implicitly qualified based on the
path and number of parameters. For more information see “Qualification of
unqualified object names” on page 40.

The procedure definition at the current server determines the name of the
external program, language, and calling convention of the procedure. See
“CREATE PROCEDURE” on page 366 for more information.

host-variable or constant or NULL or special-register
Identifies a list of values to be passed as parameters to the procedure. The nth
value corresponds to the nth parameter in the procedure.

Each parameter defined (using CREATE PROCEDURE) as OUT or INOUT
must be specified as a host variable.

The number of arguments specified must be the same as the number of
parameters of a procedure defined at the current server with the specified
procedure-name.

The application requester assumes all parameters that are host variables are
INOUT parameters except for Java, where it is assumed all parameters that are
host variables are IN unless the mode is explicitly specified in the host variable
reference. All parameters that are not host variables are assumed to be input
parameters. The actual attributes of the parameters are determined by the
current server.

For an explanation of constant see “Constants” on page 75. For an explanation
of host-variable see “References to host variables” on page 87. For an
explanation of special-register see “Special registers” on page 78. NULL specifies
the null value.

Host variables cannot be structures when used with the CALL statement.

cast-function-name
This form of an argument can only be used with parameters defined as a
distinct type, BLOB, CLOB, DBCLOB, DATE, TIME or TIMESTAMP data types.
The following table describes the allowed uses of these cast-functions.

Parameter Type Cast Function Name

Distinct type N based on a BLOB, CLOB, or
DBCLOB

BLOB, CLOB, or DBCLOB57

Distinct type N based on a DATE, TIME, or
TIMESTAMP

DATE, TIME, or TIMESTAMP57

BLOB, CLOB, or DBCLOB BLOB, CLOB, or DBCLOB57

DATE, TIME, or TIMESTAMP DATE, TIME, or TIMESTAMP57

57. The name of the function must match the name of the data type (or the source type of the distinct type)

CALL

298 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

constant
Specifies a constant as the argument. The constant must conform to the
rules of a constant for the source type of the distinct type or for the data
type if not a distinct type. For BLOB, CLOB, DBCLOB, DATE, TIME, and
TIMESTAMP functions, the constant must be a string constant.

host-variable
Specifies a host variable as the argument. The host variable must conform
to the rules of a constant for the source type of the distinct type or for the
data type if not a distinct type.

USING DESCRIPTOR descriptor-name 58

Identifies an SQLDA that must contain a valid description of host variables
that are passed as parameters to the procedure. If the procedure has no
parameters, the SQLDA is ignored.

Before the CALL statement is processed, the user must set the following fields
in the SQLDA (Note that the rules for REXX are different. For more
information, see Appendix K, “Coding SQL statements in REXX applications”,
on page 687):
v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA
v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA
v SQLD to indicate the number of variables used in the SQLDA when

processing the statement
v SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR occurrences. If
LOBs or distinct types are present in the results, there must be additional
SQLVAR entries for each parameter. For more information on the SQLDA,
which includes a description of the SQLVAR and an explanation on how to
determine the number of SQLVAR occurrences, see Appendix D, “SQLDA (SQL
descriptor area)”, on page 571.

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN. It must be the same as the number of parameters for the
procedure. The nth variable described by the SQLDA corresponds to the nth
parameter in the procedure.

The USING DESCRIPTOR clause is not supported for a CALL statement
within a Java program.

Notes
Parameter assignments: When the CALL statement is executed, the value of each
of its parameters is assigned (using storage assignment) to the corresponding
parameter of the procedure. Control is passed to the procedure according to the
calling conventions of the host language. When execution of the procedure is
complete, the value of each parameter of the procedure is assigned (using storage
assignment) to the corresponding parameter of the CALL statement defined as
OUT or INOUT. For details on the assignment rules, see “Assignments and
comparisons” on page 60.

58. Starting in DB2 UDB for LUW Version 8, the program preparation option CALL_RESOLUTION DEFERRED must be specified
when the CALL statement specifies the USING DESCRIPTOR clause. When this program preparation option is used, the
required privileges must be held by the run-time authorization ID on the package associated with the the procedure.

CALL

Chapter 5. Statements 299

Cursors and prepared statements in procedures: All cursors opened in the called
procedure that are not result set cursors are closed and all statements prepared in
the called procedure are destroyed when the procedure ends.59

Result sets from procedures: Any cursors specified using the WITH RETURN
clause that the procedure leaves open when it returns identifies a result set. In a
procedure written in Java, all cursors are implicitly defined WITH RETURN.

Results sets are returned only when the procedure is called from CLI, JDBC, or
SQLJ. If the procedure was invoked from CLI or Java, and more than one cursor is
left open, the result sets can only be processed in the order in which the cursors
were opened. Only unread rows are available to be fetched. For example, if the
result set of a cursor has 500 rows, and 150 of those rows have been read by the
procedure at the time the procedure is terminated, then rows 151 through 500 will
be returned to the stored procedure.

Locks in procedures: All locks that have been acquired in the called procedure are
retained until the end of the unit of work.

Errors from Procedures: A procedure can return errors (or warnings) using the
SQLSTATE like other SQL statements. Applications should be aware of the possible
SQLSTATEs that can be expected when invoking a procedure. The possible
SQLSTATEs depend on how the procedure is coded. Procedures may also return
SQLSTATEs such as those that begin with '38' or '39' if the database manager
encounters problems executing the procedure. Applications should therefore be
prepared to handle any error SQLSTATE that may result from issuing a CALL
statement.

Nesting CALL statements: A program that is executing as a procedure can issue a
CALL statement. When a procedure calls another procedure, the call is considered
to be nested. If a nested procedure returns a result set, the result set is available
only to the immediate caller of the nested procedure.

Examples
Example 1: Call procedure PGM1 and pass two parameters.

CALL PGM1 (:hv1,:hv2)

Example 2: In C, invoke a procedure called SALARY_PROCED using the SQLDA
named INOUT_SQLDA.

struct sqlda *INOUT_SQLDA;

/* Setup code for SQLDA variables goes here */

CALL SALARY_PROC USING DESCRIPTOR :*INOUT_SQLDA;

Example 3: A Java procedure is defined in the database using the following
statement:

CREATE PROCEDURE PARTS_ON_HAND (IN PARTNUM INTEGER,
OUT COST DECIMAL(7,2),
OUT QUANTITY INTEGER)

LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME ’parts.onhand’;

59. Product-specific options exist that may extend the scope of cursors and prepared statements.

CALL

300 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

A Java application calls this procedure on the connection context ’ctx’ using the
following code fragment:
...
int variable1;
BigDecimal variable2;
Integer variable3;
...
#sql [ctx] {CALL PARTS_ON_HAND(:IN variable1, :OUT variable2, :OUT variable3)};
...

This application code fragment will invoke the Java method onhand in class parts
since the procedure-name specified on the CALL statement is found in the database
and has the external name ’parts.onhand’.

CALL

Chapter 5. Statements 301

CLOSE
The CLOSE statement closes a cursor. If a result table was created when the cursor
was opened, that table is destroyed.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. It must not be specified
in Java.

Authorization
None required. See “DECLARE CURSOR” on page 411 for the authorization
required to use a cursor.

Syntax

�� CLOSE cursor-name ��

Description
cursor-name

Identifies the cursor to be closed. The cursor-name must identify a declared
cursor as explained in the DECLARE CURSOR statement. When the CLOSE
statement is executed, the cursor must be in the open state.

Notes
Implicit cursor close: At the end of a unit of work, all open cursors declared
without the WITH HOLD option that belong to an application process are
implicitly closed.

Close cursors for performance: Explicitly closing cursors as soon as possible can
improve performance.

Procedure considerations: Special rules apply to cursors within procedures that
have not been closed before returning to the calling program. For more
information, see “CALL” on page 297.

Examples
In a COBOL program, use the cursor C1 to fetch the values from the first four
columns of the EMPPROJACT table a row at a time and put them in the following
host variables:

EMP (CHAR(6))
PRJ (CHAR(6))
ACT (SMALLINT)
TIM (DECIMAL(5,2))

Finally, close the cursor.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

77 EMP PIC X(6).
77 PRJ PIC X(6).
77 ACT PIC S9(4) BINARY.
77 TIM PIC S9(3)V9(2) PACKED-DECIMAL.

EXEC SQL END DECLARE SECTION END-EXEC.

CLOSE

302 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

.

.

.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT EMPNO, PROJNO, ACTNO, EMPTIME

FROM EMPPROJACT END-EXEC.

EXEC SQL OPEN C1 END-EXEC.

EXEC SQL FETCH C1 INTO :EMP, :PRJ, :ACT, :TIM END-EXEC.

IF SQLSTATE = ’02000’
PERFORM DATA-NOT-FOUND

ELSE
PERFORM GET-REST-OF-ACTIVITY UNTIL SQLSTATE IS NOT EQUAL TO ’00000’.

EXEC SQL CLOSE C1 END-EXEC.
.
.
.

GET-REST-OF-ACTIVITY.
EXEC SQL FETCH C1 INTO :EMP, :PRJ, :ACT, :TIM END-EXEC.

.

.

.

CLOSE

Chapter 5. Statements 303

COMMENT
The COMMENT statement adds or replaces a comment in the catalog descriptions
of an object.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v Ownership of the object
v Administrative authority.

Syntax

�� COMMENT ON �

�

�

ALIAS alias-name IS string-constant
COLUMN table-name.column-name

view-name.column-name
DISTINCT TYPE distinct-type-name

FUNCTION function-name
()

,

parameter-type
SPECIFIC FUNCTION specific-name

INDEX index-name
PROCEDURE procedure-name
TABLE table-name

view-name
TRIGGER trigger-name

multiple-column-list

��

multiple-column-list:

�

,

table-name (column-name IS string-constant)
view-name

parameter-type:

data-type
AS LOCATOR

data-type:

built-in-type
distinct-type-name

COMMENT

304 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Description
ALIAS alias-name

Identifies the alias to which the comment applies. alias-name must identify an
alias that exists at the current server.

COLUMN
Identifies the column to which the comment applies. The table-name or

built-in-type:

SMALLINT
INTEGER
INT

(5,0)
DECIMAL
DEC ()

NUMERIC ,0
integer

, integer
(53)

FLOAT
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR () FOR BIT DATA

integer
CHARACTER VARYING ()
CHAR integer

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer)

CLOB K
M
G

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME
TIMESTAMP

COMMENT

Chapter 5. Statements 305

view-name must identify a table or view that exists at the current server, but
must not identify a declared temporary table. The column-name must identify a
column of that table or view.

DISTINCT TYPE distinct-type-name
Identifies the distinct type to which the comment applies. distinct-type-name
must identify a distinct type that exists at the current server.

FUNCTION or SPECIFIC FUNCTION
Identifies the function to which the comment applies. The function must exist
at the current server and it must be a function that was defined with the
CREATE FUNCTION statement or a cast function that was generated by a
CREATE DISTINCT TYPE statement. The particular function can be identified
by its name, function signature, or specific name.

FUNCTION function-name
Identifies the function by its name. The function-name must identify exactly
one function. The function may have any number of parameters defined
for it. If there is more than one function of the specified name in the
specified or implicit schema, an error is returned.

FUNCTION function-name (parameter-type,...)
Identifies the function by its function signature, which uniquely identifies
the function. The function-name (parameter-type,...) must identify a function
with the specified function signature. The specified parameters must match
the data types in the corresponding position that were specified when the
function was created. The number of data types and the logical
concatenation of the data types is used to identify the specific function
instance to which the comment applies. Synonyms for data types are
considered a match. The rules for function resolution (and the SQL path)
are not used.

If function-name() is specified, the function identified must have zero
parameters.

function-name
Identifies the name of the function.

(parameter-type,...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, the database manager
searches the SQL path to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, use one
of the following:
v Empty parenthesis indicates that the data base manager ignores the

attribute when determining whether the data types match. For
example, DEC() will be considered a match for a parameter of a
function defined with a data type of DEC(7,2). However, FLOAT
cannot be specified with empty parenthesis because its parameter
value indicates a specific data type (REAL or DOUBLE).

v If a specific value for a length, precision, or scale attribute is
specified, the value must exactly match the value that was specified
(implicitly or explicitly) in the CREATE FUNCTION statement. If the
data type is FLOAT, the precision does not have to exactly match the
value that was specified because matching is based on the data type
(REAL or DOUBLE).

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default attributes of the data type

COMMENT

306 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

are implied. The implicit length must exactly match the value that
was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this
parameter. If AS LOCATOR is specified, the data type must be a LOB
or a distinct type based on a LOB.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name. The specific-name must identify
a specific function that exists at the current server.

INDEX index-name
Identifies the index to which the comment applies. index-name must identify an
index that exists at the current server.

PROCEDURE procedure-name
Identifies the procedure to which the comment applies. procedure-name must
identify a procedure that exists at the current server.

TABLE table-name or view-name
Identifies the table or view to which the comment applies. The name must
identify a table or view that exists at the current server and must not identify a
declared temporary table.

TRIGGER trigger-name
Identifies the trigger to which the comment applies. trigger-name must identify
a trigger that exists at the current server.

IS
Introduces the comment to be added or replaced.

string-constant
Can be any character string constant of up to 254 characters.

multiple-column-list
To comment on more than one column in a table or view with a single
COMMENT statement, specify the table or view name, followed by a list in
parenthesis of the form:

(column-name IS string-constant,
column-name IS string-constant, ...)

Each column name must not be qualified, and must identify a column of the
specified table or view that exists at the current server.

Examples
Example 1: Add a comment for the EMPLOYEE table.

COMMENT ON TABLE EMPLOYEE
IS ’Reflects first quarter 2000 reorganization’

Example 2: Add a comment for the EMP_VIEW1 view.
COMMENT ON TABLE EMP_VIEW1

IS ’View of the EMPLOYEE table without salary information’

Example 3: Add a comment for the EDLEVEL column of the EMPLOYEE table.
COMMENT ON COLUMN EMPLOYEE.EDLEVEL

IS ’highest grade level passed in school’

Example 4: Add comments for two different columns of the DEPARTMENT table.

COMMENT

Chapter 5. Statements 307

COMMENT ON DEPARTMENT
(MGRNO IS ’EMPLOYEE NUMBER OF DEPARTMENT MANAGER’,
ADMRDEPT IS ’DEPARTMENT NUMBER OF ADMINISTERING DEPARTMENT’)

COMMENT

308 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

COMMIT
The COMMIT statement ends a unit of work and commits the database changes
that were made by that unit of work.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

�� COMMIT
WORK

��

Description
The COMMIT statement ends the unit of work in which it is executed. It commits
all changes made by SQL schema statements and SQL data change statements
during the unit of work. For more information see Chapter 5, “Statements”, on
page 273.

Notes
Recommended coding practices: Code an explicit COMMIT or ROLLBACK
statement at the end of an application process. Either an implicit commit or
rollback operation will be performed at the end of an application process
depending on the application environment. Thus, a portable application should
explicitly execute a COMMIT or ROLLBACK before execution ends in those
environments where explicit COMMIT or ROLLBACK is permitted.

Effect of commit: Commit causes the following to occur:
v Connections in the release-pending state are ended. Some products provide

options that cause remote connections in the held state to be ended.
For existing connections:
– all open cursors that were declared with the WITH HOLD clause are

preserved and their current position is maintained, although a FETCH
statement is required before a Positioned UPDATE or Positioned DELETE
statement can be executed

– all open cursors that were declared without the WITH HOLD clause are
closed.

v All LOB locators are freed. Note that this is true even when the locators are
associated with LOB values retrieved via a cursor that has the WITH HOLD
property.

v All locks acquired by the LOCK TABLE statement are released. All implicitly
acquired locks are released, except for those required for the cursors that were
not closed.

v For DB2 UDB for z/OS and OS/390, prepared statements are destroyed, except
those statements required for the cursors that were not closed.

COMMIT

Chapter 5. Statements 309

G
G
G

G
G

G
G

Other transaction environments: SQL COMMIT may not be available in other
transaction environments, such as IMS and CICS. To do a commit operation in
these environments, SQL programs must use the call prescribed by their
transaction manager.

Examples
In a C program, transfer a certain amount of commission (COMM) from one
employee (EMPNO) to another in the EMPLOYEE table. Subtract the amount from
one row and add it to the other. Use the COMMIT statement to ensure that no
permanent changes are made to the database until both operations are completed
successfully.
void main ()

{
EXEC SQL BEGIN DECLARE SECTION;
decimal(5,2) AMOUNT;
char FROM_EMPNO[7];
char TO_EMPNO[7];
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;
EXEC SQL WHENEVER SQLERROR GOTO SQLERR;
...
EXEC SQL UPDATE EMPLOYEE

SET COMM = COMM - :AMOUNT
WHERE EMPNO = :FROM_EMPNO;

EXEC SQL UPDATE EMPLOYEE
SET COMM = COMM + :AMOUNT
WHERE EMPNO = :TO_EMPNO;

FINISHED:
EXEC SQL COMMIT;
return;

SQLERR:
...
EXEC SQL WHENEVER SQLERROR CONTINUE; /* continue if error on rollback */
EXEC SQL ROLLBACK;
return;

}

COMMIT

310 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

CONNECT (Type 1)
The CONNECT (Type 1) statement connects an application process to the identified
application server and establishes the rules for remote unit of work. This server is
then the current server for the process. Differences between this statement and the
CONNECT (Type 2) statement are described in Appendix G, “CONNECT (Type 1)
and CONNECT (Type 2) differences”, on page 633. Refer to “Application-directed
distributed unit of work” on page 26 for more information about connection states.

Invocation
Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded within
an application program. It is an executable statement that cannot be dynamically
prepared. It must not be specified in Java or REXX.

Authorization
The authorization ID of the statement must be authorized to connect to the
identified application server. The authorization check is performed by that server.
The authorization required is product-specific.

Syntax

�� CONNECT
TO server-name

host-variable authorization
RESET

��

authorization:

�� USER host-variable USING host-variable ��

Description
TO server-name or host-variable

Identifies the application server by the specified server name or the server
name contained in the host variable. If a host variable is specified:
v It must be a CHAR or VARCHAR variable with a length attribute that is not

greater than 18. In DB2 UDB for z/OS and OS/390, the maximum length is
16. In DB2 UDB for LUW, the maximum length is 8.

v It must not be followed by an indicator variable
v The server name must be left-justified within the host variable and must

conform to the rules for forming an ordinary identifier
v If the length of the server name is less than the length of the host variable, it

must be padded on the right with blanks.
v The value of the server name must not contain lowercase characters.

When the CONNECT statement is executed, the specified server name or the
server name contained in the host variable must identify an application server
described in the local directory and the application process must be in the
connectable state. (See “Notes” on page 312 for information about connection
states.) In DB2 UDB for LUW, the server name is a database alias name
identifying the application server.

CONNECT (Type 1)

Chapter 5. Statements 311

G

G
G

G
G

USER host-variable
Identifies the authorization name that will be used to connect to the
application server. The host-variable must satisfy the following:
v It must be a CHAR or VARCHAR variable with a length attribute that is not

greater than 8. See Table 41 on page 554 for more information.
v It must not be followed by an indicator variable
v The authorization name must be left-justified within the host variable and

must conform to the rules for forming an authorization name.
v If the length of the authorization name is less than the length of the host

variable, it must be padded on the right with blanks.
v The value of the authorization name must not contain lowercase characters.

For DB2 UDB for z/OS and OS/390, authorization may not be specified when
the connection type is IMS or CICS.

USING host-variable
Identifies the password that will be used to connect to the application server.
The host-variable must satisfy the following:
v It must be a CHAR or VARCHAR variable with a length attribute that is not

greater than 8. See Table 41 on page 554 for more information.
v It must not be followed by an indicator variable
v The password must be left-justified within the host variable.
v If the length of the password is less than the length of the host variable, it

must be padded on the right with blanks.

RESET
CONNECT RESET is equivalent to CONNECT TO x, where x is the local
server name.

For DB2 UDB for LUW, CONNECT RESET only disconnects the application
process from the current server. If implicit connect is available, the application
process remains unconnected until an SQL statement is issued.

CONNECT with no operand
This form of the CONNECT statement returns information about the current
server and has no effect on connection states. The information is returned in
the SQLERRP field of the SQLCA as described below.

Notes
Successful Connection: If the CONNECT statement (excluding the CONNECT
with no operand form) is successful:
v All open cursors are closed, all prepared statements are destroyed, all locators

are freed, and all locks are released from the previous application server.
v The application process is disconnected from its previous application server, if

any, and connected to the identified application server.
v The name of the application server is placed in the CURRENT SERVER special

register.
v Information about the application server is placed in the SQLERRP field of the

SQLCA. The format below applies if the application server is a DB2 Universal
Database product. The information has the form pppvvrrm, where:
– ppp is:

DSN for DB2 UDB for z/OS and OS/390
QSQ for DB2 UDB for iSeries

CONNECT (Type 1)

312 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

G
G
G

SQL for DB2 UDB for LUW
– vv is a two-digit version identifier such as ’07’.
– rr is a two-digit release identifier such as ’01’.
– m is a one-digit modification level such as ’0’.

For example, if the server is Version 7 of DB2 UDB for z/OS and OS/390, the
value would be 'DSN07010'.

v Additional information about the connection is placed in the SQLERRMC field
of the SQLCA. The contents are product-specific.

Unsuccessful Connection: If the CONNECT statement is unsuccessful, the
SQLERRP field of the SQLCA is set to the name of the module at the application
requester that detected the error. Note that the first three characters of the module
name identifies the product. For example, if the application requester is DB2 UDB
for LUW, the first three characters are 'SQL'.

If the CONNECT statement is unsuccessful because the application process is not
in the connectable state, the connection state of the application process is
unchanged.

If the CONNECT statement is unsuccessful because the server-name is not listed in
the local directory, the connection state of the application process is
product-specific.

If the CONNECT statement is unsuccessful for any other reason, the application
process is placed in the unconnected state, all open cursors are closed, all prepared
statements are destroyed, and any held resources are released.

For a description of connection states, see “Remote unit of work connection
management” on page 25. See the description of the CONNECT statement in your
product’s SQL reference for further information.

Examples
Example 1: In a C program, connect to the application server TOROLAB.

EXEC SQL CONNECT TO TOROLAB;

Example 2: In a C program, connect to an application server whose name is stored
in the host variable APP_SERVER (VARCHAR(18)). Following a successful
connection, copy the 3 character product identifier of the application server to the
host variable PRODUCT (CHAR(3)).

void main ()
{

char product[4] = " ";
EXEC SQL BEGIN DECLARE SECTION;
char APP_SERVER[19];
char username[11];
char userpass[129];
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;
strcpy(APP_SERVER,"TOROLAB");
strcpy(username,"JOE");
strcpy(userpass,"XYZ1";
EXEC SQL CONNECT TO :APP_SERVER

USER :username USING :userpass;
if (strncmp(SQLSTATE, "00000", 5))

CONNECT (Type 1)

Chapter 5. Statements 313

G

G
G
G

{ strncpy(product,sqlca.sqlerrp,3); }
...
return;

}

CONNECT (Type 1)

314 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

CONNECT (Type 2)
The CONNECT (Type 2) statement connects the application process to the
identified application server and establishes the rules for application-directed
distributed unit of work. This server is then the current server for the process.
Differences between this statement and the CONNECT (Type 1) statement are
described in Appendix G, “CONNECT (Type 1) and CONNECT (Type 2)
differences”, on page 633. Refer to “Application-directed distributed unit of work”
on page 26 for more information about connection states.

Invocation
Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded within
an application program. It is an executable statement that cannot be dynamically
prepared. It must not be specified in Java or REXX.

Authorization
The authorization ID of the statement must be authorized to connect to the
identified application server. The authorization check is performed by that server.
The authorization required is product-specific.

Syntax

�� CONNECT
TO server-name

host-variable authorization
RESET

��

authorization:

�� USER host-variable USING host-variable ��

Description
TO server-name or host-variable

Identifies the application server by the specified server name or the server
name contained in the host variable. If a host variable is specified:
v It must be a CHAR or VARCHAR variable with a length attribute that is not

greater than 18. In DB2 UDB for z/OS and OS/390, the maximum length is
16. In DB2 UDB for LUW, the maximum length is 8.

v It must not be followed by an indicator variable
v The server name must be left-justified within the host variable and must

conform to the rules for forming an ordinary identifier
v If the length of the server name is less than the length of the host variable, it

must be padded on the right with blanks.
v The value of the server name must not contain lowercase characters.

When the CONNECT statement is executed, the specified server name or the
server name contained in the host variable must identify an application server
described in the local directory.

CONNECT (Type 2)

Chapter 5. Statements 315

G

G
G

Let S denote the specified server name or the server name contained in the
host variable. The application process must not have an existing connection to
S.60

USER host-variable
Identifies the authorization name that will be used to connect to the
application server. The host-variable must satisfy the following:
v It must be a CHAR or VARCHAR variable with a length attribute that is not

greater than 8. See Table 41 on page 554 for more information.
v It must not be followed by an indicator variable
v The authorization name must be left-justified within the host variable and

must conform to the rules for forming an authorization name.
v If the length of the authorization name is less than the length of the host

variable, it must be padded on the right with blanks.
v The value of the authorization name must not contain lowercase characters.

USING host-variable
Identifies the password that will be used to connect to the application server. If
the host-variable is specified:
v It must be a CHAR or VARCHAR variable with a length attribute that is not

greater than 8. See Table 41 on page 554 for more information.
v It must not be followed by an indicator variable
v The password must be left-justified within the host variable.
v If the length of the password is less than the length of the host variable, it

must be padded on the right with blanks.
v The value of the password must not contain lowercase characters.

RESET
CONNECT RESET is equivalent to CONNECT TO x, where x is the local
server name.

CONNECT with no operand
This form of the CONNECT statement returns information about the current
server and has no effect on connection states. The information is returned in
the SQLERRP field of the SQLCA as described below.

Notes
Successful Connection: If the CONNECT statement (excluding the CONNECT
with no operand form) is successful:
v A connection to application server S is created and placed in the current and

held states. The previously current connection, if any, is placed in the dormant
state.

v S is placed in the CURRENT SERVER special register.
v Information about application server S is placed in the SQLERRP field of the

SQLCA. The format below applies if the application server is a DB2 Universal
Database product. The information has the form pppvvrrm, where:
– ppp is:

DSN for DB2 UDB for z/OS and OS/390
QSQ for DB2 UDB for iSeries
SQL for DB2 UDB for LUW

60. In DB2 UDB for z/OS and OS/390, this rule is enforced only if the SQLRULES(STD) bind option is specified.

CONNECT (Type 2)

316 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

– vv is a two-digit version identifier such as ’07’.
– rr is a two-digit release identifier such as ’01’.
– m is a one-digit modification level such as ’0’.

For example, if the server is Version 7 of DB2 UDB for z/OS and OS/390, the
value would be 'DSN07010'.

v Additional information about the connection is placed in the SQLERRMC field
of the SQLCA. The contents are product-specific.

Unsuccessful Connection: If the CONNECT statement is unsuccessful, the
connection state of the application process and the states of its connections are
unchanged.

Examples
Example 1: Execute SQL statements at TOROLAB and SVLLAB. The first
CONNECT statement creates the TOROLAB connection and the second CONNECT
statement places it in the dormant state.

EXEC SQL CONNECT TO TOROLAB;

(execute statements referencing objects at TOROLAB)

EXEC SQL CONNECT TO SVLLAB;

(execute statements referencing objects at SVLLAB)

Example 2: Connect to a remote server specifying a userid and password, perform
work for the user and then connect as another user to perform further work.

EXEC SQL CONNECT TO SVLLAB USER :AUTHID USING :PASSWORD;

(execute SQL statements accessing data on the server)

EXEC SQL COMMIT;

(set AUTHID and PASSWORD to new values)

EXEC SQL CONNECT TO SVLLAB USER :AUTHID USING :PASSWORD;

(execute SQL statements accessing data on the server)

CONNECT (Type 2)

Chapter 5. Statements 317

G

CREATE ALIAS
The CREATE ALIAS statement defines an alias for a table or view.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The privilege to create in the schema
v Administrative authority.

Syntax

�� CREATE ALIAS alias-name FOR table-name
view-name

��

Description
alias-name

Names the alias. The name, including the implicit or explicit qualifier, must not
be the same as an index, table, view or alias that already exists at the current
server.

If the alias-name is qualified, the schema name must not be a system schema.

FOR table-name or view-name
Identifies the table or view at the current server for which alias-name is defined.
An alias name must not be specified (an alias cannot refer to another alias).

An alias can be defined for an object that does not exist at the time of the
definition. If it does not exist when the alias is created, a warning is returned.
However, the referenced object must exist when a SQL statement containing
the alias is used, otherwise an error is returned.

Examples
Example: Create an alias named CURRENT_PROJECTS for the PROJECT table.

CREATE ALIAS CURRENT_PROJECTS
FOR PROJECT

CREATE ALIAS

318 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

CREATE DISTINCT TYPE
The CREATE DISTINCT TYPE statement defines a distinct type at the current
server. A distinct type is always sourced on one of the built-in data types.
Successful execution of the statement also generates:
v A function to cast from the distinct type to its source type
v A function to cast from the source type to its distinct type
v As appropriate, support for the use of comparison operators with the distinct

type.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The privilege to create in the schema
v Administrative authority

Syntax

�� CREATE DISTINCT TYPE distinct-type-name AS built-in-type �

�
(1)

WITH COMPARISONS

��

built-in-type:

CREATE DISTINCT TYPE

Chapter 5. Statements 319

SMALLINT
INTEGER
INT

(5,0)
DECIMAL
DEC ,0

NUMERIC (integer)
, integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(1)
CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer)
CHAR

VARCHAR
(1M)

CLOB
(integer)

K
M
G

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

(1M)
DBCLOB

(integer)
K
M
G

DATE
TIME
TIMESTAMP

(1M)
BLOB

(integer)
K
M
G

Notes:

1 Specify WITH COMPARISONS for built-in data types except for BLOB,
CLOB, and DBCLOB.

Description
distinct-type-name

Names the distinct type. The name, including the implicit or explicit qualifier
must not identify a distinct type that already exists at the current server.
distinct-type-name must not be the same as the name of a built-in data type, or
any of the following, even they are specified as delimited identifiers:
ALL NODENAME TRUE
AND NODENUMBER TYPE
ANY NOT UNIQUE
BETWEEN NULL UNKNOWN
BOOLEAN ONLY WHEN
CASE OR =
CAST OVERLAPS ¬=

CREATE DISTINCT TYPE

320 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

CHECK PARTITION <
DISTINCT POSITION <=
EXCEPT RRN ¬<
EXISTS SELECT >
FALSE SIMILAR >=
FOR SOME ¬>
FROM STRIP !<
IN SUBSTRING <>
IS TABLE !>
LIKE THEN !=
MATCH TRIM

If a qualified distinct-type-name is specified, the schema name must not be one
of the system schemas (see “Schemas” on page 3).

built-in-type
Specifies the built-in data type used as the basis for the internal representation
of the distinct type. See “CREATE TABLE” on page 379 for a more complete
description of each built-in data type.

For portability of applications across platforms, use the following
recommended data type names:
v DOUBLE or REAL instead of FLOAT.
v DECIMAL instead of NUMERIC.

If a specific value is not specified for the data types that have length, precision,
or scale attributes, the default attributes of the data type as shown in the
syntax diagram are implied.

If the distinct type is sourced on a string data type, a CCSID is associated with
the distinct data type at the time the distinct type is created.

WITH COMPARISONS
Specifies that system-generated comparison operators are to be created for
comparing two instances of a distinct type. Do not specify these keywords if
the built-in type is BLOB, CLOB, or DBCLOB, otherwise a warning will be
returned and the comparison operators will not be generated. For all other
built-in-types, the WITH COMPARISONS keywords are required. When a
distinct type is created using the WITH COMPARISONS clause, the database
manager allows the comparison operators with the exception of LIKE and
NOT LIKE. In order to use the LIKE predicate on a distinct type, it must be
cast to a built-in type. The comparison operators are invoked as infix
operators, not by using functional notation; that is, C1 < C2, not ″<″(C1,C2).

Notes
Owner privileges: The owner of the distinct type is authorized to define columns,
parameters, or variables with the distinct type with the ability to grant these
privileges to others. See “GRANT (Distinct Type Privileges)” on page 448. The
owner is also authorized to invoke the generated cast functions (see “GRANT
(Function or Procedure Privileges)” on page 450). For more information on
ownership of the object, see “Authorization, privileges and object ownership” on
page 11.

Additional generated functions: Besides the system-generated comparison
operators described above, the following functions become available to convert to,
and from the source type:
v The distinct type to the source type
v The source type to the distinct type

CREATE DISTINCT TYPE

Chapter 5. Statements 321

v INTEGER to the distinct type if the source type is SMALLINT
v DOUBLE to distinct type if the source type is REAL
v VARCHAR to the distinct type if the source type is CHAR
v VARGRAPHIC to the distinct type if the source type is GRAPHIC

These functions are created as if the following statements were executed:
CREATE FUNCTION source-type-name (distinct-type-name)

RETURNS source-type-name ...

CREATE FUNCTION distinct-type-name (source-type-name)
RETURNS distinct-type-name ...

Names of the Generated Cast Functions: Table 34 contains details about the
generated cast functions. The unqualified name of the cast function that converts
from the distinct type to the source type is the name of the source data type.

In cases in which a length, precision, or scale is specified for the source type in the
CREATE DISTINCT TYPE statement, the unqualified name of the cast function that
converts from the distinct type to the source type is the name of the source data
type. The data type of the value that the cast function returns includes any length,
precision, or scale values that were specified for the source data type on the
CREATE DISTINCT TYPE statement.

The name of the cast function that converts from the source type to the distinct
type is the name of the distinct type including the schema qualfier. The input
parameter of the cast function has the same data type as the source data type,
including the length, precision, and scale.

The cast functions that are generated are created in the same schema as that of the
distinct type. A function with the same name and same function signature as the
generated cast function must not already exist in the current server.

A generated cast function cannot be explicitly dropped. The cast functions that are
generated for a distinct type are implicitly dropped when the distinct type is
dropped with the DROP statement.

The following table gives the names of the functions to convert from the distinct
type to the source type and from the source type to the distinct type for all
predefined data types.

Table 34. CAST functions on distinct types

Source Type Name Function Name Parameter-type Return-type

SMALLINT distinct-type-name SMALLINT distinct-type-name

distinct-type-name INTEGER distinct-type-name

SMALLINT distinct-type-name SMALLINT

INTEGER distinct-type-name INTEGER distinct-type-name

INTEGER distinct-type-name INTEGER

DECIMAL distinct-type-name DECIMAL (p,s) distinct-type-name

DECIMAL distinct-type-name DECIMAL (p,s)

NUMERIC or DECIMAL1 distinct-type-name NUMERIC (p,s) or
DECIMAL (p,s)

distinct-type-name

NUMERIC or DECIMAL distinct-type-name NUMERIC (p,s) or
DECIMAL (p,s)

CREATE DISTINCT TYPE

322 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

GGG
G
G

GGG
G

Table 34. CAST functions on distinct types (continued)

Source Type Name Function Name Parameter-type Return-type

REAL or FLOAT(n) where n
defines a single precision
floating point number

distinct-type-name REAL distinct-type-name

distinct-type-name DOUBLE distinct-type-name

REAL distinct-type-name REAL

DOUBLE or DOUBLE
PRECISION or FLOAT or
FLOAT(n) where n defines a
double precision floating
point number

distinct-type-name DOUBLE distinct-type-name

DOUBLE distinct-type-name DOUBLE

CHAR distinct-type-name CHAR (n) distinct-type-name

CHAR distinct-type-name CHAR (n)

distinct-type-name VARCHAR (n) distinct-type-name

VARCHAR distinct-type-name VARCHAR (n) distinct-type-name

VARCHAR distinct-type-name VARCHAR (n)

CLOB distinct-type-name CLOB (n) distinct-type-name

CLOB distinct-type-name CLOB (n)

GRAPHIC distinct-type-name GRAPHIC (n) distinct-type-name

GRAPHIC distinct-type-name GRAPHIC (n)

distinct-type-name VARGRAPHIC (n) distinct-type-name

VARGRAPHIC distinct-type-name VARGRAPHIC (n) distinct-type-name

VARGRAPHIC distinct-type-name VARGRAPHIC (n)

DBCLOB distinct-type-name DBCLOB (n) distinct-type-name

DBCLOB distinct-type-name DBCLOB (n)

BLOB distinct-type-name BLOB (n) distinct-type-name

BLOB distinct-type-name BLOB (n)

DATE distinct-type-name DATE distinct-type-name

DATE distinct-type-name DATE

TIME distinct-type-name TIME distinct-type-name

TIME distinct-type-name TIME

TIMESTAMP distinct-type-name TIMESTAMP distinct-type-name

TIMESTAMP distinct-type-name TIMESTAMP

Note:
1. When the source data type is specified as NUMERIC, whether a separate function named NUMERIC is generated

is platform-specific. DB2 UDB for iSeries generates a cast function named NUMERIC. DB2 UDB for z/OS and
OS/390 and DB2 UDB for LUW do not generate a cast function named NUMERIC, use DECIMAL instead.

Built-in functions: The functions described in the above table are the only
functions that are generated automatically when distinct types are defined.
Consequently, none of the built-in functions (AVG, MAX, LENGTH, and so on) are
automatically supported for the distinct type. A built-in function can be used on a
distinct type only after a sourced user-defined function, which is based on the
built-in function, has been created for the distinct type. See “Extending or
overriding a built-in function” on page 327.

CREATE DISTINCT TYPE

Chapter 5. Statements 323

G
G
G

The schema name of the distinct type must be included in the SQL path for
successful use of these operators and cast functions in SQL statements.

Examples
Example 1: Create a distinct type named SHOESIZE that is sourced on the built-in
INTEGER data type.

CREATE DISTINCT TYPE SHOESIZE AS INTEGER WITH COMPARISONS

The successful execution of this statement also generates two cast functions.
Function INTEGER(SHOESIZE) returns a value with data type INTEGER, and
function SHOESIZE(INTEGER) returns a value with distinct type SHOESIZE.

Example 2: Create a distinct type named MILES that is sourced on the built-in
DOUBLE data type.

CREATE DISTINCT TYPE MILES
AS DOUBLE WITH COMPARISONS

The successful execution of this statement also generates two cast functions.
Function DOUBLE(MILES) returns a value with data type DOUBLE, and function
MILES(DOUBLE) returns a value with distinct type MILES.

Example 3: Create a distinct type T_DEPARTMENT that is sourced on the built-in
CHAR data type.

CREATE DISTINCT TYPE CLAIRE.T_DEPARTMENT AS CHAR(3)
WITH COMPARISONS

The successful execution of this statement also generates three cast functions:
v Function CLAIRE.CHAR takes a T_DEPARTMENT as input and returns a value

with data type CHAR(3).
v Function CLAIRE.T_DEPARTMENT takes a CHAR(3) as input and returns a

value with distinct type T_DEPARTMENT.
v Function CLAIRE.T_DEPARTMENT takes a VARCHAR(3) as input and returns a

value with distinct type T_DEPARTMENT.

CREATE DISTINCT TYPE

324 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

CREATE FUNCTION
The CREATE FUNCTION statement defines a user-defined function at the current
server. The following types of functions can be defined.
v External scalar

The function is written in a programming language such as C or Java, and
returns a scalar value. The external program is referenced by a function defined
at the current server along with various attributes of the function. For
information on creating an external scalar function, see “CREATE FUNCTION
(External Scalar)” on page 329.

v External table

The function is written in a programming language such as C, and returns a
complete table. The external program is referenced by a function defined at the
current server along with various attributes of the function. For information on
creating an external table function, see “CREATE FUNCTION (External Table)”
on page 340.

v Sourced

The function is implemented by invoking another function (built-in, external,
sourced, or SQL) that already exists at the current server. A sourced function can
return a scalar value, or the result of a column function. For information on
creating a sourced function, see “CREATE FUNCTION (Sourced)” on page 350.
The function inherits attributes of the underlying source function.

v SQL scalar

The function is written exclusively in SQL and returns a scalar value. The body
of the function is defined at the current server along with various attributes of
the function. For information on creating an SQL scalar function, see “CREATE
FUNCTION (SQL Scalar)” on page 357.

Notes
Choosing the schema and function name: If a qualified function name is specified,
the schema-name must not be one of the system schemas (see “Schemas” on page 3).
If function-name is not qualified, it is implicitly qualified with the default schema
name.

The unqualified function name must not be the same as the name of a built-in data
type, or any of the following, even they are specified as delimited identifiers:
ALL NODENAME TRUE
AND NODENUMBER TYPE
ANY NOT UNIQUE
BETWEEN NULL UNKNOWN
BOOLEAN ONLY WHEN
CASE OR =
CAST OVERLAPS ¬=
CHECK PARTITION <
DISTINCT POSITION <=
EXCEPT RRN ¬<
EXISTS SELECT >
FALSE SIMILAR >=
FOR SOME ¬>
FROM STRIP !<
IN SUBSTRING <>
IS TABLE !>
LIKE THEN !=
MATCH TRIM

CREATE FUNCTION

Chapter 5. Statements 325

Defining the parameters: The input parameters for the function are specified as a
list within parenthesis.

The maximum number of parameters allowed in CREATE FUNCTION is 90. For
more details on the limits on the number of parameters, see Appendix A, “SQL
limits”, on page 551. DB2 UDB for z/OS and OS/390 only uses the first 30
parameters to determine uniqueness.

A function can have no input parameters. In this case, an empty set of parenthesis
must be specified, for example:

CREATE FUNCTION WOOFER()

The data type of the result of the function is specified in the RETURNS clause for
the function.
v Choosing data types for parameters: When choosing the data types of the input

and result parameters for a function, the rules of promotion that can affect the
values of the parameters need to be considered. For more information, see
“Rules for result data types” on page 70. For example, a constant that is one of
the input arguments to the function might have a built-in data type that is
different from the data type that the function expects, and more significantly,
might not be promotable to that expected data type. Based on the rules of
promotion, using the following data types is recommended:
– INTEGER instead of SMALLINT
– DOUBLE instead of REAL
– VARCHAR instead of CHAR
– VARGRAPHIC instead of GRAPHIC

For portability of functions across platforms, use the following recommended
data type names:
– DOUBLE or REAL instead of FLOAT.
– DECIMAL instead of NUMERIC.

v Specifying AS LOCATOR for a parameter: Passing a locator instead of a value
can result in fewer bytes being passed in or out of the function. This can be
useful when the value of the parameter is very large. The AS LOCATOR clause
specifies that a locator to the value of the parameter is passed instead of the
actual value. Specify AS LOCATOR only for parameters with a LOB data type or
a distinct type that is based on a LOB data type and only when LANGUAGE
JAVA is not in effect.
The AS LOCATOR clause has no effect on determining whether data types can
be promoted, nor does it affect the function signature, which is used in function
resolution.
AS LOCATOR must not be specified for a sourced or SQL function.
AS LOCATOR must not be specified if the function is defined with NO SQL.

Determining the uniqueness of functions in a schema: The same name can be
used for more than one function in a schema if the function signature of each
function is unique. The function signature is the qualified function name combined
with the number and data types of the input parameters. The combination of
name, schema name, the number of parameters, and the data type each parameter
(without regard for other attributes such as length, precision, or scale) must not
identify a user-defined function that exists at the current server. The return type
has no impact on the determining uniqueness of a function. Two different schemas
can each contain a function with the same name that have the same data types for

CREATE FUNCTION

326 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

all of their corresponding data types. However, a schema must not contain two
functions with the same name that have the same data types for all of their
corresponding data types. If the function has more than 30 parameters, DB2 UDB
for z/OS and OS/390 only considers the first 30 parameters to determine whether
the function is unique.

When determining whether corresponding data types match, the database manager
does not consider any length, precision, or scale attributes in the comparison. The
database manager considers the synonyms of data types a match. For example,
REAL and FLOAT, and DOUBLE and FLOAT) are considered a match. Therefore,
CHAR(8) and CHAR(35) are considered to be the same, as are DECIMAL(11,2),
and DECIMAL(4,3). Furthermore, the character and graphic types are considered to
be the same. For example, the following are considered to be the same type: CHAR
and GRAPHIC, VARCHAR and VARGRAPHIC, and CLOB and DBCLOB.
CHAR(13) and GRAPHIC(8) are considered to be the same type. An error is
returned if the signature of the function being created is a duplicate of a signature
for an existing user-defined function with the same name and schema.

Assume that the following statements are executed to create four functions in the
same schema. The second and fourth statements fail because they create functions
that are duplicates of the functions that the first and third statements created.

CREATE FUNCTION PART (INT, CHAR(15)) ...
CREATE FUNCTION PART (INTEGER, CHAR(40)) ...

CREATE FUNCTION ANGLE (DECIMAL(12,2)) ...
CREATE FUNCTION ANGLE (DEC(10,7)) ...

Specifying a specific name for a function: When defining multiple functions with
the same name and schema (with different parameter lists), it is recommended that
a specific name also be specified. The specific name can be used to uniquely
identify the function such as when sourcing on this function, dropping the
function, or commenting on the function. However, the function cannot be invoked
by its specific name.

The specific name is implicitly or explicitly qualified with a schema name. If a
schema name is not specified on CREATE FUNCTION, it is the same as the
explicit or implicit schema name of the function name (function-name). If a schema
name is specified, it must be the same as the explicit or implicit schema name of
the function name. The name, including the schema name must not identify the
specific name of another function or procedure that exists at the current server.

If the SPECIFIC clause is not specified, a specific name is generated.

Extending or overriding a built-in function: Giving a user-defined external
function the same name as a built-in function is not a recommended practice
unless the functionality of the built-in function needs to be extended or overridden.
v Extending the functionality of existing built-in functions

Create the new user-defined function with the same name as the built-in
function, and a unique function signature. For example, a user-defined function
similar to the built-in function ROUND that accepts the distinct type MONEY as
input rather than the built-in numeric types might be necessary. In this case, the
signature for the new user-defined function named ROUND is different from all
the function signatures supported by the built-in ROUND function.

v Overriding a built-in function

Create the new user-defined function with the same name and signature as an
existing built-in function. For information on creating sourced functions, see

CREATE FUNCTION

Chapter 5. Statements 327

G
G
G

“CREATE FUNCTION (Sourced)” on page 350. The new function has the same
name and data type as the corresponding parameters of the built-in function but
implements different logic. For example, it might be useful to use different rules
for rounding than the built-in ROUND function. In this case, the signature for
the new user-defined function named ROUND will be the same as a signature
that is supported by the built-in ROUND function.
Once a built-in function has been overridden, if the schema for the new function
appears in the SQL path before the system schemas, the data base manager may
choose a user-defined function rather than the built-in function. An application
that uses the unqualified function name and was previously successful using the
built-in function of that name might fail, or perhaps even worse, appear to run
successfully but provide a different result if the user-defined function is chosen
by the data base manager rather than the built-in function. This can occur with
dynamic SQL statements, or when static SQL applications are rebound. For more
information on when static statements are rebound, see “Packages and access
plans” on page 9.

Special registers in functions: The settings of the special registers of the invoker
are inherited by the function on invocation and restored upon return to the
invoker. Special registers may be changed in a function that can execute SQL
statements, but these changes do not affect the caller.

CREATE FUNCTION

328 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

CREATE FUNCTION (External Scalar)
The CREATE FUNCTION (External Scalar) statement creates an external scalar
function at the current server. A user-defined external scalar function returns a
single value each time it is invoked.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The privilege to create in the schema
v Administrative authority.

For each distinct type referenced in the statement, the authorization ID of the
statement must include at least one of the following:
v The USAGE privilege for the distinct type
v Ownership of the distinct type
v Administrative authority.

Syntax

�� CREATE FUNCTION function-name

�

()
,

parameter-declaration

�

� RETURNS data-type2
AS LOCATOR

data-type3 CAST FROM data-type4
AS LOCATOR

option-list ��

parameter-declaration:

parameter-name
data-type1

AS LOCATOR

data-type1, data-type2, data-type3, data-type4:

built-in-type
distinct-type-name

built-in-type:

CREATE FUNCTION (External Scalar)

Chapter 5. Statements 329

SMALLINT
INTEGER
INT

(5,0)
DECIMAL
DEC ,0

NUMERIC (integer)
, integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(1)
CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer)
CHAR

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer)

CLOB K
M
G

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME
TIMESTAMP

option-list:

(1)
LANGUAGE C
LANGUAGE JAVA

PARAMETER STYLE DB2SQL
PARAMETER STYLE JAVA

�

�
SPECIFIC specific-name

NOT DETERMINISTIC

DETERMINISTIC

READS SQL DATA

NO SQL
CONTAINS SQL

�

�
RETURNS NULL ON NULL INPUT
CALLED ON NULL INPUT

STATIC DISPATCH NO DBINFO

DBINFO
�

CREATE FUNCTION (External Scalar)

330 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

�
EXTERNAL ACTION

NO EXTERNAL ACTION

FENCED NO FINAL CALL

FINAL CALL ALLOW PARALLEL
DISALLOW PARALLEL

�

�
NO SCRATCHPAD

100
SCRATCHPAD

length

EXTERNAL
EXTERNAL NAME external-program-name

Notes:

1 This clause and the clauses that follow in the option-list can be specified in
any order. Each clause can be specified at most once.

Description
function-name

Names the user-defined function. If function-name is not qualified, it is
implicitly qualified with the default schema name. The schema must be a valid
schema name for functions, and the unqualified function name must not be
any of the reserved function names. The same name can be used for more than
one function in the same schema if the function signature of each function is
unique. For more information about naming functions, see “Choosing the
schema and function name” on page 325 and “Determining the uniqueness of
functions in a schema” on page 326.

(parameter-declaration,...)
Specifies the number of input parameters of the function and the data type of
each parameter. Each parameter-declaration specifies an input parameter for the
function. A maximum of 90 parameters can be specified. A function can have
no input parameters. For more information, see “Defining the parameters” on
page 326.

parameter-name
Names the parameter. Although not required, a parameter name can be
specified for each parameter. The name cannot be the same as any other
parameter-name in the parameter list.

data-type1
Specifies the data type of the input parameter. The data type can be a
built-in data type or a distinct type.

built-in-type
Specifies a built-in data type. For a more complete description of each
built-in data type, see “CREATE TABLE” on page 379. Some data types
are not supported in all languages. For details on the mapping
between the SQL data types and host language data types, see
“Attributes of the arguments of a routine program” on page 706.
Built-in data type specifications can be specified if they correspond to
the language that is used to write the user-defined function.

Parameters with a large object (LOB) data type are not supported
when PARAMETER STYLE JAVA is specified.

distinct-type-name
Specifies a user-defined distinct type. The length, precision, or scale
attributes for the parameter are those of the source type of the distinct

CREATE FUNCTION (External Scalar)

Chapter 5. Statements 331

type (those specified on CREATE DISTINCT TYPE). For more
information on creating a distinct type, see “CREATE DISTINCT
TYPE” on page 319.

If the name of the distinct type is unqualified, the database manager
resolves the schema name by searching the schemas in the SQL path.

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the
function instead of the actual value. Specify AS LOCATOR only for
parameters with a LOB data type or a distinct type that is based on a LOB
data type. AS LOCATOR must not be specified if the function is defined
with NO SQL. For more information on the AS LOCATOR clause, see
“Specifying AS LOCATOR for a parameter” on page 326.

RETURNS
Specifies the data type for the result of the function. Consider this clause in
conjunction with the optional CAST FROM clause.

data-type2
Specifies the data type of the result.

The same considerations that apply to the data type of input parameters,
as described under “data-type1” on page 331, apply to the data type of the
result of the function.

AS LOCATOR
Specifies that the function returns a locator to the value rather than the
actual value. Specify AS LOCATOR only if the result of the function
has a LOB data type or a distinct type that is based on a LOB data
type. AS LOCATOR must not be specified if the function is defined
with NO SQL. For more information on the AS LOCATOR clause, see
“Specifying AS LOCATOR for a parameter” on page 326.

data-type3 CAST FROM data-type4
Specifies the data type of the result of the function (data-type4) and the data
type in which that result is returned to the invoking statement (data-type3).
The two data types can be different. For example, for the following
definition, the function returns a DOUBLE value, which the database
manager converts to a DECIMAL value and then passes to the statement
that invoked the function:

CREATE FUNCTION SQRT(DECIMAL(15,0))
RETURNS DECIMAL(15,0)
CAST FROM DOUBLE
...

The value of data-type4 must not be a distinct type, and it must be castable
to data-type3. The value for data-type3 can be any built-in data type or
distinct type. For information on casting data types, see “Casting between
data types” on page 56.

AS LOCATOR
Specifies that the external program returns a locator to the value rather
than the value. The value that is represented by this locator is then cast
to data-type3. Specify AS LOCATOR only if data-type4 is a LOB data
type or a distinct type that is based on a LOB data type. AS LOCATOR
must not be specified if the function is defined with NO SQL. For
more information on the AS LOCATOR clause, see “Specifying AS
LOCATOR for a parameter” on page 326.

CREATE FUNCTION (External Scalar)

332 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

LANGUAGE
Specifies the language interface convention to which the body of the function
is written. All programs must be designed to run in the server’s environment.

C Specifies that the external function is written in C or C++. The database
manager will invoke the function using the C language calling
conventions.

JAVA
Specifies that the external function is written in Java. The database
manager will invoke the function, which must be a public static method of
the specified Java class.

When LANGUAGE JAVA is specified, specify the EXTERNAL NAME
clause with a valid external-java-routine-name. Do not specify LANGUAGE
JAVA when SCRATCHPAD, FINAL CALL, or DBINFO is specified.

PARAMETER STYLE
Specifies the conventions for passing parameters to and returning a value from
the function. For more information, see “Parameter passing for external
routines” on page 697.

DB2SQL
Specifies the parameter passing convention that supports passing null
values both as input and for output. PARAMETER STYLE DB2SQL must
be specified when LANGUAGE C is also specified. The parameters that are
passed between the invoking SQL statement and the function include the
following, in the order listed:
v n parameters for the input parameters that are specified for the function
v A parameter for the result of the function
v n parameters for the indicator variables for the input parameters
v A parameter for the indicator variable for the result
v The SQLSTATE that is to be returned to the database manager
v The qualified name of the function
v The specific name of the function
v The SQL diagnostic string that is to be returned to the database manager

The function can also pass from zero to three additional parameters:
v The scratchpad, if SCRATCHPAD is specified
v The call type, if FINAL CALL is specified
v The DBINFO structure, if DBINFO is specified

JAVA
Specifies that the user-defined function uses a convention for passing
parameters that conforms to the Java and SQLJ specifications.
PARAMETER STYLE JAVA must be specified when LANGUAGE JAVA is
also specified and cannot be specified with any other LANGUAGE value.

When PARAMETER STYLE JAVA is specified, do not specify
SCRATCHPAD, FINAL CALL, or DBINFO.

SPECIFIC specific-name
Specifies a unique name for the function. For more information on specific
names, see “Specifying a specific name for a function” on page 327.

CREATE FUNCTION (External Scalar)

Chapter 5. Statements 333

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results each time that the
function is invoked with the same input arguments. The default is NOT
DETERMINISTIC.

NOT DETERMINISTIC
Specifies that the function might not return the same result each time that
the function is invoked with the same input arguments. The function
depends on some state values that affect the results. The database manager
uses this information during optimization of SQL statements. An example
of a function that is not deterministic is one that generates random
numbers.

Some functions that are not deterministic might receive incorrect results if
the function is executed by parallel tasks. Specify the DISALLOW
PARALLEL clause for these functions.

DETERMINISTIC
Specifies that the function always returns the same result each time that
the function is invoked with the same input arguments. The database
manager uses this information during optimization of SQL statements. An
example of a deterministic function is a function that calculates the square
root of the input argument.

The database manager does not verify that the function program is consistent
with the specification of NOT DETERMINISTIC or DETERMINISTIC.

READS SQL DATA, NO SQL, or CONTAINS SQL
Specifies the classification of SQL statements that the function can execute. The
database manager verifies that the SQL statements that the function issues are
consistent with this specification. For the classification of each statement, see
“SQL statement data access classification for routines” on page 560. The default
is READS SQL DATA.

READS SQL DATA
Specifies that the function can execute statements with a data access
classification of READS SQL DATA, CONTAINS SQL, or NO SQL. The
function cannot execute SQL statements that modify data.

NO SQL
Specifies that the function can execute only SQL statements with a data
access classification of NO SQL.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data
access classification of CONTAINS SQL or NO SQL. The function cannot
execute any SQL statements that read or modify data.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
Specifies whether the function is called if any of the input arguments is null at
execution time.

RETURNS NULL ON NULL INPUT
Specifies that the function is not invoked if any of the input arguments is
null. The result is the null value.

CALLED ON NULL INPUT
Specifies that the function is to be invoked if any or all argument values
are null. This specification means that the function must be coded to test
for null argument values. The function can return a null or nonnull value.

CREATE FUNCTION (External Scalar)

334 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

STATIC DISPATCH
Specifies that the function is dispatched statically. All functions are are
statically dispatched.

NO DBINFO or DBINFO
Specifies whether additional status information is passed when the function is
invoked. The default is NO DBINFO.

NO DBINFO
Specifies that no additional information is passed.

DBINFO
Specifies that an additional argument is passed when the function is
invoked. The argument is a structure that contains information such as the
application run-time authorization ID, the schema name, and identification
of the database manager that invoked the function. For details about the
argument and its structure, see “Database information in external routines
(DBINFO)” on page 708 or the sqludf include file.

Do not specify DBINFO when LANGUAGE JAVA is specified.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an
object that the database manager does not manage. An example of an external
action is sending a message or writing a record to a file. The default is
EXTERNAL ACTION.

EXTERNAL ACTION
Specifies that the function can take an action that changes the state of an
object that the database manager does not manage.

Some functions with external actions might receive incorrect results if
parallel tasks execute the function. For example, if the function sends a
note for each initial call to it, one note is sent for each parallel task instead
of once for the function. Specify the DISALLOW PARALLEL clause for
functions that do not work correctly with parallelism.

NO EXTERNAL ACTION
Specifies that the function does not take any action that changes the state
of an object that the database manager does not manage. The database
manager uses this information during optimization of SQL statements.

The database manager does not verify that the function program is consistent
with the specification of EXTERNAL ACTION or NO EXTERNAL ACTION.

FENCED
Specifies that the external function runs in an environment that is isolated from
the database manager environment.

NO FINAL CALL or FINAL CALL
Specifies whether a final call is made to the function. A final call enables the
function to free any system resources that it has acquired. A final call is useful
when the function has been defined with the SCRATCHPAD keyword and the
function acquires system resource and stores them in the scratchpad. The
default is NO FINAL CALL.

NO FINAL CALL
Specifies that a final call is not made to the function. The function does not
receive an additional argument that specifies the type of call.

CREATE FUNCTION (External Scalar)

Chapter 5. Statements 335

FINAL CALL
Specifies that a final call is made to the function. To differentiate between
final calls and other calls, the function receives an additional argument that
specifies the type of call.

Do not specify FINAL CALL when LANGUAGE JAVA is specified.

The types of calls are:

First call
Specifies that this call is the first call to the function for this
reference to the function in this SQL statement. A first call is a
normal call. SQL arguments are passed, and the function is
expected to return a result.

Normal call
Specifies that SQL arguments are passed and the function is
expected to return a result.

Final call
Specifies that this call is the last call to the function, which enables
the function to free resources. A final call is not a normal call. A
final call occurs at these times:
v End of statement: When the cursor is closed for cursor-oriented

statements, or the execution of the statement has completed.
v End of a parallel task: When the function is executed by parallel

tasks.
v End of transaction: When normal end-of-statement processing

does not occur. For example, the logic of an application, for
some reason, bypasses the step of closing the cursor.

If a commit operation occurs while a cursor that is defined as
WITH HOLD is open, a final call is made when the cursor is
closed or the application ends. If a commit occurs at the end of a
parallel task, a final call is made regardless of whether a cursor
that is defined as WITH HOLD is open.

If a commit, or rollback causes the final call, the function cannot issue any
SQL statements except for the CLOSE statement.

Some functions that use a final call might receive incorrect results if
parallel tasks execute the function. For example, if a function sends a note
for each final call to it, one note is sent for each parallel task instead of
once for the function. Specify the DISALLOW PARALLEL clause for
functions that take inappropriate actions when executed in parallel.

ALLOW PARALLEL or DISALLOW PARALLEL
For a single reference to the function, specifies whether parallelism can be used
when the function is invoked. Although parallelism can be used for most
scalar functions, some functions, such as those that depend on a single copy of
the scratchpad, cannot be invoked with parallel tasks. Consider these
characteristics when determining which clause to use:
v If all invocations of the function are completely independent from one

another, specify ALLOW PARALLEL.
v If each invocation of the function updates the scratchpad, to provide values

that are of interest to the next invocation, such as incrementing a counter,
specify DISALLOW PARALLEL.

CREATE FUNCTION (External Scalar)

336 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

v If the scratchpad is used only so that some expensive initialization
processing is performed a minimal number of times, specify ALLOW
PARALLEL.

The default is DISALLOW PARALLEL if one or more of the following clauses
is specified: NOT DETERMINISTIC, EXTERNAL ACTION, FINAL CALL,
SCRATCHPAD. Otherwise, ALLOW PARALLEL is the default.

ALLOW PARALLEL
Specifies that the database manager can consider parallelism for the
function. The database manager is not required to use parallelism on the
SQL statement that invokes the function or on any SQL statement issued
from within the function. Existing restrictions on parallelism apply.

See the descriptions of NOT DETERMINISTIC, EXTERNAL ACTION,
SCRATCHPAD, and FINAL CALL for considerations that apply to
specification of ALLOW PARALLEL.

DISALLOW PARALLEL
Specifies that the database manager must not use parallelism for the
function.

NO SCRATCHPAD or SCRATCHPAD
Specifies whether the database manager provides a scratchpad for the function.
A scratchpad provides an area for the function to save information from one
invocation to the next. The default is NO SCRATCHPAD.

NO SCRATCHPAD
Specifies that a scratchpad is not allocated and passed to the function.

SCRATCHPAD length
Specifies that when the function is invoked for the first time, the database
manager allocates memory for a scratchpad. A scratchpad has the
following characteristics:
v length must be between 1 and 32767. The default value is 100 bytes.
v The database manager initializes the scratchpad to all binary zeros

(X'00').
v The scope of a scratchpad is the SQL statement. Each reference to the

function in an SQL statement, has one scratchpad. For example,
assuming that function UDFX was defined with the SCRATCHPAD
keyword, three scratchpads are allocated for the three references to
UDFX in the following SQL statement:

SELECT A, UDFX(A)
FROM TABLEB
WHERE UDFX(A) > 103

OR UDFX(A) < 19;

If the function is run under parallel tasks, one scratchpad is allocated for
each parallel task of each reference to the function in the SQL statement.
This can lead to unpredictable results. For example, if a function uses
the scratchpad to count the number of times that it is invoked, the count
reflects the number of invocations done by the parallel task and not by
the SQL statement. Specify the DISALLOW PARALLEL clause for
functions that will not work correctly with parallelism.

v The scratchpad is persistent. The database manager preserves its content
from one invocation of the function to the next. Any changes that the
function makes to the scratchpad on one call are still there on the next
call. The database manager initializes the scratchpads when it begins to

CREATE FUNCTION (External Scalar)

Chapter 5. Statements 337

execute an SQL statement. The database manager does not reset
scratchpads when a correlated subquery begins to execute.

v The scratchpad can be a central point for the system resources that the
function acquires. If the function acquires system resources, specify
FINAL CALL to ensure that the database manager calls the function one
more time so that the function can free those system resources.

Each time that the function invoked, the database manager passes an
additional argument to the function that contains the address of the
scratchpad.

Do not specify SCRATCHPAD when LANGUAGE JAVA is specified.

EXTERNAL
Specifies that the CREATE FUNCTION statement is being used to define a new
function that is based on code that is written in an external programming
language.

If the NAME clause is not specified, ’NAME function-name’ is implicit. In this
case, function-name must not be longer than 8 characters. For more information
on the maximum length of an external program name, see Appendix A, “SQL
limits”, on page 551. The NAME clause is required for a LANGUAGE JAVA
function because the default name is not valid for a Java function.

NAME external-program-name
Specifies the program that is to be executed when the function is invoked.
The executable form of the external program need not exist when the
CREATE FUNCTION statement is executed. However, it must exist at the
current server when the function is invoked.

If a JAR is referenced, the JAR must exist when the function is created.

Notes
General considerations for defining user-defined functions: For general
information on defining user-defined functions, see “CREATE FUNCTION” on
page 325.

Owner privileges: The owner is authorized to execute the function and has the
ability to grant these privileges to others. For more information, see “GRANT
(Function or Procedure Privileges)” on page 450. For more information on
ownership of the object, see “Authorization, privileges and object ownership” on
page 11.

Language considerations: A C program must be written to run as a subroutine.

For information on creating the programs for a function, see Appendix L, “Coding
programs for use by external routines”, on page 697.

Examples
Example 1: Assume an external function program in C is needed that implements
the following logic:

rslt = 2 * input - 4

The function should return a null value if and only if one of the input arguments
is null. The simplest way to avoid a function call and get a null result when an

CREATE FUNCTION (External Scalar)

338 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

input value is null is to specify RETURNS NULL ON NULL INPUT on the
CREATE FUNCTION statement. The following statement defines the function,
using the specific name MINENULL1.

CREATE FUNCTION NTEST1 (SMALLINT)
RETURNS SMALLINT
EXTERNAL NAME NTESTMOD
SPECIFIC MINENULL1
LANGUAGE C
DETERMINISTIC
NO SQL
FENCED
PARAMETER STYLE DB2SQL
RETURNS NULL ON NULL INPUT
NO EXTERNAL ACTION

Example 2: Assume that a user wants to define an external function named
CENTER. The function program will be written in C. The following statement
defines the function, and lets the database manager generate a specific name for
the function.

CREATE FUNCTION CENTER (INTEGER, FLOAT)
RETURNS FLOAT
LANGUAGE C
DETERMINISTIC
NO SQL
PARAMETER STYLE DB2SQL
NO EXTERNAL ACTION

Example 3: Assume that user McBride (who has administrative authority) wants to
define an external function named CENTER in the SMITH schema. McBride plans
to give the function specific name FOCUS98. The function program uses a
scratchpad to perform some one-time only initialization and save the results. The
function program returns a value with a DOUBLE data type. The following
statement written by user McBride defines the function and ensures that when the
function is invoked, it returns a value with a data type of DECIMAL(8,4).

CREATE FUNCTION SMITH.CENTER (DOUBLE, DOUBLE, DOUBLE)
RETURNS DECIMAL(8,4)
CAST FROM DOUBLE
EXTERNAL NAME CMOD
SPECIFIC FOCUS98
LANGUAGE C
DETERMINISTIC
NO SQL
FENCED
PARAMETER STYLE DB2SQL
NO EXTERNAL ACTION
SCRATCHPAD
NO FINAL CALL

Example 4: The following example defines a Java user-defined function that returns
the position of the first vowel in a string. The user-defined function is written in
Java, is to be run fenced, and is the FINDVWL method of class JAVAUDFS.

CREATE FUNCTION FINDV (VARCHAR(32000))
RETURNS INTEGER
FENCED
LANGUAGE JAVA
PARAMETER STYLE JAVA
EXTERNAL NAME ’JAVAUDFS.FINDVWL’
NO EXTERNAL ACTION
CALLED ON NULL INPUT
DETERMINISTIC
NO SQL

CREATE FUNCTION (External Scalar)

Chapter 5. Statements 339

CREATE FUNCTION (External Table)
The CREATE FUNCTION (External Table) statement creates an external table
function at the current server. A user-defined external table function can be used in
the FROM clause of a subselect, and it returns a table to the subselect by returning
one row at a time each time it is invoked.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The privilege to create in the schema
v Administrative authority.

For each distinct type referenced in the statement, the authorization ID of the
statement must include at least one of the following:
v The USAGE privilege for the distinct type
v Ownership of the distinct type
v Administrative authority.

Syntax

�� CREATE FUNCTION function-name

�

()
,

parameter-declaration

�

� �

,

RETURNS TABLE (column-name data-type2)
AS LOCATOR

option-list ��

parameter-declaration:

parameter-name
data-type1

AS LOCATOR

data-type1, data-type2:

built-in-type
distinct-type-name

built-in-type:

CREATE FUNCTION (External Table)

340 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SMALLINT
INTEGER
INT

(5,0)
DECIMAL
DEC ,0

NUMERIC (integer)
, integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(1)
CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer)
CHAR

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer)

CLOB K
M
G

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME
TIMESTAMP

option-list:

(1)
LANGUAGE C PARAMETER STYLE DB2SQL

SPECIFIC specific-name
�

�
NOT DETERMINISTIC

DETERMINISTIC

READS SQL DATA

NO SQL
CONTAINS SQL

RETURNS NULL ON NULL INPUT
CALLED ON NULL INPUT

�

�
STATIC DISPATCH NO DBINFO

DBINFO

EXTERNAL ACTION

NO EXTERNAL ACTION

FENCED
�

CREATE FUNCTION (External Table)

Chapter 5. Statements 341

�
NO FINAL CALL

FINAL CALL
DISALLOW PARALLEL

NO SCRATCHPAD

100
SCRATCHPAD

length

�

� EXTERNAL
EXTERNAL NAME external-program-name CARDINALITY length

Notes:

1 This clause and the clauses that follow in the option-list can be specified in
any order. Each clause can be specified at most once.

Description
function-name

Names the user-defined function. If function-name is not qualified, it is
implicitly qualified with the default schema name. The schema must be a valid
schema name for functions, and the unqualified function name must not be
any of the reserved function names. The same name can be used for more than
one function in the same schema if the function signature of each function is
unique. For more information about naming functions, see “Choosing the
schema and function name” on page 325 and “Determining the uniqueness of
functions in a schema” on page 326.

(parameter-declaration,...)
Specifies the number of input parameters of the function and the data type of
each parameter. Each parameter-declaration specifies an input parameter for the
function. A maximum of 90 parameters can be specified. A function can have
no input parameters. For more information, see “Defining the parameters” on
page 326.

parameter-name
Names the parameter. Although not required, a parameter name can be
specified for each parameter. The name cannot be the same as any other
parameter-name in the parameter list.

data-type1
Specifies the data type of the input parameter. The data type can be a
built-in data type or a distinct type.

built-in-type
Specifies a built-in data type. For a more complete description of each
built-in data type, see “CREATE TABLE” on page 379. Some data types
are not supported in all languages. For details on the mapping
between the SQL data types and host language data types, see
“Attributes of the arguments of a routine program” on page 706.
Built-in data type specifications can be specified if they correspond to
the language that is used to write the user-defined function.

distinct-type-name
Specifies a distinct type. The length, precision, or scale attributes a
distinct type parameter are those of the source type of the distinct type
(those specified on CREATE DISTINCT TYPE). For more information
on creating a distinct type, see “CREATE DISTINCT TYPE” on
page 319.

CREATE FUNCTION (External Table)

342 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

If the name of the distinct type is unqualified, the database manager
resolves the schema name by searching the schemas in the SQL path.

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the
function instead of the actual value. Specify AS LOCATOR only for
parameters with a LOB data type or a distinct type that is based on a LOB
data type. AS LOCATOR must not be specified if the function is defined
with NO SQL. For more information on the AS LOCATOR clause, see
“Specifying AS LOCATOR for a parameter” on page 326.

RETURNS TABLE
Specifies that the output of the function is a table. The parenthesis that follow
this clause enclose a list of names and the data types of the columns of the
result table. For example: more than (247 - (n*2))/2 columns must not be
specified, where n is the number of columns of the result table.

column-name
Specifies the name of this column. The name must not be qualified and
must not be the same as any other column-name in the RETURNS TABLE
clause.

data-type2
Specifies the data type of the column.

The same considerations that apply to the data type of input parameters,
as described under “data-type1” on page 342, apply to the data type of the
columns of the result table of the function.

AS LOCATOR
Specifies that the function returns a locator to the value rather than the
actual value. Specify AS LOCATOR only if the column of the result
table of the function has a LOB data type or a distinct type that is
based on a LOB data type. AS LOCATOR must not be specified if the
function is defined with NO SQL. For more information on the AS
LOCATOR clause, see “Specifying AS LOCATOR for a parameter” on
page 326.]

LANGUAGE
Specifies the language interface convention to which the body of the
function is written. All programs must be designed to run in the server’s
environment.

C Specifies that the external function is written in C or C++. The
database manager will invoke the function using the C language
calling conventions.

PARAMETER STYLE
Specifies the conventions for passing parameters to and returning a value
from the function. For more information, see “Parameter passing for
external routines” on page 697.

DB2SQL
Specifies the parameter passing convention that supports passing null
values both as input and for output. The parameters that are passed
between the invoking SQL statement and the function include the
following, in the order listed:
v n parameters for the input parameters that are specified for the

function

CREATE FUNCTION (External Table)

Chapter 5. Statements 343

v m parameters for the result columns of the function that are
specified on the RETURNS TABLE clause

v n parameters for the indicator variables for the input parameters
v m parameters for the indicator variables of the result columns of the

function that are specified on the RETURNS TABLE clause
v The SQLSTATE that is to be returned to the database manager
v The qualified name of the function
v The specific name of the function
v The SQL diagnostic string that is to be returned to the database

manager

The function passes from one to three additional arguments,
depending on other options that are specified:
v The scratchpad, if SCRATCHPAD is specified
v The call type
v The DBINFO structure, if DBINFO is specified

SPECIFIC specific-name
Specifies a unique name for the function. For more information on specific
names, see “Specifying a specific name for a function” on page 327.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results each time that the
function is invoked with the same input arguments. The default is NOT
DETERMINISTIC.

NOT DETERMINISTIC
Specifies that the function might not return the same result table each
time that the function is invoked with the same input arguments even
when the referenced data in the database has not changed. The
function depends on some state values that affect the results. The
database manager uses this information during optimization of SQL
statements.

DETERMINISTIC
Specifies that the function always returns the same result table each
time that the function is invoked with the same input arguments
provided the referenced data in the database has not changed. The
database manager uses this information during optimization of SQL
statements.

The database manager does not verify that the function program is
consistent with the specification of NOT DETERMINISTIC or
DETERMINISTIC.

READS SQL DATA, NO SQL, or CONTAINS SQL
Specifies the classification of SQL statements that the function can execute.
The database manager verifies that the SQL statements that the function
issues are consistent with this specification. For the classification of each
statement, see “SQL statement data access classification for routines” on
page 560. The default is READS SQL DATA.

READS SQL DATA
Specifies that function can execute statements with a data access
indication of READS SQL DATA, CONTAINS SQL, or NO SQL. The
function cannot execute SQL statements that modify data.

CREATE FUNCTION (External Table)

344 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

NO SQL
Specifies that the function cannot execute any SQL statements.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data
access indication of CONTAINS SQL. The function cannot execute any
SQL statements that read or modify data.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
Specifies whether the function is called if any of the input arguments is
null at execution time.

RETURNS NULL ON NULL INPUT
Specifies that the function is not invoked if any of the input arguments
is null. The result is an empty table (a table with no rows).

CALLED ON NULL INPUT
Specifies that the function is to be invoked if any or all argument
values are null. This specification means that the body of the function
must be coded to test for null argument values. An empty table might
be returned depending on the logic in the body of the function.

STATIC DISPATCH
Specifies that the function is dispatched statically. All functions are
statically dispatched.

NO DBINFO or DBINFO
Specifies whether additional status information is passed when the
function is invoked. The default is NO DBINFO.

NO DBINFO
Specifies that no additional information is passed.

DBINFO
Specifies that an additional argument is passed when the function is
invoked. The argument is a structure that contains information such as
the application run-time authorization ID, the schema name, and
identification of the database manager that invoked the function. For
details about the argument and its structure, see “Database information
in external routines (DBINFO)” on page 708 or the sqludf include file.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an
object that the database manager does not manage. An example of an
external action is sending a message or writing a record to a file. The
default is EXTERNAL ACTION.

EXTERNAL ACTION
Specifies that the function can take an action that changes the state of
an object that the database manager does not manage.

NO EXTERNAL ACTION
Specifies that the function does not take any action that changes the
state of an object that the database manager does not manage. The
database manager uses this information during optimization of SQL
statements.

The database manager does not verify that the function program is
consistent with the specification of EXTERNAL ACTION or NO
EXTERNAL ACTION.

CREATE FUNCTION (External Table)

Chapter 5. Statements 345

FENCED
Specifies that the external function runs in an environment that is isolated
from the database manager environment.

NO FINAL CALL or FINAL CALL
Specifies whether a separate first call and final call are made to the function.
To differentiate between types of calls, the function receives an additional
argument that specifies the type of call. For table functions, the call-type
argument is always present (regardless of whether FINAL CALL or NO
FINAL CALL is in effect), and it indicates first call, open call, fetch call,
close call, or final call.

With NO FINAL CALL, the database manager will only make three types
of calls to the table function: open, fetch and close. However, if FINAL
CALL is specified, then in addition to open, fetch and close, a first call and
a final call can be made to the table function.

A final call enables the function to free any system resources that it has
acquired. A final call is useful when the function has been defined with the
SCRATCHPAD keyword and the function acquires system resource and
stores them in the scratchpad. The default is NO FINAL CALL.

NO FINAL CALL
Specifies that separate first and final calls are not made to the function.
However the open, fetch, and close calls are still made to the function,
and the table function always receives an additional argument that
specifies the type of call.

FINAL CALL
Specifies that separate first and final calls are made to the function. It
also controls when the scratchpad is re-initialized.

The types of calls are:

First call
Specifies that this call is the first call to the function for this
reference to the function in this SQL statement. The scratch pad is
initialized to zeroes.

Open call
Specifies that this call is a call to open the table function result in
this SQL statement. If NO FINAL CALL is specified, then the
scratch pad is initialized to zeroes.

Fetch call
Specifies that this call is a call to fetch a row from the table
function result in this SQL statement.

Close call
Specifies that this call is a call to close the table function result in
this SQL statement.

Final call
Specifies that this call is the last call to the function, which enables
the function to free resources. If an error occurs, the database
manager attempts to make the final call. A final call occurs at these
times:
v End of statement: When the cursor is closed for cursor-oriented

statements, or the execution of the statement has completed.

CREATE FUNCTION (External Table)

346 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

v End of transaction: When normal end-of-statement processing
does not occur. For example, the logic of an application, for
some reason, bypasses the step of closing the cursor.

v Close of a cursor: If a cursor that references the table function is
defined as WITH HOLD, a final call is made when the cursor is
closed.

If a commit, or rollback causes the final call, the function cannot issue any
SQL statements except for the CLOSE statement.

DISALLOW PARALLEL
Specifies that the function cannot be run in parallel. Table functions cannot run
in parallel.

NO SCRATCHPAD or SCRATCHPAD
Specifies whether the database manager provides a scratchpad for the function.
A scratchpad provides an area for the function to save information from one
invocation to the next. The default is NO SCRATCHPAD.

NO SCRATCHPAD
Specifies that a scratchpad is not allocated and passed to the function.

SCRATCHPAD length
Specifies that when the function is invoked for the first time, the database
manager allocates memory for a scratchpad. A scratchpad has the
following characteristics:
v length must be between 1 and 32767. The default value is 100 bytes.
v The database manager initializes the scratchpad to all binary zeros

(X'00').
v The scope of a scratchpad is the SQL statement. Each reference to the

function in an SQL statement, has one scratchpad. For example,
assuming that function UDFX was defined with the SCRATCHPAD
keyword, two scratch pads are allocated for the two references to UDFX
in the following SQL statement:

SELECT *
FROM TABLE (UDFX(A)), TABLE (UDFX(B));

v The scratchpad is persistent. The database manager preserves its content
from one invocation of the function to the next. Any changes that the
function makes to the scratchpad on one call are still there on the next
call. The database manager initializes the scratchpads when it begins to
execute an SQL statement. The database manager does not reset
scratchpads when a correlated subquery begins to execute.

v The scratchpad can be a central point for the system resources that the
function acquires. If the function acquires system resources, specify
FINAL CALL to ensure that the database manager calls the function one
more time so that the function can free those system resources.

Each time the function is invoked, the database manager passes an
additional argument for the scratchpad.

EXTERNAL
Specifies that the CREATE FUNCTION statement is being used to define a new
function that is based on code that is written in an external programming
language.

CREATE FUNCTION (External Table)

Chapter 5. Statements 347

If the NAME clause is not specified, ’NAME function-name’ is implicit. In this
case, function-name must not be longer than 8 characters. For more information
on the maximum length of an external program name, see Appendix A, “SQL
limits”, on page 551.

NAME external-program-name
Specifies the program that is to be executed when the function is invoked.
The executable form of the external program need not exist when the
CREATE FUNCTION statement is executed. However, it must exist at the
current server when the function is invoked.

CARDINALITY
Specifies an estimate of the expected number of rows to be returned by the
function for the database manager to use during optimization. integer must be
in the range from 0 to 2 147 483 647 inclusive. The database manager assumes
a finite value if CARDINALITY is not specified.

A table function that returns a row every time it is called and never returns the
end-of-table condition has infinite cardinality. A query that invokes such a
function and requires an eventual end-of-table condition before it can return
any data will not return unless interrupted. Table functions that never return
the end-of-table condition should not be used in queries involving DISTINCT,
GROUP BY or ORDER BY.

Notes
General considerations for defining user-defined functions: For general
information on defining user-defined functions, see “CREATE FUNCTION” on
page 325.

Owner privileges: The owner is authorized to execute the function and has the
ability to grant these privileges to others. For more information on the EXECUTE
privilege, see “GRANT (Function or Procedure Privileges)” on page 450. For more
information on ownership of the object, see “Authorization, privileges and object
ownership” on page 11.

Language considerations: A C program must be written to run as a subroutine.

For information on creating the programs for a function, see Appendix L, “Coding
programs for use by external routines”, on page 697.

Examples
Example 1: The following example creates a table function written to return a row
consisting of a single document identifier column for each known document in a
text management system. The first parameter matches a given subject area and the
second parameter contains a given string.

Within the context of a single session, the table function always returns the same
table; therefore, it is defined as DETERMINISTIC. In addition, the DISALLOW
PARALLEL clause is added because table functions cannot operate in parallel.

Although the size of the output for DOCMATCH is highly variable,
CARDINALITY 20 is a representative value and is specified to help the database
manager during optimization.

CREATE FUNCTION DOCMATCH (VARCHAR(30),VARCHAR(255))
RETURNS TABLE (DOC_ID CHAR(16))
EXTERNAL NAME ABC
LANGUAGE C

CREATE FUNCTION (External Table)

348 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

PARAMETER STYLE DB2SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION
FENCED
SCRATCHPAD
FINAL CALL
DISALLOW PARALLEL
CARDINALITY 20

CREATE FUNCTION (External Table)

Chapter 5. Statements 349

CREATE FUNCTION (Sourced)
The CREATE FUNCTION (Sourced) statement is used to define a user-defined
function that is based on an existing scalar or column function at the current
server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The privilege to create in the schema
v Administrative authority

The privileges held by the authorization ID of the statement must include at least
one of the following:
v The EXECUTE privilege for the function identified in the SOURCE clause
v Administrative authority

For each distinct type referenced in the statement, the authorization ID of the
statement must include at least one of the following:
v The USAGE privilege for the distinct type
v Ownership of the distinct type
v Administrative authority.

Syntax

�� CREATE FUNCTION function-name

�

(1)
()

,

parameter-declaration

�

� RETURNS data-type2
SPECIFIC specific-name

�

�

�

SOURCE function-name
()

,

parameter-type
SPECIFIC qualified-specific-name

��

parameter-declaration:

parameter-name
data-type1

CREATE FUNCTION (Sourced)

350 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Notes:

1 RETURNS, SPECIFIC, and SOURCE can be specified in any order.

data-type1, data-type2, data-type3:

built-in-type
distinct-type-name

built-in-type:

SMALLINT
INTEGER
INT

(5,0)
DECIMAL
DEC ,0

NUMERIC (integer)
, integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(1)
CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer)
CHAR

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer)

CLOB K
M
G

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME
TIMESTAMP

parameter-type:

(1)
data-type3

AS LOCATOR

CREATE FUNCTION (Sourced)

Chapter 5. Statements 351

Notes:

1 Empty parentheses are allowed for some data types specified in this context.

Description
function-name

Names the user-defined function. If function-name is not qualified, it is
implicitly qualified with the default schema name. The schema must be a valid
schema name for functions, and the unqualified function name must not be
any of the reserved function names. The same name can be used for more than
one function in the same schema if the function signature of each function is
unique. For more information about naming functions, see “Choosing the
schema and function name” on page 325 and “Determining the uniqueness of
functions in a schema” on page 326.

(parameter-declaration,...)
Specifies the number of input parameters of the function and the data type of
each parameter. Each parameter-declaration specifies an input parameter for the
function. A maximum of 90 parameters can be specified. A function can have
no input parameters. For more information, see “Defining the parameters” on
page 326.

parameter-name
Names the parameter. Although not required, a parameter name can be
specified for each parameter. The name cannot be the same as any other
parameter-name in the parameter list.

data-type1
Specifies the data type of the parameter. The data type can be a built-in
data type or a distinct type.

Any valid SQL data type can be used provided that it is castable to the
type of the corresponding parameter of the function that is identifed in the
SOURCE clause. (For more information, see “Casting between data types”
on page 56.) However, this checking does not guarantee that an error will

not occur when the function is invoked. For more information, see
“Considerations for invoking a sourced user-defined function” on page 355.

built-in-type
Specifies a built-in data type. For a more complete description of each
built-in data type, see “CREATE TABLE” on page 379.

distinct-type-name
Specifies a user-defined distinct type. The length, precision, or scale
attributes for the parameter are those of the source type of the distinct
type (those specified on CREATE DISTINCT TYPE). For more
information on creating a distinct type, see “CREATE DISTINCT
TYPE” on page 319.

If the name of the distinct type is unqualified, the database manager
resolves the schema name by searching the schemas in the SQL path.

RETURNS
Specifies the result of the function.

data-type2
Specifies the data type of the result.

The data type can be a built-in data type or distinct type. The data type of
the final result of the source function must match or be castable to the
result of the sourced function. (For information about casting data types,

CREATE FUNCTION (Sourced)

352 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

see “Casting between data types” on page 56.) However, this checking does
not guarantee that an error will not occur when this new function is
invoked. For more information, see “Considerations for invoking a sourced
user-defined function” on page 355.

SPECIFIC specific-name
Specifies a unique name for the function. For more information on specific
names, see “Specifying a specific name for a function” on page 327.

SOURCE
Specifies that the new function is being defined is a sourced function. A sourced
function is implemented by another function (the source function). The function
must be a scalar or column function that exists at the current server, and it
must be one of the following types of functions:
v A function that was defined with a CREATE FUNCTION statement
v A cast function that was generated by a CREATE DISTINCT TYPE statement
v A built-in function

If the source function is not a built-in function, the particular function can be
identified by its name, function signature, or specific name.

If the source function is a built-in function, the SOURCE clause must include a
function signature for the built-in function. The source function must not be
any of the following built-in functions (If a particular syntax is shown, only the
indicated form cannot be specified.):
v BLOB when more than one argument is specified
v CHAR when more than one argument is specified
v CLOB when more than one argument is specified
v COUNT(*)
v COUNT_BIG(*)
v COALESCE
v DBCLOB when more than one argument is specified
v DECIMAL when more than one argument is specified
v GRAPHIC when more than one argument is specified
v MAX
v MIN
v NULLIF
v TRANSLATE when more than one argument is specified
v VARCHAR when more than one argument is specified
v VARGRAPHIC when more than one argument is specified
v VALUE

function-name
Identifies the function that is to be used as the source function. The source
function can be defined with any number of parameters. If more than one
function is defined with the specified name in the specified or implicit
schema, an error is returned.

If an unqualified function-name is specified, the SQL path is used to locate
the function. The database manager selects the first schema that has only
one function with this name on which the user has EXECUTE authority.
An error is returned if a function is not found, or if the database manager
encounters a schema that has more than one function with this name.

CREATE FUNCTION (Sourced)

Chapter 5. Statements 353

function-name (parameter-type,...)
Identifies the function that is to be used as the source function by its
function signature, which uniquely identifies the function. The
function-name (parameter-type,...) must identify a function with the specified
signature. The specified parameters must match the data types in the
corresponding position that were specified when the function was created.
The database manager uses the number of data types and the logical
concatenation of the data types to identify the specific function instance.
Synonyms for data types are considered a match.

If function-name() is specified, the identified function must have zero
parameters.

To use a built-in function as the source function, this syntax variation must
be used.

function-name
Identifies the name of the source function. If an unqualified name is
specified, the schemas of the SQL path are searched. Otherwise, the
database manager searches for the function in the specified schema.

parameter-type,...
Identifies the parameters of the function.

If an unqualified distinct type name is specified, the database manager
searches the SQL path to resolve the schema name for the distinct type.

Empty parentheses are allowed for some data types that are specified
in this context. For data types that have a length, precision, or scale
attribute, use one of the following specifications:
v Empty parentheses indicate that the database manager ignores the

attribute when determining whether the data types match. For
example, DEC() is considered a match for a parameter of a function
that is defined with a data type of DEC(7,2). However, FLOAT
cannot be specified with empty parentheses because its parameter
value indicates a specific data type (REAL or DOUBLE).

v If a specific value for a length, precision, or scale attribute is
specified, the value must exactly match the value that was specified
(implicitly or explicitly) in the CREATE FUNCTION statement. If the
data type is FLOAT, the precision does not need to exactly match the
value that was specified because matching is based on the data type
(REAL or DOUBLE).

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default attributes of the data type
are implied. The implicit length must exactly match the value that
was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this
parameter. If AS LOCATOR is specified, the data type must be a LOB
or distinct type that is based on a LOB.

SPECIFIC qualified-specific-name
Identifies the function that is to be used as the source function by its
specific name. The qualified-specific-name must identify a specific function
that exists in the specified or implicit schema.

CREATE FUNCTION (Sourced)

354 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Notes
General considerations for defining user-defined functions: For general
information on defining user-defined functions, see “CREATE FUNCTION” on
page 325.

Owner privileges: The owner is authorized to execute the function.
v If the underlying function is a user-defined function, and the owner is

authorized with the grant option to execute the underlying function, then the
privilege on the new function includes the grant option. Otherwise, the owner
can execute the new function but cannot grant others the privilege to do so.

v If the underlying function is a built-in function, the owner is authorized with the
grant option to execute the underlying built-in function and the privilege on the
new function includes the grant option.

For more information on the EXECUTE privilege for functions, see “GRANT
(Function or Procedure Privileges)” on page 450. For more information on
ownership of the object, see “Authorization, privileges and object ownership” on
page 11.

Considerations for invoking a sourced user-defined function: When a sourced
function is invoked, each argument to the function is assigned to the associated
parameter defined for the function. The values are then cast (if necessary) to the
data type of the corresponding parameters of the underlying function. An error can
occur either in the assignment or in the cast. For example, an argument passed on
input to a function that matches the data type and length or precision attributes of
the parameter for the function might not be castable if the corresponding
parameter of the underlying source function has a shorter length or less precision.
It is recommended that the data types of the parameters of a sourced function be
defined with attributes that are less than or equal to the attributes of the
corresponding parameters of the underlying function.

The result of the underlying function is assigned to the RETURNS data type of the
sourced function. The RETURNS data type of the underlying function might not be
castable to the RETURNS data type of the source function. This can occur when
the RETURNS data type of this new source function has a shorter length or less
precision than the RETURNS data type of the underlying function. For example, an
error would occur when function A is invoked assuming the following functions
exist. Function A returns an INTEGER. Function B is a sourced function, is defined
to return a SMALLINT, and the definition references function A in the SOURCE
clause. It is recommended that the RETURNS data type of a sourced function be
defined with attributes that are the same or greater than the attributes defined for
the RETURNS data type of the underlying function.

Considerations when the function is based on a user-defined function: If the
sourced function is based directly or indirectly on an external scalar function, the
sourced function inherits the attributes defined by the options specified implicitly
or explicitly when the external scalar function was created. This can involve
several layers of sourced functions. For example, assume that function A is sourced
on function B, which in turn is sourced on function C. Function C is an external
scalar function. Functions A and B inherit all of the attributes that are specified on
the EXTERNAL clause of the CREATE FUNCTION statement for function C.

CREATE FUNCTION (Sourced)

Chapter 5. Statements 355

Examples
Example 1: Assume that distinct type HATSIZE is defined and is based on the
built-in data type INTEGER. An AVG function could be defined to compute the
average hat size of different departments. Create a sourced function that is based
on built-in function AVG.

CREATE FUNCTION AVG (HATSIZE)
RETURNS HATSIZE
SOURCE AVG (INTEGER)

The syntax of the SOURCE clause includes an explicit parameter list because the
source function is a built-in function.

When distinct type HATSIZE was created, two cast functions were generated,
which allow HATSIZE to be cast to INTEGER for the argument and INTEGER to
be cast to HATSIZE for the result of the function.

Example 2: After Smith created the external scalar function CENTER in his schema,
there is a need to use this function, function, but the invocation of the function
needs to accept two INTEGER arguments instead of one INTEGER argument and
one DOUBLE argument. Create a sourced function that is based on CENTER.

CREATE FUNCTION MYCENTER (INTEGER, INTEGER)
RETURNS DOUBLE
SOURCE SMITH.CENTER (INTEGER, DOUBLE);

CREATE FUNCTION (Sourced)

356 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

CREATE FUNCTION (SQL Scalar)
This statement is used to define a user-defined SQL scalar function at the current
server. A scalar function returns a single value each time it is invoked.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The privilege to create in the schema
v Administrative authority

For each distinct type referenced in the statement, the privileges held by the
authorization ID of the statement must include at least one of the following:
v The USAGE privilege for the distinct type
v Ownership of the distinct type
v Administrative authority.

Syntax

�� CREATE FUNCTION function-name

�

()
,

parameter-declaration

�

� RETURNS data-type2 LANGUAGE SQL option-list SQL-routine-body ��

parameter-declaration:

parameter-name data-type1

data-type1, data-type2:

built-in-type
distinct-type-name

built-in-type:

CREATE FUNCTION (SQL Scalar)

Chapter 5. Statements 357

SMALLINT
INTEGER
INT

(5,0)
DECIMAL
DEC ,0

NUMERIC (integer)
, integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(1)
CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer)
CHAR

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer)

CLOB K
M
G

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME
TIMESTAMP

option-list:

(1)

SPECIFIC specific-name

NOT DETERMINISTIC

DETERMINISTIC
�

�
EXTERNAL ACTION

NO EXTERNAL ACTION

READS SQL DATA

CONTAINS SQL

STATIC DISPATCH
�

�
CALLED ON NULL INPUT

CREATE FUNCTION (SQL Scalar)

358 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SQL-routine-body:

RETURN expression
NULL

Notes:

1 This clause and the clauses that follow in the option-list can be specified in
any order. Each clause may be specified at most once.

Description
function-name

Names the user-defined function. If function-name is not qualified, it is
implicitly qualified with the default schema name. The schema must be a valid
schema name for functions, and the unqualified function name must not be
any of the reserved function names. The same name can be used for more than
one function in the same schema if the function signature of each function is
unique. For more information about naming functions, see “Choosing the
schema and function name” on page 325 and “Determining the uniqueness of
functions in a schema” on page 326.

(parameter-declaration,...)
Specifies the number of input parameters of the function and the name and
data type of each parameter. Each parameter-declaration specifies an input
parameter for the function. A maximum of 90 parameters can be specified. A
function can have no input parameters. For more information, see “Defining
the parameters” on page 326.

parameter-name
Names the input parameter. The name is used to refer to the parameter
within the body of the function. The name cannot be the same as any other
parameter-name in the parameter list.

data-type1
Specifies the data type of the input parameter. The data type can be a
built-in data type or a distinct type.

built-in-type
Specifies a built-in data type. For a more complete description of each
built-in data type, see “CREATE TABLE” on page 379.

distinct-type-name
Specifies a distinct type. The length, precision, or scale attributes for a
distinct type parameter are those of the source type of the distinct type
(those specified on CREATE DISTINCT TYPE). For more information
on creating a distinct type, see “CREATE DISTINCT TYPE” on
page 319.

If the name of the distinct type is unqualified, the database manager
resolves the schema name by searching the schemas in the SQL path.

RETURNS
Specifies the result of the function.

data-type2
Specifies the data type of the result.

Similar considerations that apply to the data type of the input parameters,
as described in “Defining the parameters” on page 326, apply to the data
type of the result of the function.

CREATE FUNCTION (SQL Scalar)

Chapter 5. Statements 359

LANGUAGE SQL
Specifies that the function is written exclusively in SQL.

SPECIFIC specific-name
Specifies a unique name for the function. For more information, see
“Specifying a specific name for a function” on page 327.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results for identical input
arguments. The default is NOT DETERMINISTIC.

NOT DETERMINISTIC
Specifies that the function might not return the same result each time that
the function is invoked with the same input arguments. The function
depends on some state values that affect the results. The database manager
uses this information during optimization of SQL statements. An example
of a function that is not deterministic is one that generates random
numbers.

Some functions that are not deterministic might receive incorrect results if
the function is executed by parallel tasks.

DETERMINISTIC
Specifies that the function always returns the same result each time that
the function is invoked with the same input arguments. The database
manager uses this information during optimization of SQL statements. An
example of a function that is deterministic is one that calculates the square
root of the input argument.

The body of the SQL routine must be consistent with the specification of the
implicit or explicit specification of DETERMINISTIC or NOT DETERMINISTIC.
A function that is defined as DETERMINISTIC must not invoke another
function that is defined as NOT DETERMINISTIC, nor can it reference a
special register. For example, an SQL function could invoke the RAND built-in
function in the RETURN statement. NOT DETERMINISTIC must be specified
in the CREATE FUNCTION statement for such a function.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function can take an action that changes the state of an
object that the database manager does not manage. An example of an external
action is sending a message or writing a record to a file. The default is
EXTERNAL ACTION.

EXTERNAL ACTION
Specifies that the function can cause a change to the state of an object that
the database manager does not manage.

Some functions with external actions might receive incorrect results if
parallel tasks execute the function. For example, if the function sends a
note for each initial call to it, one note is sent for each parallel task instead
of once for the function.

NO EXTERNAL ACTION
Specifies that the function does not take any action that changes the state
of an object that the database manager does not manage. The database
manager uses this information during optimization of SQL statements.

EXTERNAL ACTION must be implicitly or explicitly specified if the SQL
routine body invokes a function that is defined with EXTERNAL ACTION.

CREATE FUNCTION (SQL Scalar)

360 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

READS SQL DATA or CONTAINS SQL
Specifies the classification of SQL statements that the function can execute. The
database manager verifies that the SQL statements that the function issues is
consistent with this specification. For the classification of each statement, see
“SQL statement data access classification for routines” on page 560. The default
is READS SQL DATA.

READS SQL DATA
Specifies that function can execute statements with a data access
classification of READS SQL DATA or CONTAINS SQL. The function
cannot execute SQL statements that modify data.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data
access classification of CONTAINS SQL. The function cannot execute any
SQL statements that read or modify data. For example, READS SQL DATA
must be specified if the body of the SQL function contains a subselect or if
it invokes a function that can read data.

CALLED ON NULL INPUT
Specifies that the function is called regardless of whether any of the input
arguments is null. This specification means that the function is responsible for
testing for null argument values. The function can return a null or nonnull
value.

STATIC DISPATCH
Specifies that the function is dispatched statically. All functions are statically
dispatched.

RETURN
Specifies the return value of the function. Parameter names can be referenced
in the RETURN statement. You can qualify the parameter names with the
function name to avoid ambiguous references.

expression
Specifies the expression that is to be returned for the function. The result
data type of the expression must be assignable (using storage assignment
rules) to the data type that is defined in the RETURNS clause. For more
information, see “Storage assignment” on page 62.

The expression can contain one or more of the following:
v CASE expression
v CAST specification
v Constant
v Expression enclosed in parenthesis
v Function (either user-defined or built-in)
v Labeled duration
v Special register

The expression cannot include a column name or a host variable.

The expression cannot contain a recursive invocation of itself or to another
function that invokes it because such a function could not exist to be
referred to.

NULL
Specifies that the function returns a null value of the data type that is
defined in the RETURNS clause.

CREATE FUNCTION (SQL Scalar)

Chapter 5. Statements 361

Notes
General considerations for defining user-defined functions: For general
information on defining user-defined functions, see “CREATE FUNCTION” on
page 325.

Owner privileges: The owner is authorized to execute the function. The EXECUTE
privilege can be granted to others only if the owner has the authority to grant the
EXECUTE privilege on every user-defined function referenced in the RETURN
statement of the body of the function. For more information, see “GRANT
(Function or Procedure Privileges)” on page 450. For more information on
ownership of the object, see “Authorization, privileges and object ownership” on
page 11.

SQL path and function resolution: Resolution of function invocations inside the
function body is done according to the SQL path that is in effect for the CREATE
FUNCTION statement and does not change after the function is created.

References to datetime special registers: If an SQL function contains multiple
references to any of the date or time special registers, all references return values
corresponding to the same timestamp. The value of that timestamp is the value
that would be returned by referencing the CURRENT TIMESTAMP special register
in the statement that invoked the function.

Examples
Example 1: Define a scalar function that returns the tangent of a value using the
existing SIN and COS built-in functions.

CREATE FUNCTION TAN
(X DOUBLE)

RETURNS DOUBLE
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC
RETURN SIN(X)/COS(X)

Notice that a parameter name (X) is specified for the input parameter to function
TAN. The parameter name is used within the body of the function to refer to the
input parameter. The invocations of the SIN and COS functions, within the body of
the TAN user-defined function, pass the parameter X as input.

Example 2: Define a scalar function that returns returns a date formatted as
mm/dd/yyyy followed by a string of up to 3 characters:

CREATE FUNCTION BADPARM
(INP1 DATE,
USA VARCHAR(3))

RETURNS VARCHAR(20)
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC
RETURN CHAR(INP1,USA) CONCAT USA/
SELECT BADPARM(BIRTHDATE,’ISO’)

FROM EMPLOYEE WHERE EMPNO=’000010’;

The result is ’08/24/1933ISO’. Notice that parameter names (INP1 and USA) are
specified for the input parameters to function BADPARM. Although there is an

CREATE FUNCTION (SQL Scalar)

362 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

input parameter named USA, the instance of USA in the parameter list for the
CHAR function is taken as the keyword parameter for the built-in CHAR function
and not the parameter named USA.

CREATE FUNCTION (SQL Scalar)

Chapter 5. Statements 363

CREATE INDEX
The CREATE INDEX statement creates an index on a table at the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The privilege to create in the schema
v Administrative authority.

The privileges held by the authorization ID of the statement must include at least
one of the following:
v The INDEX privilege for the table
v Administrative authority.

Syntax

�� CREATE
UNIQUE

INDEX index-name �

� �

,
ASC

ON table-name (column-name)
DESC

��

Description
UNIQUE

Prevents the table from containing two or more rows with the same value of
the index key. The constraint is enforced when rows of the table are updated
or new rows are inserted.

The constraint is also checked during the execution of the CREATE INDEX
statement. If the table already contains rows with duplicate key values, the
index is not created and an error is returned.

When UNIQUE is used, null values are treated as any other values. For
example, if the key is a single column that can contain null values, that column
can contain no more than one null value.

index-name
Names the index. The name, including the implicit or explicit qualifier, must
not identify an index, table, view, or alias that already exists at the current
server. The qualifier must not be SYSIBM, SYSCAT, SYSFUN, or SYSSTAT.

The implicit or explicit qualifier for indexes on declared temporary tables must
be SESSION.

CREATE INDEX

364 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

ON table-name
Identifies the table on which the index is to be created. The name must identify
a base table that exists at the current server, but it must not identify a catalog
table.

(column-name,...)
Identifies the list of columns that will be part of the index key.

Each column-name must be an unqualified name that identifies a column of the
table. A column name must not be specified more than once, and must not
identify a LOB column or a column defined as a distinct type which is based
on a LOB data type. The number of specified columns must not exceed 16 and
the sum of their length attributes must not exceed 255. See Table 41 on
page 554 for more information. Note that this length can be reduced by system
overhead which varies according to the data type of the column and whether it
is nullable. See “Byte Counts” on page 395 for more information on overhead
affecting this limit.

ASC
Puts the index entries in ascending order by the column. This is the
default.

DESC
Puts the index entries in descending order by the column.

Ordering is performed in accordance with the comparison rules described in
Chapter 2, “Language elements”, on page 31. The null value is higher than all
other values.

Notes
Effects of the statement: CREATE INDEX creates a description of the index. If the
named table already contains data, CREATE INDEX creates the index entries for it.
If the table does not yet contain data, the index entries are created when data is
inserted into the table.

Owner privileges: There are no specific privileges on an index. For more
information on ownership of the object, see “Authorization, privileges and object
ownership” on page 11.

Examples
Example 1: Create an index named UNIQUE_NAM on the PROJECT table. The
purpose of the index is to ensure that there are not two entries in the table with
the same value for project name (PROJNAME). The index entries are to be in
ascending order.

CREATE UNIQUE INDEX UNIQUE_NAM
ON PROJECT(PROJNAME)

Example 2: Create an index named JOB_BY_DPT on the EMPLOYEE table. Arrange
the index entries in ascending order by job title (JOB) within each department
(WORKDEPT).

CREATE INDEX JOB_BY_DPT
ON EMPLOYEE (WORKDEPT, JOB)

CREATE INDEX

Chapter 5. Statements 365

CREATE PROCEDURE
The CREATE PROCEDURE statement defines a procedure at the current server.
The following types of procedures can be defined.
v External

The procedure program is written in a programming language such as C,
COBOL or Java. The external executable is referenced by a procedure defined at
the current server along with various attributes of the procedure. See “CREATE
PROCEDURE (External)” on page 367.

v SQL
The procedure is written exclusively in SQL. The procedure body is defined at
the current server along with various attributes of the procedure. See “CREATE
PROCEDURE (SQL)” on page 374.

Notes
Special registers in procedures: The settings of the special registers of the caller
are inherited by the procedure on invocation and restored upon return to the caller.
Special registers may be changed within a procedure, but these changes do not
affect the caller.

CREATE PROCEDURE

366 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

CREATE PROCEDURE (External)
The CREATE PROCEDURE (External) statement defines an external procedure at
the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The privilege to create in the schema
v Administrative authority.

For each distinct type referenced in the statement, the authorization ID of the
statement must include at least one of the following:
v The USAGE privilege for the distinct type
v Ownership of the distinct type
v Administrative authority.

Syntax

�� CREATE PROCEDURE

�

procedure-name
()

,

parameter-declaration

�

� option-list ��

parameter-declaration:

IN

OUT
INOUT

parameter-name
data-type

AS LOCATOR

option-list:

(1)
LANGUAGE C
LANGUAGE COBOL
LANGUAGE JAVA

PARAMETER STYLE DB2SQL
PARAMETER STYLE GENERAL
PARAMETER STYLE GENERAL WITH NULLS
PARAMETER STYLE JAVA

�

�
NOT DETERMINISTIC

DETERMINISTIC

MODIFIES SQL DATA

READS SQL DATA
CONTAINS SQL
NO SQL

CALLED ON NULL INPUT
�

CREATE PROCEDURE (External)

Chapter 5. Statements 367

�
DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS integer

NO DBINFO

DBINFO

FENCED
�

�
PROGRAM TYPE MAIN

EXTERNAL
EXTERNAL NAME external-program-name

Notes:

1 The clauses in the option-list can be specified in any order.

data-type:

built-in-type
distinct-type-name

CREATE PROCEDURE (External)

368 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

built-in-type:

SMALLINT
INTEGER
INT

(5,0)
DECIMAL
DEC ,0

NUMERIC (integer)
, integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(1)
CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer)
CHAR

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer)

CLOB K
M
G

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME
TIMESTAMP

Description
procedure-name

Names the procedure. The name, including the implicit or explicit qualifier,
must not identify a procedure that already exists at the current server. If a
qualified procedure name is specified, the schema-name must not be one of the
system schemas (see “Schemas” on page 3).

(parameter-declaration,...)
Specifies the number of parameters of the procedure, the data type of each
parameter, and, optionally, the name of each parameter. A parameter for a
procedure can be used only for input, only for output, or for both input and
output. A maximum of 90 parameters can be specified. See Appendix A, “SQL
limits”, on page 551 for more details on limits.

IN Identifies the parameter as an input parameter to the procedure. Any

CREATE PROCEDURE (External)

Chapter 5. Statements 369

changes made to the parameter within the procedure are not available to
the calling SQL application when control is returned. The default is IN.

OUT
Identifies the parameter as an output parameter that is returned by the
procedure.

INOUT
Identifies the parameter as both an input and output parameter for the
procedure.

parameter-name
Names the parameter. The name cannot be the same as any other
parameter-name for the procedure.

data-type
Specifies the data type of the parameter.

built-in-type
Specifies a built-in data type. See “CREATE TABLE” on page 379 for a
more complete description of each built-in data type.

Parameters with a large object (LOB) data type are not supported
when PARAMETER STYLE JAVA is specified.

distinct-type-name
Specifies a distinct type. Any length, precision, scale, or encoding
scheme attributes for the parameter are those of the source type of the
distinct type as specified using “CREATE DISTINCT TYPE” on
page 319.

In DB2 UDB for LUW, distinct types are not supported in procedures.

See “Attributes of the arguments of a routine program” on page 706 for
details on the mapping between the SQL data types and host language
data types. Some data types are not supported in all languages.

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the
procedure instead of the actual value. Specify AS LOCATOR only for
parameters with a LOB data type or a distinct type based on a LOB data
type. Passing locators instead of values can result in fewer bytes being
passed to and from the procedure, especially when the value of the
parameter is very large.

In DB2 UDB for LUW the AS LOCATOR clause is not supported.

LANGUAGE
This mandatory clause is used to specify the language interface convention to
which the procedure body is written. All programs must be designed to run in
the server’s environment.

C The external program is written in C or C++. The database manager will
call the procedure using the C language calling conventions.

COBOL
The external program is written in COBOL. The database manager will call
the procedure using the COBOL language calling conventions.

JAVA
The external program is written in Java. The database manager will call the
procedure using the Java language calling conventions. The procedure
must be a public static method of the specified Java class.

CREATE PROCEDURE (External)

370 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G

G

PARAMETER STYLE
Specifies the conventions used for passing parameters to and returning the
values from procedures. See “Parameter passing for external routines” on
page 697 for details.

DB2SQL
Specifies that in addition to the parameters on the CALL statement, several
additional parameters are passed to the procedure. The following
arguments are passed to the procedure:
v The first n parameters are the parameters that are specified on the

CREATE PROCEDURE statement.
v n parameters for indicator variables for the parameters.
v The SQLSTATE to be returned.
v The qualified name of the procedure.
v The specific name of the procedure.
v The SQL diagnostic string to be returned.
v If DBINFO is specified, the DBINFO structure.

PARAMETER STYLE DB2SQL cannot be used with LANGUAGE JAVA.

GENERAL
Specifies that the procedure will use a parameter passing mechanism
where the procedure receives the parameters specified on the CALL.
Arguments to procedures defined with this parameter style cannot be null.

PARAMETER STYLE GENERAL cannot be used with LANGUAGE JAVA.

GENERAL WITH NULLS
Specifies that, in addition to the parameters on the CALL statement as
specified in GENERAL, another argument is passed to the procedure. This
additional argument contains an indicator array with an element for each
of the parameters of the CALL statement. In C, this would be an array of
short ints.

PARAMETER STYLE GENERAL WITH NULLS cannot be used with
LANGUAGE JAVA.

JAVA
Specifies that the procedure will use a parameter passing convention that
conforms to the Java language and SQLJ Routines specification. INOUT
and OUT parameters will be passed as single entry arrays to facilitate
returning values.

PARAMETER STYLE JAVA can only be used with LANGUAGE JAVA.

DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the procedure returns the same results each time the
procedure is called with the same IN and INOUT arguments. The default is
NOT DETERMINISTIC.

DETERMINISTIC
The procedure always returns the same results each time the procedure is
called with the same IN and INOUT arguments, provided the referenced
data in the database has not changed.

NOT DETERMINISTIC
The procedure may not return the same result each time the procedure is
called with the same IN and INOUT arguments, even when the referenced
data in the database has not changed.

CREATE PROCEDURE (External)

Chapter 5. Statements 371

MODIFIES SQL DATA, READS SQL DATA, CONTAINS SQL, or NO SQL
Specifies which SQL statements, if any, may be executed in the procedure or
any routine called from this procedure. The default is MODIFIES SQL DATA.
For data access classification of each statement, see “SQL statement data access
classification for routines” on page 560.

MODIFIES SQL DATA
Specifies that the procedure can execute any SQL statement except
statements that are not supported in procedures.

READS SQL DATA
Specifies that the procedure can execute statements with a data access
classification of READS SQL DATA, CONTAINS SQL, or NO SQL.

CONTAINS SQL
Specifies that the procedure can only execute statements with a data access
classification of CONTAINS SQL or NO SQL.

NO SQL
Specifies that the procedure can execute only SQL statements with a data
access classification of NO SQL.

CALLED ON NULL INPUT
Specifies that the procedure will be called if any, or all, parameter values are
null.

DYNAMIC RESULT SETS integer
Specifies the maximum number of result sets that can be returned from the
procedure. The minimum value for integer is zero and the maximum value is
32767. The default is DYNAMIC RESULT SETS 0.

NO DBINFO or DBINFO
Specifies whether additional status information is passed to the procedure
when it is invoked. The default is NO DBINFO.

NO DBINFO
Additional information is not passed.

DBINFO
An additional argument is passed when the procedure is invoked.

The argument is a structure that contains information such as the name of
the current server, the application run-time authorization ID and
identification of the version and release of the database manager that
invoked the procedure. See “Database information in external routines
(DBINFO)” on page 708 for further details.

DBINFO can be specified only if PARAMETER STYLE DB2SQL is
specified.

FENCED
Specifies that the procedure runs in an environment that is isolated from the
database manager environment.

PROGRAM TYPE MAIN
Specifies that the procedure executes as a main routine. PROGRAM TYPE
MAIN is only valid for LANGUAGE C or COBOL.

The default when PROGRAM TYPE MAIN is not specified is product specific.

EXTERNAL
Specifies that the CREATE PROCEDURE statement is being used to define a
new procedure based on code written in an external programming language.

CREATE PROCEDURE (External)

372 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G

If NAME clause is not specified ″NAME procedure-name″ is assumed. In this
case, procedure-name must not be longer than 8 characters. The NAME clause is
required for a LANGUAGE JAVA procedure since the default name is not valid
for a Java procedure.

NAME external-program-name
Specifies the program that will be executed when the procedure is called
by the CALL statement. The executable form of the external program need
not exist when the CREATE PROCEDURE statement is executed. However,
it must exist at the current server when the procedure is called.

If a JAR is referenced then the JAR must exist when the procedure is
created.

Notes
General considerations for defining procedures: See “CREATE PROCEDURE” on
page 366 for general information on defining procedures.

Language Considerations: For information needed to create the programs for a
procedure, see Appendix L, “Coding programs for use by external routines”, on
page 697.

Owner privileges: The owner is authorized to call the procedure and grant others
the privilege to call the procedure. See “GRANT (Function or Procedure
Privileges)” on page 450. For more information on ownership of the object, see
“Authorization, privileges and object ownership” on page 11.

Examples
Example 1: Create the procedure definition for a procedure, written in Java, that is
passed a part number and returns the cost of the part and the quantity that are
currently available.

CREATE PROCEDURE PARTS_ON_HAND (IN PARTNUM INTEGER,
OUT COST DECIMAL(7,2),
OUT QUANTITY INTEGER)

LANGUAGE JAVA
PARAMETER STYLE JAVA
EXTERNAL NAME ’parts.onhand’

Example 2: Create the procedure definition for a procedure, written in C, that is
passed an assembly number and returns the number of parts that make up the
assembly, total part cost and a result set that lists the part numbers, quantity and
unit cost of each part.

CREATE PROCEDURE ASSEMBLY_PARTS (IN ASSEMBLY_NUM INTEGER,
OUT NUM_PARTS INTEGER,
OUT COST DOUBLE)

LANGUAGE C
PARAMETER STYLE GENERAL
DYNAMIC RESULT SETS 1
FENCED
EXTERNAL NAME ASSEMBLY

CREATE PROCEDURE (External)

Chapter 5. Statements 373

CREATE PROCEDURE (SQL)
The CREATE PROCEDURE (SQL) statement defines an SQL procedure at the
current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

In DB2 UDB for z/OS and OS/390, this statement can only be dynamically
prepared and processed using the IBM Development Center, JCL, or the DB2 UDB
for z/OS and OS/390 SQL procedure processor (DSNTPSMP). See the product
Application Prgramming and SQL Guide for more information.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The privilege to create in the schema
v Administrative authority.

For each distinct type referenced in the statement, the authorization ID of the
statement must include at least one of the following:
v The USAGE privilege for the distinct type
v Ownership of the distinct type
v Administrative authority.

Syntax

�� CREATE PROCEDURE

�

procedure-name
()

,

parameter-declaration

�

� LANGUAGE SQL option-list SQL-routine-body ��

parameter-declaration:

IN

OUT
INOUT

parameter-name built-in-type

option-list:

NOT DETERMINISTIC (1)

DETERMINISTIC

MODIFIES SQL DATA

READS SQL DATA
CONTAINS SQL

CALLED ON NULL INPUT
�

CREATE PROCEDURE (SQL)

374 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
G
G

�
DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS integer

Notes:

1 The clauses in the option-list can be specified in any order.

SQL-routine-body:

SQL-control-statement
COMMENT-statement
COMMIT-statement
CREATE INDEX-statement
CREATE TABLE-statement
CREATE VIEW-statement
DELETE-statement
DROP INDEX-statement
DROP TABLE-statement
DROP VIEW-statement
EXECUTE IMMEDIATE-statement
GRANT-statement
INSERT-statement
LOCK TABLE-statement
RENAME-statement
ROLLBACK-statement
SELECT INTO-statement
SET PATH-statement
UPDATE-statement

built-in-type:

CREATE PROCEDURE (SQL)

Chapter 5. Statements 375

SMALLINT
INTEGER
INT

(5,0)
DECIMAL
DEC ,0

NUMERIC (integer)
, integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(1)
CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer)
CHAR

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer)

CLOB K
M
G

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME
TIMESTAMP

Description
procedure-name

Names the procedure. The name, including the implicit or explicit qualifier,
must not identify a procedure that already exists at the current server. If a
qualified procedure name is specified, the schema-name must not be one of the
system schemas (see “Schemas” on page 3).

(parameter-declaration,...)
Specifies the number of parameters of the procedure, the data type of each
parameter, and the name of each parameter. A parameter for a procedure can
be used for input only, for output only, of for both input and output. A
maximum of 253 parameters can be specified. See Appendix A, “SQL limits”,
on page 551 for more details on limits.

IN Identifies the parameter as an input parameter to the procedure. Any
changes made to the parameter within the procedure are not available to
the calling SQL application when control is returned. The default is IN.

CREATE PROCEDURE (SQL)

376 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

OUT
Identifies the parameter as an output parameter that is returned by the
procedure. If the parameter is not set within the procedure, the null value
is returned.

INOUT
Identifies the parameter as both an input and output parameter for the
procedure. If the parameter is not set within the procedure, its input value
is returned.

parameter-name
Names the parameter for use as an SQL variable. The name cannot be the
same as any other parameter-name for the procedure.

built-in-type
Specifies the data type of the parameter.

LANGUAGE SQL
Specifies that this procedure is written exclusively in SQL.

DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the procedure returns the same results each time the
procedure is called with the same IN and INOUT arguments. The default is
NOT DETERMINISTIC.

DETERMINISTIC
The procedure always returns the same results each time the procedure is
called with the same IN and INOUT arguments, provided the referenced
data in the database has not changed.

NOT DETERMINISTIC
The procedure may not return the same result each time the procedure is
called with the same IN and INOUT arguments, even when the referenced
data in the database has not changed.

MODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL
Specifies the classification of SQL statements the procedure can execute. The
default is MODIFIES SQL DATA. For data access classification of each
statement, see “SQL statement data access classification for routines” on
page 560.

MODIFIES SQL DATA
Indicates that the procedure can execute any SQL statement except
statements that are not supported in procedures.

READS SQL DATA
Specifies that the procedure can execute statements with a data access
classification of READS SQL DATA or CONTAINS SQL.

CONTAINS SQL
Specifies that the procedure can only execute statements with a data access
classification of CONTAINS SQL.

CALLED ON NULL INPUT
Specifies that the procedure will be called if any, or all, parameter values are
null.

DYNAMIC RESULT SETS integer
Indicates the upper bound of returned result sets for the procedure. The
default number of DYNAMIC RESULT SETS is 0. The minimum value for
integer is zero and the maximum value is 32767. The default is DYNAMIC
RESULT SETS 0.

CREATE PROCEDURE (SQL)

Chapter 5. Statements 377

SQL-routine-body
Specifies the statements that define the body of the SQL procedure. Multiple
SQL procedure statements may be specified within a compound statement or
other SQL control statements. See Chapter 6, “SQL control statements”, on
page 519 for more information.

Notes
General considerations for defining procedures: See “CREATE PROCEDURE” on
page 366 for general information on defining procedures.

Owner Privileges: The owner is authorized to call the procedure and grant others
the privilege to call the procedure. See “GRANT (Function or Procedure
Privileges)” on page 450. For more information on ownership of the object, see
“Authorization, privileges and object ownership” on page 11.

Error handling in procedures: Consideration should be given to possible
exceptions that can occur for each SQL statement in the body of a procedure. Any
exception SQLSTATE that is not handled within the procedure using a handler
within a compound compound statement, results in the exception SQLSTATE being
returned to the caller of the procedure.

Examples
Example 1: Create an SQL procedure that returns the median staff salary. Return a
result set containing the name, position, and salary of all employees who earn
more than the median salary.

CREATE PROCEDURE MEDIAN_RESULT_SET (OUT medianSalary DECIMAL(7,2))
LANGUAGE SQL
DYNAMIC RESULT SETS 1

BEGIN
DECLARE v_numRecords INTEGER DEFAULT 1;
DECLARE v_counter INTEGER DEFAULT 0;
DECLARE c1 CURSOR FOR

SELECT salary
FROM staff
ORDER BY salary;

DECLARE c2 CURSOR WITH RETURN FOR
SELECT name, job, salary

FROM staff
WHERE salary > medianSalary
ORDER BY salary;

DECLARE EXIT HANDLER FOR NOT FOUND
SET medianSalary = 6666;

SET medianSalary = 0;
SELECT COUNT(*) INTO v_numRecords FROM STAFF;
OPEN c1;
WHILE v_counter < (v_numRecords / 2 + 1)

DO FETCH c1 INTO medianSalary;
SET v_counter = v_counter + 1;

END WHILE;
CLOSE c1;
OPEN c2;

END

CREATE PROCEDURE (SQL)

378 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

CREATE TABLE
The CREATE TABLE statement defines a table at the current server. The definition
must include its name and the names and attributes of its columns. The definition
may include other attributes of the table, such as its primary key.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The privilege to create in the schema
v Administrative authority.

If defining a foreign key, the privileges held by the authorization ID of the
statement must include at least one of the following on the parent table:
v The REFERENCES privilege on the table
v The REFERENCES privilege on each column of the specified parent key
v Ownership of the table
v Administrative authority.

If the LIKE clause is specified, the privileges held by the authorization ID of the
statement must include at least one of the following on the table or view specified
in the LIKE clause:
v The SELECT privilege for the table or view
v Ownership of the table or view
v Administrative authority.

If a distinct type is referenced, the privileges held by the authorization ID of the
statement must include at least one of the following:
v The USAGE privilege on the distinct type
v Ownership of the distinct type
v Administrative authority.

Syntax

�� CREATE TABLE table-name �

,

(column-definition)
unique-constraint
referential-constraint
check-constraint

LIKE table-name
view-name copy-options

��

column-definition:

column-name data-type �

CREATE TABLE

Chapter 5. Statements 379

� �

default-clause
GENERATED ALWAYS identity-options

BY DEFAULT
NOT NULL
column-constraint

data-type:

built-in-type
distinct-type-name

built-in-type:

SMALLINT
INTEGER
INT

(5,0)
DECIMAL
DEC ,0

NUMERIC (integer)
, integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(1)
CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer)
CHAR

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer)

CLOB K
M
G

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME
TIMESTAMP

CREATE TABLE

380 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

default-clause:

WITH
DEFAULT constant

USER
NULL
cast-function-name (constant)

USER

identity-options:

�

AS IDENTITY

(1) 1
(START WITH numeric-constant)

1
INCREMENT BY numeric-constant
MINVALUE numeric-constant
MAXVALUE numeric-constant
NO CYCLE
CYCLE
CACHE 20
NO CACHE
CACHE integer-constant

Notes:

1 The same clause must not be specified more than once.

column-constraint:

PRIMARY KEY
CONSTRAINT constraint-name UNIQUE

references-clause
CHECK (check-condition)

unique-constraint:

CONSTRAINT constraint-name
PRIMARY KEY
UNIQUE

�

,

(column-name)

referential-constraint:

CONSTRAINT constraint-name
FOREIGN KEY �

,

(column-name) �

� references-clause

CREATE TABLE

Chapter 5. Statements 381

references-clause:

REFERENCES table-name

�

,

(column-name)

�

�
ON DELETE NO ACTION

ON DELETE RESTRICT
CASCADE
SET NULL

check-constraint:

CONSTRAINT constraint-name
CHECK (check-condition)

copy-options:

COLUMN ATTRIBUTES
INCLUDING IDENTITY

Description
table-name

Names the table. The name, including the implicit or explicit qualifier, must
not identify an alias, index, table or view that already exists at the current
server.

column-definition
Defines the attributes of a column. There must be at least one column definition
and no more than 750 61 columns for the table. See Table 41 on page 554 for more
information.

column-definition

column-name
Names a column of the table. Do not qualify column-name and do not use the
same name for more than one column of the table.

data-type
Specifies the data type of the column.

built-in-type
For the built-in types, use:

SMALLINT
For a small integer.

INTEGER or INT
For a large integer.

61. This value is 1 less if the table is a dependent table.

CREATE TABLE

382 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

DECIMAL(integer,integer) or DEC(integer,integer)
DECIMAL(integer) or DEC(integer)
DECIMAL or DEC

For a packed decimal number. The first integer is the precision of the
number; that is, the total number of digits; it can range from 1 to 31. The
second integer is the scale of the number (the number of digits to the right
of the decimal point). The scale of the number can range from 0 to the
precision of the number.

You can use DECIMAL(p) for DECIMAL(p,0), and DECIMAL for
DECIMAL(5,0).

NUMERIC(integer, integer)
NUMERIC(integer)
NUMERIC

For a zoned decimal number in DB2 UDB for iSeries and a packed decimal
number in DB2 UDB for z/OS and OS/390, and DB2 UDB for LUW. The
first integer is the precision of the number; that is, the total number of
digits; it can range from 1 to 31. The second integer is the scale of the
number (the number of digits to the right of the decimal point). The scale
of the number can range from 0 to the precision of the number.

You can use NUMERIC(p) for NUMERIC(p,0), and NUMERIC for
NUMERIC(5,0).

FLOAT(integer)
FLOAT

For a single- or double-precision floating-point number, depending on the
value of the integer. The value of the integer must be in the range 1
through 53. The values 1 through n indicate single-precision, and the
values n + 1 through 53 indicate double-precision. In DB2 UDB for z/OS
and OS/390, n is 21; in DB2 UDB for LUW and DB2 UDB for iSeries, n is
24. For portability across operating systems, when specifying a
floating-point data type, use REAL or DOUBLE PRECISION instead of
FLOAT.

You can use DOUBLE PRECISION or FLOAT for FLOAT(53).

REAL
For a single-precision floating-point number.

DOUBLE PRECISION or DOUBLE
For a double-precision floating-point number.

CHARACTER(integer) or CHAR(integer)
CHARACTER or CHAR

For a fixed-length character string of length integer. The integer can range
from 1 to 254. See Table 39 on page 552 for more information.

If the length specification is omitted, a length of 1 character is assumed.

CHARACTER VARYING(integer) or CHAR VARYING(integer) or
VARCHAR(integer)

For a varying-length character string of maximum length integer. The
integer can range from 1 to 32 672. See Table 39 on page 552 for more
information.

For the restrictions that apply to the use of VARCHAR strings longer than
255, see “Limitations on use of strings” on page 50.

FOR BIT DATA
Indicates that the values of the CHAR or VARCHAR column are not

CREATE TABLE

Chapter 5. Statements 383

G
G

G
G
G

associated with a coded character set and therefore are never converted.
The CCSID of a bit data column is X'FFFF'. In DB2 UDB for LUW, the
CCSID for a bit data column is X’0000’.

If this clause is omitted, the CCSID of a SBCS, graphic, or mixed data
column is the corresponding default CCSID at the current server.

CHARACTER LARGE OBJECT(integer[K|M|G]) or CHAR LARGE
OBJECT(integer[K|M|G]) or CLOB(integer[K|M|G])
CHARACTER LARGE OBJECT or CHAR LARGE OBJECT or CLOB

For a character large object string of the specified maximum length in
bytes. The maximum length must be in the range of 1 through
2 147 483 647. A CLOB column has a varying length. It cannot be
referenced in certain contexts regardless of its maximum length. For
details, see “Limitations on use of strings” on page 50.

If the length specification is omitted, a length of 1M bytes is assumed.

To create LOB columns in DB2 UDB for z/OS and OS/390, there are
additional requirements. To create LOB columns greater than 1 gigabyte in
DB2 UDB for LUW, there are additional requirements. See product
documentation.

The maximum value that can be specified for integer depends on whether a
units indicator is also specified as shown in the following list.

integer
The maximum value for integer is 2 147 483 647. The maximum length
of the string is integer.

integer K
The maximum value for integer is 2 097 152. The maximum length is
1024 times integer.

integer M
The maximum value for integer is 2048. The maximum length is
1 048 576 times integer.

integer G
The maximum value for integer is 2. The maximum length is
1 073 741 824 times integer.

If a value that evaluates to 2 gigabytes (2 147 483 648) is specified, then the
value that is actually used is one byte less, that is 2 147 483 647.

GRAPHIC(integer)
GRAPHIC

For a fixed-length graphic string of length integer. The integer can range
from 1 to 127. See Table 39 on page 552 for more information.

VARGRAPHIC(integer)
For a varying-length graphic string of maximum length integer. The integer
can range from 1 to 16 336. See Table 39 on page 552 for more information.

For the restrictions that apply to the use of VARGRAPHIC strings longer
than 127, see “Limitations on use of strings” on page 50.

DBCLOB(integer[K|M|G])
DBCLOB

For a double-byte character large object string of the specified maximum
length in double-byte characters. The maximum length must be in the
range of 1 through 1 073 741 823. A DBCLOB column has a varying length.

CREATE TABLE

384 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

G
G
G
G

It cannot be referenced in certain contexts regardless of its maximum
length. For details, see “Limitations on use of strings” on page 50.

If the length specification is omitted, a length of 1M double-byte characters
is assumed.

To create LOB columns in DB2 UDB for z/OS and OS/390, there are
additional requirements. To create LOB columns greater than 1 gigabyte in
DB2 UDB for LUW, there are additional requirements. See product
documentation.

The maximum value that can be specified for integer depends on whether a
units indicator is also specified as shown in the following list.

integer
The maximum value for integer is 1 073 741 823. The maximum length
of the string is integer.

integer K
The maximum value for integer is 1 048 576. The maximum length is
1024 times integer.

integer M
The maximum value for integer is 1024. The maximum length is
1 048 576 times integer.

integer G
The maximum value for integer is 1. The maximum length is
1 073 741 824 times integer.

If a value that evaluates to 2 gigabytes (1 073 741 824 double-byte
characters) is specified, then the value that is actually used is one
double-byte character less, that is 1 073 741 823.

BINARY LARGE OBJECT(integer [K|M|G]) or BLOB(integer [K|M|G])
BINARY LARGE OBJECT or BLOB

For a binary large object string of the specified maximum length in bytes.
The maximum length must be in the range of 1 through 2 147 483 647. A
BLOB column has a varying length. It cannot be referenced in certain
contexts regardless of its maximum length. For details, see “Limitations on
use of strings” on page 50.

If the length specification is omitted, a length of 1M bytes is assumed.

To create LOB columns in DB2 UDB for z/OS and OS/390, there are
additional requirements. To create LOB columns greater than 1 gigabyte in
DB2 UDB for LUW, there are additional requirements. See product
documentation.

The maximum value that can be specified for integer depends on whether a
units indicator is also specified as shown in the following list.

integer
The maximum value for integer is 2 147 483 647. The maximum length
of the string is integer.

integer K
The maximum value for integer is 2 097 152. The maximum length is
1024 times integer.

integer M
The maximum value for integer is 2048. The maximum length is
1 048 576 times integer.

CREATE TABLE

Chapter 5. Statements 385

G
G
G
G

G
G
G
G

integer G
The maximum value for integer is 2. The maximum length is
1 073 741 824 times integer.

If a value that evaluates to 2 gigabytes (2 147 483 648) is specified, then the
value that is actually used is one byte less, that is 2 147 483 647.

DATE
For a date.

TIME
For a time.

TIMESTAMP
For a timestamp.

distinct-type-name
Specifies the data type of a column is a distinct type. The length, precision, and
scale of the column are respectively the length, precision, and scale of the
source type of the distinct type. If a distinct type name is specified without a
schema name, the distinct type name is resolved by searching the schemas in
the SQL path.

DEFAULT
Specifies a default value for the column. This clause must not be specified
more than once in the same column-definition.

Omission of NOT NULL and DEFAULT from a column-definition is an implicit
specification of DEFAULT NULL.

constant
Specifies the constant as the default for the column. The specified constant
must represent a value that could be assigned to the column in accordance
with the rules of assignment as described in “Assignments and
comparisons” on page 60. A floating-point constant must not be used for a
SMALLINT, INTEGER, DECIMAL, or NUMERIC column. A decimal
constant must not contain more digits to the right of the decimal point
than the specified scale of the column.

USER
Specifies the value of the USER special register at the time of INSERT as
the default for the column. The data type of the column or the source type
of the distinct type of the column must be CHAR or VARCHAR with a
length attribute that is greater than or equal to the length attribute of the
USER special register.

NULL
Specifies null as the default for the column. If NOT NULL was specified,
DEFAULT NULL must not be specified within the same column-definition.

cast-function-name
The name of the cast function that matches the name of the distinct type
name of the data type for the column.

The schema name of the cast function, whether it is explicitly specified or
implicitly resolved through function resolution, must be the same as the
explicitly or implicitly specified schema name of the distinct type. This
form of the DEFAULT value can only be used with columns that are
defined as a distinct type.

CREATE TABLE

386 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

constant
Specifies a constant as the argument. The constant must conform to the
rules of a constant for the source type of the distinct type.

USER
Specifies the value of the USER special register at the time of INSERT
as the default for the column. The source type of the distinct type of
the column must be a CHAR or VARCHAR with a length attribute that
is greater than or equal to the length attribute of the USER special
register.

If the value specified is not valid, an error is returned.

GENERATED
Specifies that the database manager generates values for the column.
GENERATED must be specified if the column is to be considered an identity
column.

ALWAYS
Specifies that the database manager will always generate a value for the
column when a row is inserted into the table. ALWAYS is the
recommended value.

BY DEFAULT
Specifies that the database manager will generate a value for the column
when a row is inserted into the table, unless an explicit value is specified.

AS IDENTITY
Specifies that the column is the identity column for the table. A table can only
have a single identity column. AS IDENTITY can be specified only if the data
type for the column is an exact numeric type with a scale of zero, or a distinct
type for which the source type is an exact numeric type with a scale of zero.

An identity column is implicitly NOT NULL. An identity column cannot have
a DEFAULT clause.

Defining a column AS IDENTITY does not necessarily guarantee uniqueness of
the values. To ensure uniqueness of the values, define a unique, single-column
index on the identity column.

START WITH numeric-constant
Specifies the first value that is generated for the identity column. This
value can be any positive or negative value that could be assigned to this
column, without non-zero digits existing to the right of the decimal point.

If a value is not explicitly specified when the identity column is defined,
the default is the MINVALUE for an ascending identity column and the
MAXVALUE for a descending identity column. This value is not
necessarily the value that would be cycled to after reaching the maximum
or minimum value for the identity column. The START WITH clause can
be used to start the generation of values outside the range that is used for
cycles. The range used for cycles is defined by MINVALUE and
MAXVALUE.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the identity column.
This value can be any positive or negative value that could be assigned to
this column, and does not exceed the value of a large integer constant,
without non-zero digits existing to the right of the decimal point.

CREATE TABLE

Chapter 5. Statements 387

If this value is negative, this is a descending identity column. If this value
is positive, this is an ascending identity column. The default is 1.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value that is generated
for this identity column. This value can be any positive or negative value
that could be assigned to this column, without non-zero digits existing to
the right of the decimal point, but the value must be less than the
maximum value.

If a value is not explicitly specified when the identity column is defined,
this is the START WITH value, or 1 if START WITH was not specified, for
an ascending sequence; or the minimum value of the data type for a
descending sequence.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value that is generated
for this identity column. This value can be any positive or negative value
that could be assigned to this column, without non-zero digits existing to
the right of the decimal point, but the value must be greater than the
minimum value.

If a value is not explicitly specified when the identity column is defined,
this is the maximum value of the data type for an ascending sequence; or
the START WITH value, or -1 if START WITH was not specified, for a
descending sequence.

NO CYCLE or CYCLE
Specifies whether this identity column should continue to generate values
after generating either its maximum or minimum value.

NO CYCLE
Specifies that values will not be generated for the identity column once
the maximum or minimum value has been reached. This is the default.

CYCLE
Specifies that values continue to be generated for this column after the
maximum or minimum value has been reached. If this option is used,
after an ascending identity column reaches the maximum value, it
generates its minimum value; or after a descending identity column
reaches the minimum value, it generates its maximum value. The
maximum and minimum values for the identity column determine the
range that is used for cycling.

When CYCLE is in effect, duplicate values can be generated by the
database manager for an identity column. If a unique constraint or
unique index exists on the identity column and a non-unique value is
generated, an error is returned.

NO CACHE or CACHE
Specifies whether to keep some preallocated values in memory.
Preallocating and storing values in the cache improves the performance of
inserting rows into a table. The default is CACHE 20.

NO CACHE
Specifies that values for the identity column are not preallocated.

CACHE integer-constant
Specifies the maximum number of values for the identity column that
can be preallocated by the database manager and kept in memory.

CREATE TABLE

388 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

During a failure, all cached identity column values that are yet to be
assigned might be lost and will not be used. Therefore, the value
specified for CACHE also represents the maximum number of values
for the identity column that could be lost during a failure.

The minimum value is 2.

NOT NULL
Prevents the column from containing null values. Omission of NOT NULL
implies that the column can contain null values.

column-constraint
The column-constraint of a column-definition provides a shorthand method of
defining a constraint composed of a single column. Thus, if a column-constraint
is specified in the definition of column C, the effect is the same as if that
constraint were specified as a unique-constraint, referential-constraint, or
check-constraint in which C is the only identified column.

CONSTRAINT constraint-name
Names the constraint. A constraint-name must not be the same as a
constraint name that was previously specified in the CREATE TABLE
statement and must not identify a constraint that already exists at the
current server.

If the clause is not specified, a unique constraint name is generated by the
database manager.

PRIMARY KEY
Provides a shorthand method of defining a primary key composed of a
single column.62 Thus, if PRIMARY KEY is specified in the definition of
column C, the effect is the same as if the PRIMARY KEY(C) clause is
specified as a separate clause.

The NOT NULL clause must be specified with this clause. This clause must
not be specified in more than one column definition and must not be
specified at all if the UNIQUE clause is specified in the column definition.
The data type of the column must not be a LOB data type or a distinct
type based on a LOB data type.

UNIQUE
Provides a shorthand method of defining a unique key composed of a
single column.62 Thus, if UNIQUE is specified in the definition of column
C, the effect is the same as if the UNIQUE(C) clause is specified as a
separate clause.

The NOT NULL clause must be specified with this clause. This clause
cannot be specified more than once in a column definition and must not be
specified if the PRIMARY KEY clause is specified in the column definition.
The data type of the column must not be a LOB data type or a distinct
type based on a LOB data type.

references-clause
The references-clause of a column-definition provides a shorthand method of
defining a foreign key composed of a single column. Thus, if a
references-clause is specified in the definition of column C, the effect is the
same as if that references-clause were specified as part of a FOREIGN KEY
clause in which C is the only identified column. The data type of the

62. In DB2 UDB for z/OS and OS/390, the table is marked as unavailable until all the required indexes are explicitly created, unless
the CREATE TABLE statement is processed by the schema processor.

CREATE TABLE

Chapter 5. Statements 389

column must not be a LOB data type or a distinct type based on a LOB
data type. For more information, see “REFERENCES clause” on page 391.

CHECK(check-condition)
The CHECK(check-condition) of a column-definition provides a shorthand
method of defining a check constraint whose check-condition only references
a single column. Thus, if CHECK is specified in the column definition of
column C, no columns other than C can be referenced in the check-condition
of the check constraint. The effect is the same as if the check constraint
were specified as a separate clause. For more information, see “CHECK
clause” on page 393.

End of column-definition

unique-constraint

unique-constraint

CONSTRAINT constraint-name
Names the constraint. A constraint-name must not be the same as a constraint
name that was previously specified in the CREATE TABLE statement and must
not identify a constraint that already exists at the current server.

If the clause is not specified, a unique constraint name is generated by the
database manager.

PRIMARY KEY(column-name,...)
Defines a primary key composed of the identified columns. A table can only
have one primary key. Thus, this clause cannot be specified more than once
and cannot be specified at all if the shorthand form has been used to define a
primary key for the table. The identified columns cannot be the same as the
columns specified in another UNIQUE constraint specified earlier in the
CREATE TABLE statement. For example, PRIMARY KEY(A,B) would not be
allowed if UNIQUE(B,A) had already been specified.

Each column-name must be an unqualified name that identifies a column of the
table, and that column must be defined as NOT NULL.

The same column must not be identified more than once. The data type of the
column must not be a LOB data type or a distinct type based on a LOB data
type. The number of identified columns must not exceed 16 and the sum of
their byte count (see “Byte Counts” on page 395) must not exceed 255. See
Table 41 on page 554 for more information.

A unique index on the identified columns is created during the execution of
the CREATE TABLE statement and this index is designated as the primary
index of the table.62

UNIQUE(column-name,...)
Defines a unique key composed of the identified columns.62 The UNIQUE
clause can be specified more than once. Do not identify columns that are the
same as the columns specified in another UNIQUE constraint or PRIMARY
KEY that was specified earlier in the CREATE TABLE statement. For
determining if a unique constraint is the same as another constraint
specification, the column lists are compared. For example, UNIQUE (A,B) is
the same as UNIQUE (B,A).

CREATE TABLE

390 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Each column-name must be an unqualified name that identifies a column of the
table, and that column must be defined as NOT NULL.

The same column must not be identified more than once. The data type of the
column must not be a LOB data type or a distinct type based on a LOB data
type. The number of identified columns must not exceed 16 and the sum of
their byte count (see “Byte Counts” on page 395) must not exceed 255. See
Table 41 on page 554 for more information.

A unique index on the identified columns is created during the execution of
the CREATE TABLE statement.62

End of unique-constraint

referential-constraint

referential-constraint

CONSTRAINT constraint-name
Names the constraint. A constraint-name must not be the same as a constraint
name that was previously specified in the CREATE TABLE statement and must
not identify a constraint that already exists at the current server.

If the clause is not specified, a unique constraint name is generated by the
database manager.

FOREIGN KEY
Each specification of the FOREIGN KEY clause defines a referential constraint.

(column-name,...)
The foreign key of the referential constraint is composed of the identified
columns. Each column-name must be an unqualified name that identifies a
column of the table. The same column must not be identified more than
once. The data type of the column must not be a LOB data type or a
distinct type based on a LOB data type. The number of identified columns
must not exceed 16 and the sum of their byte count (see “Byte Counts” on
page 395) must not exceed 255. See Table 41 on page 554 for more
information.

REFERENCES table-name
The table-name specified in a REFERENCES clause must identify the table
being created or a base table that already exists at the current server, but it
must not identify a catalog table or a declared temporary table.

A referential constraint is a duplicate if its foreign key, parent key, and
parent table are the same as the foreign key, parent key, and parent table of
a previously specified referential constraint. Duplicate referential
constraints are allowed, but not recommended. In DB2 UDB for z/OS and
OS/390, duplicate referential constraints are ignored with a warning.

Let T2 denote the identified parent table and let T1 denote the table being
created. For DB2 UDB for z/OS and OS/390, T2 must not be the table
being created except when the statement is processed by the schema
processor.

The specified foreign key must have the same number of columns as the
parent key of T2. The description of the nth column of the foreign key and
the description of the nth column of that parent key must have identical
data types and other attributes.

CREATE TABLE

Chapter 5. Statements 391

G
G

G
G
G

If a foreign key column is a distinct type, the data type of the
corresponding column of the parent key must have the same distinct type.

(column-name,...)
The parent key of the referential constraint is composed of the
identified columns. Each column-name must be an unqualified name
that identifies a column of T2. The same column must not be identified
more than once. The data type of the column must not be a LOB data
type or a distinct type based on a LOB data type. The number of
identified columns must not exceed 16 and the sum of their byte count
(see “Byte Counts” on page 395) must not exceed 255. See Table 41 on
page 554 for more information.

The list of column names must be identical to the list of column names
in the primary key of T2 or a UNIQUE constraint that exists on T2. If a
column name list is not specified then T2 must have a primary key.
Omission of the column name list is an implicit specification of the
columns of that primary key.

The referential constraint specified by a FOREIGN KEY clause defines a
relationship in which T2 is the parent and T1 is the dependent.

ON DELETE
Specifies what action is to take place on the dependent tables when a row
of the parent table is deleted. There are four possible actions:
v NO ACTION (default) 63

v RESTRICT
v CASCADE
v SET NULL

SET NULL must not be specified unless some column of the foreign key
allows null values.

In DB2 UDB for LUW, a self-referencing table with a SET NULL or
RESTRICT rule must not be a dependent in a referential constraint with a
delete rule of CASCADE.

The delete rule applies when a row of T2 is the object of a DELETE or
propagated delete operation and that row has dependents in T1. Let p
denote such a row of T2.
v If RESTRICT or NO ACTION is specified, an error is returned and no

rows are deleted.
v If CASCADE is specified, the delete operation is propagated to the

dependents of p in T1.
v If SET NULL is specified, each nullable column of the foreign key of

each dependent of p in T1 is set to null.

A cycle involving two or more tables must not cause a table to be
delete-connected to itself unless all of the delete rules in the cycle are
CASCADE. Thus, if the relationship would form a cycle and T2 is already

63. In DB2 UDB for z/OS and OS/390, the default depends on the value of the CURRENT RULES special register when the
CREATE TABLE statement is processed. If the value of the register is ’DB2’, the default is RESTRICT. If the value is ’SQL’, the
default is NO ACTION.

CREATE TABLE

392 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
G

delete-connected to T1, then the constraint can only be defined if it has a
delete rule of CASCADE and all other delete rules of the cycle are
CASCADE.

If T1 is delete-connected to T2 through multiple paths, those relationships
in which T1 is a dependent and which form all or part of those paths must
have the same delete rule and it must not be SET NULL. Let T3 denote a
table identified in another FOREIGN KEY clause (if any) of the CREATE
TABLE statement. The delete rules of the relationships involving T2 and T3
must be the same and must not be SET NULL if:
v T2 and T3 are the same table.
v T3 is a descendant of T2 and the deletion of rows from T2 cascades to

T3.
v T2 is a descendant of T3 and the deletion of rows from T3 cascades to

T2.
v T2 and T3 are both descendants of the same table and the deletion of

rows from that table cascades to both T2 and T3.

If r is other than SET NULL, the referential constraint can be defined, but
the delete rule that is implicitly or explicitly specified in the FOREIGN
KEY clause must be the same as r.

End of referential-constraint

check-constraint

check-constraint

CONSTRAINT constraint-name
Names the check constraint. A constraint-name must not be the same as a
constraint name that was previously specified in the CREATE TABLE
statement and must not identify a constraint that already exists at the current
server.

If the clause is not specified, a unique constraint name is generated by the
database manager.

CHECK (check-condition)
Defines a check constraint. At any time, the check-condition must be true or
unknown for every row of the table. 64

The check-condition is a form of the search-condition, except:
v It can only refer to columns of the table whose data type is not a LOB data

type or a distinct type based on a LOB data type.
v It can be up to 3800 bytes long, not including redundant blanks. See Table 41

on page 554 for more information.
v It must not contain any of the following:

– Subqueries
– Built-in functions
– Host variables
– Parameter markers

64. In DB2 UDB for z/OS and OS/390, the value of the CURRENT RULES special register must be ’STD’ to get this behavior.

CREATE TABLE

Chapter 5. Statements 393

– Special registers
– User-defined functions (except cast functions generated for distinct types)
– CASE expressions

In DB2 UDB for z/OS and OS/390, the check-condition is subject to additional
restrictions. See the product reference for further information.

For more information about search-condition, see “Search conditions” on
page 129.

End of check-constraint

LIKE

LIKE table-name or view-name
Specifies that the columns of the table have exactly the same name and
description as the columns of the identified table (table-name) or view
(view-name). The name must identify a table or view that exists at the current
server.

The use of LIKE is an implicit definition of n columns, where n is the number
of columns in the identified table or view.

The implicit definition includes the following attributes of each of the columns
of table-name, or result columns of view-name (if applicable to the data type).
v Column name
v Data type, length, precision and scale
v CCSID
v Nullability

For base tables, the default value attribute is also included in the table
definition. For a view, if the column of the underlying base table has a default
value, then the effect is product-specific.

The implicit definition does not include any other attributes of the identified
table or view. For example, the new table does not have any primary key or
foreign key.

End of LIKE

copy-options
These options specify whether or not to copy additional attributes of the result
table definition.

copy-options

INCLUDING IDENTITY COLUMN ATTRIBUTES
Specifies that the table inherits the identity attributes, if any, of the columns
resulting from the table-name. In general, the identity attributes are copied if
the element of the corresponding column in the table is the name of a table
column that directly or indirectly maps to the name of a base table column that
is an identity column.

If INCLUDING IDENTITY is not specified, the table will not have an identity
column.

CREATE TABLE

394 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

G
G

If the LIKE clause identifies a view, INCLUDING IDENTITY COLUMN
ATTRIBUTES must not be specified.

End of copy-options

Notes
Owner privileges: The owner of the table has all table provileges (see “GRANT
(Table or View Privileges)” on page 456) with the ability to grant these privileges to
others.

Using an identity column: When a table has an identity column, the database
manager can automatically generate sequential numeric values for the column as
rows are inserted into the table. Thus, identity columns are ideal for primary keys.

When a table is recovered to a point-in-time, it is possible that a large gap in the
sequence of generated values for the identity column might result. For example,
assume a table has an identity column that has an incremental value of 1 and that
the last generated value at time T1 was 100 and the database manager
subsequently generates values up to 1000. Now, assume that the table is recovered
back to time T1. The generated value of the identity column for the next row that
is inserted after the recovery completes will be 1001, leaving a gap from 100 to
1001 in the values of the identity column.

When CYCLE is specified duplicate values for a column may be generated even
when the column is GENERATED ALWAYS, unless a unique constraint or unique
index is defined on the column.

Creating referential constraints: The creation of referential constraints may
invalidate access plans. The rules are product-specific.

Automatic generation of indexes: Whether an index name is generated and if so,
the rules for generating the name of an index that is created during the execution
of the CREATE TABLE statement are product-specific.

CCSIDs for character and graphic columns: The CCSID of a SBCS, graphic, or
mixed data column is the corresponding default CCSID at the current server.

Byte counts: The sum of the byte counts of the columns must not be greater than
32 677. See Table 41 on page 554 for more information.

The following table contains the byte counts of columns by data type for columns
that do not allow null values. In DB2 UDB for z/OS and OS/390 and DB2 UDB for
LUW, a column that allows null values has a byte count that is one more than
shown in the list. In DB2 UDB for iSeries, if any column allows null values, one
byte is required for every eight columns.

Data Type Byte Count

SMALLINT 2

INTEGER 4

DECIMAL(p,s) the integral part of (p/2) + 1

NUMERIC(p,s) In DB2 UDB for z/OS and OS/390 and DB2 UDB for
LUW, the integral part of (p/2)+1.

In DB2 UDB for iSeries, p.

CREATE TABLE

Chapter 5. Statements 395

G

G
G
G

G
G
G
G

G
G

G

Data Type Byte Count

FLOAT (single precision) 4

FLOAT (double precision) 8

CHAR(n) n

VARCHAR(n) In DB2 UDB for z/OS and OS/390 and DB2 UDB for
iSeries, n+2.

In DB2 UDB for LUW, n+4.

CLOB(n) Product-specific.

GRAPHIC(n) 2n

VARGRAPHIC(n) In DB2 UDB for z/OS and OS/390 and DB2 UDB for
iSeries, (n*2)+2.

In DB2 UDB for LUW, (n*2)+4.

DBCLOB(n) Product-specific.

BLOB(n) Product-specific.

DATE 4

TIME 3

TIMESTAMP 10

distinct type The byte count for the source data type.

Examples
Example 1: Given administrative authority, create a table named
‘ROSSITER.INVENTORY’ with the following columns:

Part number Small integer, must not be null

Description Character of length 0 to 24, allows nulls

Quantity on hand, Integer allows nulls
CREATE TABLE ROSSITER.INVENTORY

(PARTNO SMALLINT NOT NULL,
DESCR VARCHAR(24),
QONHAND INT)

Example 2: Create a table named DEPARTMENT with the following columns:

Department number Character of length 3, must not be null

Department name Character of length 0 through 36, must not be null

Manager number Character of length 6

Administrative dept. Character of length 3, must not be null

Location name Character of length 16, allows nulls

The primary key is column DEPTNO.
CREATE TABLE DEPARTMENT

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6),
ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16),
PRIMARY KEY(DEPTNO))

CREATE TABLE

396 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

G

G

G
G

G

G

G

Example 3: Create a table named REORG_PROJECTS which has the same column
definitions as the columns in the view PRJ_LEADER.

CREATE TABLE REORG_PROJECTS
LIKE PRJ_LEADER

Example 4: Create a table named ACT, which has an identity column named
ACTNO. Define the identity column so that the database manager will generate
the values for the column by default. Start the values at 10 and increment by 10.
Make the identity column unique so that if a value is explicitly assigned to the
identity column, it does not duplicate existing values.

CREATE TABLE ACT
(ACTNO SMALLINT NOT NULL

GENERATED BY DEFAULT AS IDENTITY
(START WITH 10
INCREMENT BY 10),

ACTKWD CHAR(6) NOT NULL,
ACTDESC VARCHAR(20) NOT NULL,
UNIQUE(ACTNO))

CREATE TABLE

Chapter 5. Statements 397

CREATE TRIGGER
The CREATE TRIGGER statement defines a trigger at the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The privilege to create in the schema
v Administrative authority

The privileges held by the authorization ID of the statement must include at least
one of the following:
v Each of the following:

– The ALTER privilege on the table on which the trigger is defined,
– The SELECT privilege on the table on which the trigger is defined,
– The SELECT privilege on any table or view referenced in the triggered-action

search-condition, and
– The privileges required to execute each triggered-SQL-statement.

v Administrative authority.

CREATE TRIGGER

398 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Syntax

Description
trigger-name

Names the trigger. The name, including the implicit or explicit qualifier, must
not be the same as a trigger that already exists at the current server. If a
qualified trigger name is specified, the schema-name must not be one of the
system schemas (see “Schemas” on page 3).

NO CASCADE BEFORE
Specifies that the trigger is a before trigger. The database manager executes the
triggered-action before it applies any changes caused by its applicable insert,
delete, or update operation on the subject table. It also specifies that the
triggered-action does not activate other triggers because the triggered-action of a
before trigger cannot contain any updates.

�� CREATE TRIGGER trigger-name NO CASCADE BEFORE
AFTER

�

�

�

INSERT ON table-name
DELETE
UPDATE

,

OF column-name

�

�

�
AS (1)

REFERENCING OLD correlation-name
AS

NEW correlation-name
AS

OLD_TABLE table-identifier
AS

NEW_TABLE table-identifier

�

� FOR EACH ROW
FOR EACH STATEMENT

MODE DB2SQL triggered-action ��

Notes:

1 The same clause must not be specified more than once.

triggered-action:

SQL-trigger-body
WHEN (search-condition)

SQL-trigger-body:

�

triggered-SQL-statement

BEGIN ATOMIC triggered-SQL-statement ; END

CREATE TRIGGER

Chapter 5. Statements 399

AFTER
Specifies that the trigger is an after trigger. The database manager executes the
triggered-action after it applies any changes caused by its applicable insert,
delete, or update operation on the subject table.

INSERT
Specifies that the trigger is an insert trigger. The database manager executes the
triggered-action whenever there is an insert operation on the subject table.

DELETE
Specifies that the trigger is a delete trigger. The database manager executes the
triggered-action whenever there is a delete operation on the subject table.

A delete trigger cannot be added to a table with a referential constraint of ON
DELETE CASCADE.

UPDATE
Specifies that the trigger is an update trigger. The database manager executes
the triggered-action whenever there is an update operation on the subject table.

An update trigger event cannot be added to a table with a referential
constraint of ON DELETE SET NULL.

If an explicit column-name list is not specified, an update operation on any
column of the subject table, including columns that are subsequently added
with the ALTER TABLE statement, activates the triggered-action.

OF column-name, ...
Each column-name specified must be a column of the subject table, and
must appear in the list only once. An update operation on any of the listed
columns activates the triggered-action.

ON table-name
Identifies the subject table of the trigger definition. The name must identify a
base table that exists at the current server, but must not identify a catalog table,
an alias or a declared temporary table.

REFERENCING
Specifies the correlation names for the transition variables and the table names
for the transition tables. Correlation-names identify a specific row in the set of
rows affected by the triggering SQL operation. Table-identifiers identify the
complete set of affected rows.

Each row affected by the triggering SQL operation is available to the
triggered-action by qualifying columns with correlation-names specified as
follows:

OLD AS correlation-name
Specifies a correlation name that identifies the values in the row prior to
the triggering SQL operation.

NEW AS correlation-name
Specifies a correlation name which identifies the values in the row as
modified by the triggering SQL operation and any SET statement in a
before trigger that has already executed.

The complete set of rows affected by the triggering SQL operation is available
to the triggered-action by using table-identifiers specified as follows:

OLD_TABLE AS table-identifier
Specifies the name of a temporary table that identifies the values in the
complete set of affected rows prior to the triggering SQL operation.

CREATE TRIGGER

400 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

NEW_TABLE AS table-identifier
Specifies the name of a temporary table that identifies the state of the
complete set of affected rows as modified by the triggering SQL operation
and by any SET statement in a before trigger that has already been
executed.

Only one OLD and one NEW correlation-name may be specified for a trigger.
Only one OLD_TABLE and one NEW_TABLE table-identifier may be specified
for a trigger. All of the correlation-names and table-identifiers must be unique
from one another.

The OLD correlation-name and the OLD_TABLE table-identifier are valid only if
the triggering event is either a delete operation or an update operation. For a
delete operation, the OLD correlation-name captures the values of the columns
in the deleted row, and the OLD_TABLE table-identifier captures the values in
the set of deleted rows. For an update operation, OLD correlation-name captures
the values of the columns of a row before the update operation, and the
OLD_TABLE table-identifier captures the values in the set of updated rows.

The NEW correlation-name and the NEW_TABLE table-identifier are valid only if
the triggering event is either an insert operation or an update operation. For
both operations, the NEW correlation-name captures the values of the columns
in the inserted or updated row, and the NEW_TABLE table-identifier captures
the values in the set of inserted or updated rows. For before triggers, the
values of the updated rows include the changes from any SET statements in
the triggered-action of before triggers.

The OLD and NEW correlation-name variables cannot be modified in an AFTER
trigger.

The table below summarizes the allowable combinations of transition variables
and transition tables.

Granularity Activation
Time

Triggering
Operation

Transition
Variables
Allowed

Transition Tables
Allowed

FOR EACH ROW BEFORE DELETE OLD NONE

INSERT NEW

UPDATE OLD, NEW

AFTER DELETE OLD OLD_TABLE

INSERT NEW NEW_TABLE

UPDATE OLD, NEW OLD_TABLE,
NEW_TABLE

FOR EACH
STATEMENT

BEFORE DELETE NONE NONE

INSERT

UPDATE

AFTER DELETE NONE OLD_TABLE

INSERT NEW_TABLE

UPDATE OLD_TABLE,
NEW_TABLE

CREATE TRIGGER

Chapter 5. Statements 401

A transition variable that has a character data type inherits the CCSID of the
column of the subject table. During the execution of the triggered-action, the
transition variables are treated like host variables. Therefore, character
conversion might occur.

The temporary transition tables are read-only and cannot be modified.

The scope of each correlation-name and each table-identifier is the entire trigger
definition.

FOR EACH ROW
Specifies that the database manager executes the triggered-action for each row of
the subject table that the triggering operation modifies. If the triggering
operation does not modify any rows, the triggered-action is not executed.

FOR EACH STATEMENT
Specifies that the database manager executes the triggered-action only once for
the triggering operation. Even if the triggering operation does not modify or
delete any rows, the triggered action is still executed once.

FOR EACH STATEMENT cannot be specified for a before trigger.

MODE DB2SQL
Specifies the mode of the trigger. MODE DB2SQL triggers are activated after
all of the row operations have occurred.

triggered-action
Specifies the action to be performed when a trigger is activated. The
triggered-action is composed of one or more SQL statements and by an optional
condition that controls whether the statements are executed.

WHEN (search-condition)
Specifies a condition that evaluates to true, false, or unknown. The
triggered SQL statements are executed only if the search-condition evaluates
to true. If the WHEN clause is omitted, the associated SQL statements are
always executed.

The search-condition for a before trigger must not include a subselect that
references the subject table.

SQL-trigger-body
Specifies the SQL statements that are to be executed for the triggered-action.

triggered-SQL-statement
Specifies a single SQL statement that is to be executed for the
triggered-action.

BEGIN ATOMIC triggered-SQL-statement; ... END
Specifies a list of SQL statements that are to be executed for the
triggered-action. The statements are executed in the order in which they
are specified.

Only certain SQL statements can be specified in the SQL-trigger-body. The
following table shows the list of allowable SQL statements, which differs
depending on whether the trigger is defined as BEFORE or AFTER. An ’X’
in the table indicates that the statement is valid.

SQL statement BEFORE AFTER

“fullselect” on page 261 X X

“SET transition-variable” on page 506 X

CREATE TRIGGER

402 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

“SIGNAL statement” on page 547 X X

“VALUES” on page 514 X X

“INSERT” on page 461 X

Searched “DELETE” on page 424 X

Searched “UPDATE” on page 508 X

All tables, views, aliases, user-defined types, user-defined functions, and
procedures referenced in the triggered-action must exist at the current server
when the trigger is created. The table or view that an alias refers to must
also exist when the trigger is created.

A fullselect specified in a before trigger must not refer to the subject table
of the trigger.

Notes
Owner privileges: There are no specific privileges on a trigger. For more
information on ownership of an object, see “Authorization, privileges and object
ownership” on page 11.

Execution authorization: The user executing the triggering SQL operation does not
need authority to execute a triggered-SQL-statement. A triggered-SQL-statement will
execute using the authority of the owner of the trigger.

Activating a trigger: Only insert, delete, or update operations can activate a
trigger. The activation of a trigger may cause trigger cascading. This is the result of
the activation of one trigger that executes SQL statements that cause the activation
of other triggers or even the same trigger again. The triggered actions may also
cause updates as a result of the original modification which may result in the
activation of additional triggers. With trigger cascading, a significant chain of
triggers may be activated causing significant change to the database as a result of a
single delete, insert or update statement. The number of levels of nested trigger
cascading is limited to 16. For more information see Appendix A, “SQL limits”, on
page 551.

Adding triggers to enforce constraints: Adding a trigger to a table that already
has rows in it will not cause the triggered actions to be executed. Thus, if the
trigger is designed to enforce constraints on the data in the table, the data in the
existing rows might not satisfy those constraints.

Multiple triggers: Multiple triggers that have the same triggering SQL operation
and activation time can be defined on a table. The triggers are activated in the
order in which they were created. For example, the trigger that was created first is
executed first, the trigger that was created second is executed second.

A maximum of 300 triggers can be added to any given table. For more information
see Appendix A, “SQL limits”, on page 551.

Adding columns to a subject table or a table referenced in the triggered action: If
a column is added to the subject table after triggers have been defined, the
following rules apply:
v If the trigger is an update trigger that was defined without an explicit column

list, then an update to the new column will cause the activation of the trigger.

CREATE TRIGGER

Chapter 5. Statements 403

v If the subject table is referenced in the triggered-action, the new column is not
accessible to the SQL statements until the trigger is recreated.

v The OLD_TABLE and NEW_TABLE transition tables will contain the new
column, but the column cannot be referenced unless the trigger is recreated.

If a column is added to any table referenced in the triggered-action, the new column
is not accessible to the SQL statements until the trigger is recreated.

Dropping or revoking privileges on a table referenced in the triggered action: If
an object such as a table, view or alias, referenced in the triggered-action is dropped,
the access plans that include those references to the object will be rebuilt when the
trigger is activated. If the object does not exist at that time, the corresponding
insert, update or delete operation on the subject table will fail.

If a privilege that the creator of the trigger is required to have for the trigger to
execute is revoked, the access plans of the statements that reference the object will
be rebuilt when the trigger is activated. If the appropriate privilege does not exist
at that time, the corresponding insert, update or delete operation on the subject
table will fail.

DB2 UDB for LUW effectively drops the trigger when a dependent object is
dropped or a required privilege is revoked.

Errors executing triggers: If a SIGNAL statement is executed in the
SQL-trigger-body, an SQLCODE -438 and the SQLSTATE specified in the SIGNAL
statement will be returned.

Other errors that occur during the execution of SQL-trigger-body statements are
typically returned using SQLSTATE 09000.

Special registers: The values of the special registers are saved before a trigger is
activated and are restored on return from the trigger. The values of the special
registers are inherited from the triggering SQL operation.

Transaction isolation: All the statements in the SQL-trigger-body run under the
isolation level of the triggering SQL operation. In DB2 UDB for z/OS and OS/390
the SQL statements in the SQL-trigger-body run under the isolation level used at the
time the trigger was created.

Examples
Example 1: Create two triggers that track the number of employees that a company
manages. The triggering table is the EMPLOYEE table, and the triggers increment
and decrement a column with the total number of employees in the
COMPANY_STATS table. The COMPANY_STATS table has the following
properties:

CREATE TABLE COMPANY_STATS
(NBEMP INTEGER,
NBPRODUCT INTEGER,
REVENUE DECIMAL(15,0))

This example uses row triggers to maintain summary data in another table.

Create the first trigger, NEW_HIRE, so that it increments the number of employees
each time a new person is hired; that is, each time a new row is inserted into the
EMPLOYEE table, increase the value of column NBEMP in table
COMPANY_STATS by 1.

CREATE TRIGGER

404 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

G
G
G

CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMPLOYEE
FOR EACH ROW MODE DB2SQL

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

Create the second trigger, FORM_EMP, so that it decrements the number of
employees each time an employee leaves the company; that is, each time a row is
deleted from the table EMPLOYEE, decrease the value of column NBEMP in table
COMPANY_STATS by 1.

CREATE TRIGGER FORM_EMP
AFTER DELETE ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP - 1;
END

Example 2: Create a trigger, REORDER, that invokes user-defined function
ISSUE_SHIP_REQUEST to issue a shipping request whenever a parts record is
updated and the on-hand quantity for the affected part is less than 10% of its
maximum stocked quantity. User-defined function ISSUE_SHIP_REQUEST orders a
quantity of the part that is equal to the part’s maximum stocked quantity minus its
on-hand quantity. The function eliminates any duplicate requests to order the same
PARTNO and sends the unique order to the appropriate supplier.

This example also shows how to define the trigger as a statement trigger instead of
a row trigger. For each row in the transition table that evaluates to true for the
WHERE clause, a shipping request is issued for the part.

CREATE TRIGGER REORDER
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW_TABLE AS NTABLE
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC

SELECT ISSUE_SHIP_REQUEST(MAX_STOCKED - ON_HAND, PARTNO)
FROM NTABLE
WHERE ON_HAND < 0.10 * MAX_STOCKED;

END

Example 3: Assume that table EMPLOYEE contains column SALARY. Create a
trigger, SAL_ADJ, that prevents an update to an employee’s salary that exceeds
20% and signals such an error. Have the error that is returned with an SQLSTATE
of 75001 and a description. This example shows that the SIGNAL SQLSTATE
statement is useful for restricting changes that violate business rules.

CREATE TRIGGER SAL_ADJ
AFTER UPDATE OF SALARY ON EMPLOYEE
REFERENCING OLD AS OLD_EMP

NEW AS NEW_EMP
FOR EACH ROW MODE DB2SQL
WHEN (NEW_EMP.SALARY > (OLD_EMP.SALARY *1.20))
BEGIN ATOMIC

SIGNAL SQLSTATE ’75001’(’Invalid Salary Increase - Exceeds 20%’);
END

CREATE TRIGGER

Chapter 5. Statements 405

CREATE VIEW
The CREATE VIEW statement creates a view on one or more tables or views at the
current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The privilege to create in the schema
v Administrative authority.

The privilege held by the authorization ID of the statement must include at least
one of the following:
v For each table or view identified in the fullselect:

– The SELECT privilege on the table or view
– Ownership of the table or view.

v Administrative authority

Syntax

�� CREATE VIEW view-name

�

,

(column-name)

AS fullselect �

�
CASCADED

WITH CHECK OPTION
LOCAL

��

Description
view-name

Names the view. The name, including the implicit or explicit qualifier, must
not identify an alias, index, table or view that already exists at the current
server.

(column-name,...)
Names the columns in the view. If a list of column names is specified, it must
consist of as many names as there are columns in the result table of the
fullselect. Each column-name must be unique and unqualified. If a list of column
names is not specified, the columns of the view inherit the names of the
columns of the result table of the fullselect.

A list of column names must be specified if the result table of the fullselect has
duplicate column names or an unnamed column. For more information about
unnamed columns, see “Names of result columns” on page 249.

AS fullselect
Defines the view. At any time, the view consists of the rows that would result
if the fullselect were executed.

CREATE VIEW

406 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

fullselect must not reference host variables.

A temporary table must not be referenced in the fullselect

The maximum number of columns allowed in a view is 750. The maximum
number of base tables allowed in a view is 32. See Table 41 on page 554 for
more information.

For an explanation of fullselect, see “fullselect” on page 261.

WITH CASCADED CHECK OPTION or WITH LOCAL CHECK OPTION
Specifies that every row that is inserted or updated through the view must
conform to the definition of the view. A row that does not conform to the
definition of the view is a row that cannot be retrieved using that view.

The CHECK OPTION clause must not be specified if the view is read-only or
includes a subquery. If the CHECK OPTION clause is specified for an
updatable view that does not allow inserts, then it applies to updates only.

The CHECK OPTION clause must not be specified if the view references a
non-deterministic function.

If the CHECK OPTION clause is omitted, the definition of the view is not used
in the checking of any insert or update operations that use the view. Some
checking might still occur during insert or update operations if the view is
directly or indirectly dependent on another view that includes the CHECK
OPTION clause. Because the definition of the view is not used, rows might be
inserted or updated through the view that do not conform to the definition of
the view.

The difference between the two forms of the CHECK OPTION clause,
CASCADED and LOCAL, is meaningful only when a view is dependent on
another view. The default is CASCADED. The view upon which another view
is directly or indirectly defined is an underlying view.

CASCADED
The WITH CASCADED CHECK OPTION on a view V is inherited by any
updatable view that is directly or indirectly dependent on V. Thus, if V is
an underlying view for an updatable view, the CHECK OPTION clause on
V also applies to that view, even if the CHECK OPTION clause is not
specified on that view. The search conditions of V and each view which is
an underlying view for V are ANDed together to form a search condition
that is applied for an insert or update of V or of any view dependent on V.

Consider the following updatable views which shows the impact of the
WITH CASCADED CHECK OPTION:

CREATE VIEW V1 AS SELECT COL1 FROM T1 WHERE COL1 > 10

CREATE VIEW V2 AS SELECT COL1 FROM V1 WITH CASCADED CHECK OPTION

CREATE VIEW V3 AS SELECT COL1 FROM V2 WHERE COL1 < 100

SQL statement Description of result

INSERT INTO V1 VALUES(5) Succeeds because V1 does not have a CHECK
OPTION clause and it is not dependent on any other
view that has a CHECK OPTION clause.

INSERT INTO V2 VALUES(5) Results in an error because the inserted row does not
conform to the search condition of V1 which is
implicitly part of the definition of V2.

CREATE VIEW

Chapter 5. Statements 407

SQL statement Description of result

INSERT INTO V3 VALUES(5) Results in an error because V3 is dependent on V2
which has a CHECK OPTION clause and the inserted
row does not conform to the definition of V2.

INSERT INTO V3 VALUES(200) Succeeds even though it does not conform to the
definition of V3 (V3 does not have the view CHECK
OPTION clause specified); it does conform to the
definition of V2 (which does have the view CHECK
OPTION clause specified).

LOCAL
The WITH LOCAL CHECK OPTION on a view V means the search
condition of V is applied as a constraint for an insert or update of V or of
any view that is dependent on V. WITH LOCAL CHECK OPTION is
identical to WITH CASCADED CHECK OPTION except that it is still
possible to update a row so that it no longer conforms to the definition of
the view when the view is defined with WITH LOCAL CHECK OPTION.
This can only happen when the view is directly or indirectly dependent on
a view that was defined without either WITH CASCADED CHECK
OPTION or WITH LOCAL CHECK OPTION clauses.

WITH LOCAL CHECK OPTION specifies that the search conditions of the
following underlying views are checked when a row is inserted or
updated:
v views that specify WITH LOCAL CHECK OPTION
v views that specify WITH CASCADED CHECK OPTION
v all underlying views of a view that specifies WITH CASCADED CHECK

OPTION

In contrast, WITH CASCADED CHECK OPTION specifies that the search
conditions of all underlying views are checked when a row is inserted or
updated.

The difference between CASCADED and LOCAL is best shown by example.
Consider the following updatable views where x and y represent either
LOCAL or CASCADED:

V1 defined on table T0
V2 defined on V1 WITH x CHECK OPTION
V3 defined on V2
V4 defined on V3 WITH y CHECK OPTION
V5 defined on V4

This example shows V1 as an underlying view for V2 and V2 dependent on V1.

The following table describes which search conditions are checked during an
INSERT or UPDATE operation:

Table 35. Views whose search conditions are checked during INSERT and UPDATE

View used in
INSERT or
UPDATE
operation

x = LOCAL
y = LOCAL

x = CASCADED
y = CASCADED

x = LOCAL
y = CASCADED

x = CASCADED
y = LOCAL

V1 None None None None
V2 V2 V2, V1 V2 V2, V1
V3 V2 V2, V1 V2 V2, V1

CREATE VIEW

408 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 35. Views whose search conditions are checked during INSERT and
UPDATE (continued)

View used in
INSERT or
UPDATE
operation

x = LOCAL
y = LOCAL

x = CASCADED
y = CASCADED

x = LOCAL
y = CASCADED

x = CASCADED
y = LOCAL

V4 V4, V2 V4, V3, V2, V1 V4, V3, V2, V1 V4, V2, V1
V5 V4, V2 V4, V3, V2, V1 V4, V3, V2, V1 V4, V2, V1

Notes
Owner privileges: The owner always acquires the SELECT privilege on the view.
The SELECT privilege can be granted to others only if the owner has the authority
to grant the SELECT privilege on every table or view identified in the first FROM
clause of the fullselect.

The owner can acquire the INSERT, UPDATE, and DELETE privileges on the view.
If the view is not read-only, then the same privileges will be acquired on the new
view as the owner has on the table or view identified in the first FROM clause of
the fullselect. The privileges can be granted only if the privileges from which they
are derived also can be granted. The owner only acquires these privileges if the
privileges from which they are derived exist at the time the view is created. For
more information on ownership of objects see “Authorization, privileges and object
ownership” on page 11.

Deletable views: A view is deletable if all of the following are true:
v the FROM clause of the outer fullselect identifies only one base table, deletable

view, or deletable nested table expression (that is, a nested table expression
whose fullselect, if used to create a view, would create a deletable view) that is
not a catalog table or view

v the outer fullselect does not include a GROUP BY clause or HAVING clause
v the outer fullselect does not include column functions in the select list
v the outer fullselect does not include a UNION or UNION ALL operator
v the select-clause of the outer fullselect does not include DISTINCT
v no base table (or underlying base table of a view) in a subquery contained in the

fullselect is the same as the base table (or underlying base table of a view) in the
outer fullselect

Updatable views: A column of a view is updatable if all of the following are true:
v the view is deletable
v at least one column of the view is updatable.

A column of a view is updatable if the corresponding result column of the fullselect
is derived solely from a column of a table or an updatable column of another view
(that is, it is not derived from an expression that contains an operator, scalar
function, constant, or a column that itself is derived from such expressions).

Insertable views: A view is insertable if all columns of the view are updatable.

If a view contains two updatable columns that refer to the same column in the
underlying table, the view is not insertable.

Read-only views: A view is read-only if it is NOT deletable.

CREATE VIEW

Chapter 5. Statements 409

A read-only view cannot be the object of an INSERT, UPDATE, or DELETE
statement.

Examples
Example 1: Create a view named MA_PROJ upon the PROJECT table that contains
only those rows with a project number (PROJNO) starting with the letters ‘MA’.

CREATE VIEW MA_PROJ
AS SELECT * FROM PROJECT

WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

Example 2: Create a view as in example 1, but select only the columns for project
number (PROJNO), project name (PROJNAME) and employee in charge of the
project (RESPEMP).

CREATE VIEW MA_PROJ
AS SELECT PROJNO, PROJNAME, RESPEMP FROM PROJECT

WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

Example 3: Create a view as in example 2, but, in the view, call the column for the
employee in charge of the project IN_CHARGE.

CREATE VIEW MA_PROJ (PROJNO, PROJNAME, IN_CHARGE)
AS SELECT PROJNO, PROJNAME, RESPEMP FROM PROJECT

WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

Note: Even though only one of the column names is being changed, the names of
all three columns in the view must be listed in the parentheses that follow
MA_PROJ.

Example 4: Create a view named PRJ_LEADER that contains the first four columns
(PROJNO, PROJNAME, DEPTNO, RESPEMP) from the PROJECT table together
with the last name (LASTNAME) of the person who is responsible for the project
(RESPEMP). Obtain the name from the EMPLOYEE table by matching EMPNO in
EMPLOYEE to RESPEMP in PROJECT.

CREATE VIEW PRJ_LEADER
AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME

FROM PROJECT, EMPLOYEE
WHERE RESPEMP = EMPNO

Example 5: Create a view as in example 4, but in addition to the columns PROJNO,
PROJNAME, DEPTNO, RESPEMP and LASTNAME, show the total pay (SALARY
+ BONUS + COMM) of the employee who is responsible. Also select only those
projects with mean staffing (PRSTAFF) greater than one.

CREATE VIEW PRJ_LEADER (PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME, TOTAL_PAY)
AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME, SALARY+BONUS+COMM

FROM PROJECT, EMPLOYEE
WHERE RESPEMP = EMPNO AND PRSTAFF > 1

CREATE VIEW

410 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

DECLARE CURSOR
The DECLARE CURSOR statement defines a cursor.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in Java.

Authorization
No authorization is required to use this statement. However if OPEN or FETCH is
used for the cursor, the privileges held by the authorization ID of the statement
must include at least one of the following:
v For each table or view identified in the SELECT statement of the cursor:

– The SELECT privilege on the table or view
– Ownership of the table or view

v Administrative authority.

The SELECT statement of the cursor can have one of the following forms:
v The prepared select-statement identified by the statement-name. In this case:

– The authorization ID of the statement is the run-time authorization ID.
– The authorization check is performed when the select-statement is prepared.
– The cursor cannot be opened unless the select-statement is successfully

prepared.
v The specified select-statement. In this case:

– The authorization ID of the statement is the authorization ID specified during
program preparation.

– In REXX, the authorization ID of the statement is the run-time authorization
ID.

– Depending on the product environment or options, the authorization check is
performed either during program preparation, or when the cursor is opened.
See the product references for further information.

Syntax

�� DECLARE cursor-name CURSOR
WITH HOLD WITH RETURN

FOR �

� select-statement
statement-name

��

Description
cursor-name

Names the cursor. The name must not be the same as the name of another
cursor declared in the source program.

WITH HOLD
Prevents the cursor from being closed as a consequence of a commit operation.
A cursor declared using the WITH HOLD clause is implicitly closed by a
commit only if the connection is ended during the commit operation.

DECLARE CURSOR

Chapter 5. Statements 411

G
G
G

When WITH HOLD is specified, a commit operation commits all the changes
in the current unit of work, and releases all locks except those that are required
to maintain the cursor position. Afterwards, a FETCH statement is required
before a Positioned UPDATE or DELETE statement can be executed.

All cursors are implicitly closed by a CONNECT (Type 1) or rollback
operation. A cursor is also implicitly closed by a commit operation if WITH
HOLD is not specified, or if the connection associated with the cursor is in the
release-pending state.

If a cursor is closed before the commit operation, the effect is the same as if the
cursor was declared without the WITH HOLD option.

WITH RETURN
Specifies that the result table of the cursor is intended to be used as a result set
that will be returned from the program or procedure.

WITH RETURN is relevant when the SQL CALL statement is used to invoke a
procedure that either contains the DECLARE CURSOR statement, or directly or
indirectly invokes a program or procedure that contains the DECLARE
CURSOR statement. In other cases, the precompiler might accept the clause,
but the clause has no effect.

When a cursor that is declared using the WITH RETURN clause remains open
at the end of a program or procedure, that cursor defines a result set from the
program or procedure. Use the CLOSE statement to close cursors that are not
intended to be a result set from the program or procedure.

The result set consists of all rows from the current cursor position to the end of
the result table.

For Java external procedures, all cursors are implicitly declared WITH
RETURN.

select-statement
Specifies the SELECT statement of the cursor. See “select-statement” on
page 263 for more information.

The select-statement must not include parameter markers (except for REXX), but
can include references to host variables. In host languages, other than REXX,
the declarations of the host variables must precede the DECLARE CURSOR
statement in the source program. In REXX, parameter markers must be used in
place of host variables and the statement must be prepared.

statement-name
Specifies the prepared select-statement that specifies the result table of the
cursor whenever the cursor is opened. The statement-name must not be identical
to a statement-name specified in another DECLARE CURSOR statement of the
source program. See “PREPARE” on page 471 for an explanation of prepared
statements.

Notes
Placement of DECLARE CURSOR: The DECLARE CURSOR statement must
precede all statements that explicitly reference the cursor by name.

Result table of a Cursor: A cursor in the open state designates a result table and a
position relative to the rows of that table. The table is the result table specified by
the SELECT statement of the cursor.

DECLARE CURSOR

412 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

A cursor is deletable if all of the following are true: 65

v each FROM clause of the outer fullselect identifies only one base table or
deletable view (cannot identify a nested table expression)

v the outer fullselect does not include a GROUP BY clause or HAVING clause
v the outer fullselect does not include column functions in the select list
v the outer fullselect does not include UNION or UNION ALL
v the select-clause of the outer fullselect does not include DISTINCT
v the select-statement does not include an ORDER BY clause
v the select-statement does not include a READ ONLY clause
v the select-statement does not include a FETCH FIRST n ROWS ONLY clause
v the result of the outer fullselect does not make use of a temporary table
v no base table (or underlying base table of a view) in a subquery contained in the

fullselect is the same as the base table (or underlying base table of a view) in the
outer fullselect

v if it is executed with isolation level UR, then the UPDATE clause must be
specified

A column in the select list of the outer fullselect associated with a cursor is
updatable if all of the following are true:65

v the cursor is deletable
v the result column is derived solely from a column of a table or an updatable

column of a view (that is, at least one result column must not be derived from
an expression that contains an operator, scalar function, constant, or a column
that itself is derived from such expressions)

A cursor is read-only if it is not deletable.

If UPDATE is specified without a list of column names, only the updatable
columns in the SELECT clause of the subselect can be updated. If the UPDATE
clause of the select-statement of the cursor is specified with a list of column names,
only the columns specified in the list of column names can be updated.

Scope of a cursor: The scope of cursor-name is the source program in which it is
defined; that is, the program submitted to the precompiler. Thus, a cursor can only
be referenced in statements that are precompiled with the cursor declaration. For
example, a program called from another separately compiled program cannot use a
cursor that was opened by the calling program. Cursors that specify WITH
RETURN in a procedure and are left open are returned as result sets.

Although the scope of a cursor is the program in which it is declared, each
package created from the program includes a separate instance of the cursor and
more than one cursor can exist at run time. For example, assume a program using
CONNECT (Type 2) statements connects to location X and location Y in the
following sequence:

EXEC SQL DECLARE C CURSOR FOR...
EXEC SQL CONNECT TO X;
EXEC SQL OPEN C;

65. In DB2 UDB for z/OS and OS/390 and DB2 UDB for LUW, a program preparation option must be used if the UPDATE clause is
not specified in the select-statement of the cursor and for DB2 UDB for LUW if the cursor is not statically defined. For DB2 UDB
for z/OS and OS/390, use the precompiler option STDSQL(YES) or NOFOR. For DB2 UDB for LUW, use the program
preparation option LANGLEVEL SQL92E.

DECLARE CURSOR

Chapter 5. Statements 413

EXEC SQL FETCH C INTO...
EXEC SQL CONNECT TO Y;
EXEC SQL OPEN C;
EXEC SQL FETCH C INTO...

The second OPEN C statement does not cause an error to be returned because it
refers to a different instance of cursor C.

A SELECT statement is evaluated at the time the cursor is opened. If the same
cursor is opened, closed, and then opened again, the results may be different. If the
SELECT statement of a cursor contains CURRENT DATE, CURRENT TIME, or
CURRENT TIMESTAMP, all references to these special registers will yield the same
respective datetime value on each FETCH. The value is determined when the
cursor is opened. Multiple cursors using the same SELECT statement can be
opened concurrently. They are each considered independent activities.

Blocking of data: For more efficient processing of data, the database manager may
block data for read-only cursors. If a cursor is not going to be used in a Positioned
UPDATE or Positioned DELETE statement, it should be declared as FOR READ
ONLY.

Usage in REXX: If host variables are used on the DECLARE CURSOR statement
within a REXX procedure, then the DECLARE CURSOR must be the object of a
PREPARE and EXECUTE.

Examples
Example 1: Declare C1 as the cursor of a query to retrieve data from the table
DEPARTMENT. The query itself appears in the DECLARE CURSOR statement.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO

FROM DEPARTMENT
WHERE ADMRDEPT = ’A00’;

Example 2: Declare C2 as the cursor for a statement named STMT2.
EXEC SQL DECLARE C2 CURSOR FOR STMT2;

Example 3: Declare C3 as the cursor for a query to be used in positioned updates of
the table EMPLOYEE. Allow the completed updates to be committed from time to
time without closing the cursor.

EXEC SQL DECLARE C3 CURSOR WITH HOLD FOR
SELECT *

FROM EMPLOYEE
FOR UPDATE OF WORKDEPT, PHONENO, JOB, EDLEVEL, SALARY;

Instead of explicitly specifying the columns to be updated, an UPDATE clause
could have been used without naming the columns. This would allow all the
updatable columns of the table to be updated. Since this cursor is updatable, it can
also be used to delete rows from the table.

Example 4: In a C program, use the cursor C1 to fetch the values for a given project
(PROJNO) from the first four columns of the EMPPROJACT table a row at a time
and put them into the following host variables: EMP(CHAR(6)), PRJ(CHAR(6)),
ACT(SMALLINT) and TIM(DECIMAL(5,2)). Obtain the value of the project to
search for from the host variable SEARCH_PRJ (CHAR(6)). Dynamically prepare
the select-statement to allow the project to search by to be specified when the
program is executed.

DECLARE CURSOR

414 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

void main ()
{

EXEC SQL BEGIN DECLARE SECTION;
char EMP[7];
char PRJ[7];
char SEARCH_PRJ[7];
short ACT;
double TIM;
char SELECT_STMT[201];
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;

strcpy(SELECT_STMT, "SELECT EMPNO, PROJNO, ACTNO, EMPTIME \
FROM EMPPROJACT \
WHERE PROJNO = ?");

.

.

.
EXEC SQL PREPARE SELECT_PRJ FROM :SELECT_STMT;

EXEC SQL DECLARE C1 CURSOR FOR SELECT_PRJ;

/* Obtain the value for SEARCH_PRJ from the user. */
.
.
.
EXEC SQL OPEN C1 USING :SEARCH_PRJ;

EXEC SQL FETCH C1 INTO :EMP, :PRJ, :ACT, :TIM;

if (strcmp(SQLSTATE, "02000", 5))
{

data_not_found();
}

else
{

while (strcmp(SQLSTATE, "00", 2) || strcmp(SQLSTATE, "01", 2))
{

EXEC SQL FETCH C1 INTO :EMP, :PRJ, :ACT, :TIM;
}

}

EXEC SQL CLOSE C1;
.
.
.

}

DECLARE CURSOR

Chapter 5. Statements 415

DECLARE GLOBAL TEMPORARY TABLE
The DECLARE GLOBAL TEMPORARY TABLE statement defines a declared
temporary table for the current application process. The declared temporary table
description does not appear in the system catalog. It is not persistent and cannot
be shared with other application processes. Each application process that defines a
declared temporary table of the same name has its own unique description and
instance of the temporary table. When the application process terminates, the
temporary table is dropped.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
If the LIKE clause or AS (fullselect) is specified, the privileges held by the
authorization ID of the statement must include at least one of the following on any
table or view specified in the LIKE clause or in the fullselect:
v The SELECT privilege for the table or view
v Ownership of the table or view
v Administrative authority

In DB2 UDB for LUW, the user must have the privilege to create in a temporary
table space to use this statement.

Syntax

�� DECLARE GLOBAL TEMPORARY TABLE table-name �

� �

,

(column-definition)
LIKE table-name

view-name copy-options
AS (fullselect) DEFINITION ONLY

copy-options

�

�
ON COMMIT DELETE ROWS

ON COMMIT PRESERVE ROWS
��

column-definition:

column-name data-type �

DECLARE GLOBAL TEMPORARY TABLE

416 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

� �

default-clause
GENERATED ALWAYS identity-options

BY DEFAULT
NOT NULL

data-type:

built-in-type

built-in-type:

SMALLINT
INTEGER
INT

(5,0)
DECIMAL
DEC ,0

NUMERIC (integer)
, integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(1)
CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer)
CHAR

VARCHAR
(1)

GRAPHIC
(integer)

VARGRAPHIC (integer)
DATE
TIME
TIMESTAMP

default-clause:

WITH
DEFAULT constant

USER
NULL

identity-options:

DECLARE GLOBAL TEMPORARY TABLE

Chapter 5. Statements 417

�

AS IDENTITY

(1) 1
(START WITH numeric-constant)

1
INCREMENT BY numeric-constant
MINVALUE numeric-constant
MAXVALUE numeric-constant
NO CYCLE
CYCLE
CACHE 20
NO CACHE
CACHE integer-constant

copy-options:

COLUMN ATTRIBUTES
INCLUDING IDENTITY

COLUMN
INCLUDING DEFAULTS

Notes:

1 The same clause must not be specified more than once.

Description
table-name

Names the temporary table. The qualifier, if specified explicitly, must be
SESSION, otherwise an error is returned. If the qualifier is not specified, the
the database manager implicitly defines it to be SESSION. If a declared
temporary table, or an index that is dependent on a declared temporary table
already exists with the same name, an error is returned.

If a persistent table, view, index, or alias already exists with the same name
and the schema name SESSION:
v The declared temporary table is still defined as SESSION.table-name.
v Any references to SESSION.table-name will resolve to the declared temporary

table rather than to a permanent table, view, index, or alias with a name of
SESSION.table-name.

column-definition
Defines the attributes of a column. There must be at least one column definition
and no more than 750 columns for the table. See Table 41 on page 554 for more
information.

column-definition

column-name
Names a column of the table. Do not qualify column-name and do not use the
same name for more than one column of the table.

data-type
Specifies the data type of the column. Note that distinct-type must not be
specified.

DECLARE GLOBAL TEMPORARY TABLE

418 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

built-in-type
Specifies a built-in data type. Note that CLOB, DBCLOB, and BLOB must
not be specified. See “CREATE TABLE” on page 379 for the description of
built-in types.

DEFAULT
Specifies a default value for the column. This clause must not be specified
more than once in the same column-definition.

Omission of NOT NULL and DEFAULT from a column-definition is an implicit
specification of DEFAULT NULL.

constant
Specifies the constant as the default for the column. The specified constant
must represent a value that could be assigned to the column in accordance
with the rules of assignment as described in “Assignments and
comparisons” on page 60. A floating-point constant must not be used for a
SMALLINT, INTEGER, DECIMAL, or NUMERIC column. A decimal
constant must not contain more digits to the right of the decimal point
than the specified scale of the column.

USER
Specifies the value of the USER special register at the time of INSERT as
the default for the column. The data type of the column must be CHAR or
VARCHAR with a length attribute that is greater than or equal to the
length attribute of the USER special register.

NULL
Specifies null as the default for the column. If NOT NULL was specified,
DEFAULT NULL must not be specified within the same column-definition.

If the value specified is not valid, an error is returned.

GENERATED
Specifies that the database manager generates values for the column.
GENERATED must be specified if the column is to be considered an
IDENTITY column.

ALWAYS
Specifies that the database manager will always generate a value for the
column when a row is inserted into the table. ALWAYS is the
recommended value.

BY DEFAULT
Specifies that the database manager will generate a value for the column
when a row is inserted into the table, unless an explicit value is specified.

Defining a column as generated does not necessarily guarantee uniqueness
of the values. To ensure uniqueness of the values, define a unique,
single-column index on the generated column.

AS IDENTITY
Specifies that the column is the identity column for the table. A table can only
have a single identity column. AS IDENTITY can be specified only if the data
type for the column is an exact numeric type with a scale of zero.

An identity column is implicitly NOT NULL. An identity column cannot have
a DEFAULT clause. See the AS IDENTITY clause in “CREATE TABLE” on
page 379 for the descriptions of the identity attributes.

NOT NULL
Prevents the column from containing null values. Omission of NOT NULL

DECLARE GLOBAL TEMPORARY TABLE

Chapter 5. Statements 419

implies that the column can contain null values.

End of column-definition

LIKE

LIKE table-name or view-name
Specifies that the columns of the table have exactly the same name and
description as the columns of the identified table (table-name) or view
(view-name). The name must identify a table or view that exists at the current
server. For DB2 UDB for z/OS and OS/390, table-name must not identify a
declared temporary table.

The use of LIKE is an implicit definition of n columns, where n is the number
of columns in the identified table or view. The implicit definition includes the
following attributes of each of the columns of table-name, or result columns of
view-name (if applicable to the data type).
v Column name
v Data type, length, precision and scale
v CCSID
v Nullability

For base tables, the default value attribute is also included in the table
definition. For a view, if the column of the underlying base table has a default
value, then the effect is product-specific. Identity attributes are not included
(they may be included by using the copy-options).

The implicit definition does not include any other attributes of the identified
table or view.

End of LIKE

as-query-clause

AS (fullselect) DEFINITION ONLY
Specifies that the columns of the table have the same name and description as
the columns that would appear in the derived result table of the fullselect if the
fullselect were to be executed. The use of AS (fullselect) is an implicit definition
of n columns for the declared temporary table, where n is the number of
columns that would result from the fullselect.

The implicit definition includes the following attributes of the n columns (if
applicable to the data type):
v Column name
v Data type, length, precision and scale
v CCSID
v Nullability

The following attributes are not included (the default value and identity
attributes may be included by using the copy-options):
v Default value
v Identity attributes

The implicit definition does not include any other optional attributes of the
tables or views referenced in the fullselect.

DECLARE GLOBAL TEMPORARY TABLE

420 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

G
G

Every select list element must have a unique name. The AS clause can be used
in the select-clause to provide unique names. The fullselect must not result in a
column having a LOB data type, or a distinct type.

The fullselect must not refer to host variables or include parameter markers.

End of as-query-clause

copy-options
These options specify whether to copy additional attributes of the specified table or
the result table of the fullselect.

copy-options

INCLUDING IDENTITY COLUMN ATTRIBUTES
Specifies that the table inherits the identity attributes, if any, of the columns
resulting from the fullselect or table-name. In general, the identity attributes are
copied if the element of the corresponding column in the table or fullselect is
the name of a table column that directly or indirectly maps to the name of a
base table column that is an identity column.

If the INCLUDING IDENTITY COLUMN ATTRIBUTES clause is specified with
the AS fullselect clause, the columns of the new table do not inherit the identity
attribute in the following cases:
v The select list of the fullselect includes multiple instances of the name of an

identity column (that is, selecting the same column more than once).
v The select list of the fullselect includes multiple identity columns (that is, it

involves a join).
v The identity column is included in an expression in the select list.
v The fullselect includes a set operation (union).

If INCLUDING IDENTITY is not specified, the table will not have an identity
column.

If the LIKE clause identifies a view, INCLUDING IDENTITY COLUMN
ATTRIBUTES must not be specified.

INCLUDING COLUMN DEFAULTS
Specifies that the table inherits the default values of the columns resulting from
the fullselect, table-name or view-name. A default value is the value assigned to a
column when a value is not specified on an INSERT. Columns resulting from
the fullselect, table-name, or view-name that are not updatable will not have a
default defined in the corresponding column of the created table.

If INCLUDING COLUMN DEFAULTS is not specified, whether or not default
values are included depends on whether the LIKE clause or the AS (fullselect)
clause was specified. For more information, see the description of the LIKE
clause or the AS (fullselect) clause above.

DB2 UDB for z/OS and OS/390 does not support INCLUDING COLUMN
DEFAULTS for the LIKE clause.

End of copy-options

ON COMMIT
Specifies the action to be taken on the declared temporary table when a
COMMIT operation is performed. The default is DELETE ROWS.

DECLARE GLOBAL TEMPORARY TABLE

Chapter 5. Statements 421

G
G

DELETE ROWS
All rows of the table will be deleted if no WITH HOLD cursor is open on
the table.

PRESERVE ROWS
Rows of the table will be preserved.

Notes
Instantiation, scope and termination: For the explanations below, P denotes a
application process and T is a declared temporary table in the application process
P:
v An empty instance of T is created as a result of a DECLARE GLOBAL

TEMPORARY TABLE statement executed in P.
v Any SQL statement in P can make reference to T; and any reference to T in P is

a reference to that same instance of T.
If a DECLARE GLOBAL TEMPORARY TABLE statement is specified within a
compound statement, the scope of the declared temporary table is the
application process, not just the compound statement. The table is not implicitly
dropped at the end of the compound statement. A declared temporary table
cannot be defined multiple times by the same name in other compound
statements in that application process, unless the table has been explicitly
dropped.

v If T was declared at a remote server, the reference to T must use the same
connection that was used to declare T and that connection must not have been
terminated after T was declared. When the connection to the database server at
which T was declared terminates, T is dropped.

v Assuming that the ON COMMIT DELETE ROWS clause was specified implicitly
or explicitly, then when a commit operation terminates a unit of work in P, and
there is no open WITH HOLD cursor in P that is dependent on T, then the
commit deletes all rows from T.

v When a rollback operation terminates a unit of work or a savepoint in P, and
that unit of work or savepoint includes a modification to SESSION.T, then the
changes to T are undone.
When a rollback operation terminates a unit of work or a savepoint in P, and
that unit of work or savepoint includes the declaration of SESSION.T, then the
rollback drops the table T.
If a rollback operation terminates a unit of work or a savepoint in P, and that
unit of work or savepoint includes the drop of a declared temporary table
SESSION.T, then the rollback will undo the drop of the table.

v When the application process that declared T terminates, T is dropped.

Privileges: When a declared temporary table is defined, PUBLIC is implicitly
granted all table privileges on the table and authority to drop the table. These
privileges cannot be revoked. This enables any SQL statement in the application
process to reference a declared temporary table that has already been defined in
that application process.

Referring to a declared temporary table in other SQL statements: Many SQL
statements support declared temporary tables. To refer to a declared temporary
table in an SQL statement other than DECLARE GLOBAL TEMPORARY TABLE,
the table must be implicitly or explicitly qualified with SESSION.

If you use SESSION as the qualifier for a table name but the application process
does not include a DECLARE GLOBAL TEMPORARY TABLE statement for the

DECLARE GLOBAL TEMPORARY TABLE

422 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

table name, the database manager assumes that you are not referring to a declared
temporary table. The database manager resolves such table references to a
permanent table.

Restrictions on the use of declared temporary tables: declared temporary tables
cannot:
v Be specified in an ALTER, COMMENT, GRANT, LOCK TABLE, RENAME or

REVOKE statement.
v Be referenced in a CREATE ALIAS, CREATE FUNCTION (SQL Scalar), CREATE

TRIGGER, or CREATE VIEW statement.
v Be specified in referential constraints.
v Be referenced in a CREATE INDEX unless the schema name of the index is

SESSION.

Examples
Example 1: Define a declared temporary table with column definitions for an
employee number, salary, commission, and bonus.

DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMP_EMP
(EMPNO CHAR(6) NOT NULL,
SALARY DECIMAL(9, 2),
BONUS DECIMAL(9, 2),
COMM DECIMAL(9, 2))

ON COMMIT PRESERVE ROWS

Example 2: Assume that base table USER1.EMPTAB exists and that it contains three
columns, one of which is an identity column. Declare a temporary table that has
the same column names and attributes (including identity attributes) as the base
table.

DECLARE GLOBAL TEMPORARY TABLE TEMPTAB1
LIKE USER1.EMPTAB
INCLUDING IDENTITY
ON COMMIT PRESERVE ROWS

In the above example, the database manager uses SESSION as the implicit qualifier
for TEMPTAB1.

DECLARE GLOBAL TEMPORARY TABLE

Chapter 5. Statements 423

DELETE
The DELETE statement deletes rows from a table or view. Deleting a row from a
view deletes the row from the table on which the view is based.

There are two forms of this statement:
v The Searched DELETE form is used to delete one or more rows, optionally

determined by a search condition.
v The Positioned DELETE form is used to delete exactly one row, as determined by

the current position of a cursor.

Invocation
A Searched DELETE statement can be embedded in an application program or
issued interactively. A Positioned DELETE can be embedded in an application
program. Both forms are executable statements that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The DELETE privilege for the table or view
v Ownership of the table 66

v Administrative authority.

If search-condition in a Searched DELETE contains a reference to a column of the
table or view, then the privileges held by the authorization ID of the statement
must also include one of the following:
v The SELECT privilege for the table or view 67

v Ownership of the table or view
v Administrative authority.

If search-condition includes a subquery, the privileges held by the authorization ID
of the statement must also include at least one of the following:
v For every table or view identified in the subquery:

– The SELECT privilege on the table or view, or
– Ownership of the table or view.

v Administrative authority.

Syntax
Searched DELETE:

�� DELETE FROM table-name
view-name correlation-name

�

66. The DELETE privilege on a view is only inherent in administrative authority. Ownership of a view does not necessarily include
the DELETE privilege on the view because the privilege may not have been granted when the view was created, or it may have
been granted, but subsequently revoked.

67. In DB2 UDB for z/OS and OS/390, and DB2 UDB for LUW, the authorization ID of the statement only requires the DELETE
privilege for the table or view. To require the SELECT privilege, a standards option must be in effect. For DB2 UDB for z/OS
and OS/390 use the precompiler option SQLRULES(STD) or set the CURRENT RULES special register to ’STD’. For DB2 UDB
for LUW, use the program preparation option LANGLEVEL SQL92E.

DELETE

424 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

�
WHERE search-condition isolation-clause

��

Positioned DELETE:

�� DELETE FROM table-name
view-name

WHERE CURRENT OF cursor-name ��

isolation-clause:

WITH RR
RS
CS

Description
FROM table-name or view-name

Identifies the table or view from which rows are to be deleted. The name must
identify a table or view that exists at the current server, but it must not identify
a catalog table, a view of a catalog table, or a view that is not deletable. For an
explanation of deletable views, see “CREATE VIEW” on page 406.

correlation-name
Can be used within the search-condition to designate the table or view. For an
explanation of correlation-name, see “Correlation names” on page 81.

WHERE
Specifies the rows to be deleted. The clause can be omitted, or a search-condition
or cursor-name can be specified. If the clause is omitted, all rows of the table or
view are deleted.

search-condition
Specifies a search condition, as described in “Search conditions” on
page 129. Each column-name in the search-condition, other than in a
subquery, must identify a column of the table or view.

The search-condition is applied to each row of the table or view and the
deleted rows are those for which the result of search-condition is true.

If search-condition contains a subquery, the subquery can be thought of as
being executed each time the search condition is applied to a row, and the
results used in applying the search condition. In actuality, a subquery with
no correlated references may be executed only once, whereas a subquery
with a correlated reference may have to be executed once for each row.

Let T2 denote the object table of a DELETE statement and let T1 denote a
table that is referenced in the FROM clause of a subquery of that
statement. T1 must not be a table that can be affected by the DELETE on
T2. Thus, the following rules apply:
v T1 must not be a dependent of T2 in a relationship with a delete rule of

CASCADE or SET NULL.
v T1 must not be a dependent of T3 in a relationship with a delete rule of

CASCADE or SET NULL if deletes of T2 cascade to T3.

DELETE

Chapter 5. Statements 425

CURRENT OF cursor-name
Identifies the cursor to be used in the delete operation. The cursor-name
must identify a declared cursor as explained in the Notes section of
“DECLARE CURSOR” on page 411.

The table or view identified must also be specified in the FROM clause of
the select-statement of the cursor, and the cursor must be deletable. For an
explanation of deletable cursors, see “DECLARE CURSOR” on page 411.

When the DELETE statement is executed, the cursor must be open and
positioned on a row and that row is deleted. After the deletion, the cursor
is positioned before the next row of its result table. If there is no next row,
the cursor is positioned after the last row.

In DB2 UDB for z/OS and OS/390, if the DELETE statement is embedded
in a program, the DECLARE CURSOR statement must include a
select-statement rather than a statement-name.

isolation-clause
Specifies the isolation level used by the statement.

WITH

Introduces the isolation level, which may be one of:
v RR Repeatable read
v RS Read stability
v CS Cursor stability

If isolation-clause is not specified, the default isolation is used. For more
information on the default isolation, see “Isolation level” on page 16.

DELETE Rules
Triggers: If the identified table or the base table of the identified view has a delete
trigger, the trigger is activated. A trigger might cause other statements to be
executed or return error conditions based on the deleted values.

Referential integrity: If the identified table or the base table of the identified view
is a parent, the rows selected must not have any dependents in a relationship with
a delete rule of RESTRICT or NO ACTION, and the DELETE must not cascade to
descendent rows that have dependents in a relationship with a delete rule of
RESTRICT or NO ACTION (SQLSTATE 23504).

If the delete operation is not prevented by a RESTRICT or NO ACTION delete
rule, the selected rows are deleted. Any rows that are dependents of the selected
rows are also affected:
v The nullable columns of the foreign keys of any rows that are their dependents

in a relationship with a delete rule of SET NULL are set to the null value.
v Any rows that are their dependents in a relationship with a delete rule of

CASCADE are also deleted, and the above rules apply, in turn to those rows.

The referential constraints (other than a referential constraint with a RESTRICT
delete rule), are effectively checked at the end of the statement.

Check constraints: A check constraint can prevent the deletion of a row in a parent
table when there are dependents in a relationship with a delete rule of SET NULL.
If deleting a row in the parent table would cause a column in a dependent table to
be set to null and that null value would cause the search condition of a check
constraint to evaluate to false, the row is not deleted (SQLSTATE 23511).

DELETE

426 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
G

Notes
Delete operation errors: If an error occurs while executing any delete operation,
changes from this statement, referential constraints, and any triggered SQL
statements are rolled back.

Locking: Unless appropriate locks already exist, one or more exclusive locks are
acquired during the execution of a successful DELETE statement. Until the locks
are released by a commit or rollback operation, the effect of the DELETE operation
can only be perceived by:
v The application process that performed the deletion
v Another application process using isolation level UR.

The locks can prevent other application processes from performing operations on
the table.

Position of cursor: If an application process deletes a row on which any of its
cursors are positioned, those cursors are positioned before the next row of their
result table. Let C be a cursor that is positioned before row R (as a result of an
OPEN, a DELETE through C, a DELETE through some other cursor, or a Searched
DELETE). In the presence of INSERT, UPDATE, and DELETE operations that affect
the base table from which R is derived, the next FETCH operation referencing C
does not necessarily position C on R. For example, the operation can position C on
R’, where R’ is a new row that is now the next row of the result table.

Number of rows deleted: When a DELETE statement is completed, the number of
rows deleted is returned in SQLERRD(3) in the SQLCA. The value in SQLERRD(3)
does not include the number of rows that were deleted as a result of a CASCADE
delete rule or a trigger .

For a description of the SQLCA, see Appendix C, “SQLCA (SQL communication
area)”, on page 567.

Examples
Example 1: Delete department (DEPTNO) ‘D11’ from the DEPARTMENT table.

DELETE FROM DEPARTMENT
WHERE DEPTNO = ’D11’

Example 2: Delete all the departments from the DEPARTMENT table (that is, empty
the table).

DELETE FROM DEPARTMENT

Example 3: Use a Java program statement to delete all the subprojects (MAJPROJ is
NULL) from the PROJECT table on the connection context ’ctx’, for a department
(DEPTNO) equal to that in the host variable HOSTDEPT (java.lang.String) .

#sql [ctx] { DELETE FROM PROJECT
WHERE DEPTNO = :HOSTDEPT

AND MAJPROJ IS NULL };

Example 4: Code a portion of a Java program that will be used to display retired
employees (JOB) and then, if requested to do so, remove certain employees from
the EMPLOYEE table on the connection context ’ctx’.

#sql iterator empIterator implements sqlj.runtime.ForUpdate
(...);

empIterator C1;

DELETE

Chapter 5. Statements 427

#sql [ctx] C1 = { SELECT * FROM EMPLOYEE
WHERE JOB = ’RETIRED’ };

#sql { FETCH :C1 INTO ... };
while (!C1.endFetch()) {

System.out.println(...);
...

if (condition for deleting row) {
#sql [ctx] { DELETE FROM EMPLOYEE

WHERE CURRENT OF :C1 };
}

#sql { FETCH :C1 INTO ... };
}
C1.close();

DELETE

428 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

DESCRIBE
The DESCRIBE statement obtains information about a prepared statement. For an
explanation of prepared statements, see “PREPARE” on page 471.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. It must not be specified
in Java.

Authorization
None required. See “PREPARE” on page 471 for the authorization required to
create a prepared statement.

Syntax

�� DESCRIBE statement-name INTO descriptor-name ��

Description
statement-name

Identifies the prepared statement. When the DESCRIBE statement is executed,
the name must identify a prepared statement at the current server.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA). For more information, see
Appendix D, “SQLDA (SQL descriptor area)”, on page 571. Before the
DESCRIBE statement is executed, the following variable in the SQLDA must be
set:

SQLN Indicates the number of SQLVAR entries provided in the
SQLDA. SQLN must be set to a value greater than or equal to
zero before the DESCRIBE statement is executed. For
information on techniques to determine the number of entries
required, see “Determining how many occurrences of SQLVAR
entries are needed” on page 573.

The rules for REXX are different. For more information, see Appendix K,
“Coding SQL statements in REXX applications”, on page 687.

When the DESCRIBE statement is executed, the database manager assigns values
to the variables of the SQLDA as follows:

SQLDAID The first 6 bytes are set to ’SQLDA ’ (that is, 5 letters followed by
the space character).

The seventh byte is set based on the result columns described:
v If the SQLDA contains two SQLVAR entries for every select list

item (or, column of the result table), the seventh byte is set to ’2’.
This technique is used in order to accommodate LOB or distinct
type result columns.

v Otherwise, the seventh byte is set to the space character.

DESCRIBE

Chapter 5. Statements 429

The seventh byte is set to the space character if there is not enough
room in the SQLDA to contain the description of all result
columns.

The eighth byte is set to the space character.

SQLDABC Length of the SQLDA in bytes.

SQLD If the prepared statement is a SELECT, the number of columns in
its result table; otherwise, 0.

SQLVAR If the value of SQLD is 0, or greater than the value of SQLN, no
values are assigned to occurrences of SQLVAR entries..

If the value of SQLD is n, where n is greater than 0 but less than or
equal to the value of SQLN, values are assigned to the first n
occurrences of SQLVAR entries so that the first occurrence of an
SQLVAR entry contains a description of the first column of the
result table, the second occurrence of SQLVAR entry contains a
description of the second column of the result table, and so on. For
information on the values assigned to SQLVAR entries, see “Field
descriptions in an occurrence of SQLVAR” on page 574.

Notes
PREPARE INTO

Information about a prepared statement can also be obtained by using the
INTO clause of the PREPARE statement.

Allocating the SQLDA
In C and COBOL, before the DESCRIBE or PREPARE INTO statement is
executed, enough storage must be allocated for some number of SQLVAR
occurrences. SQLN must then be set to the number of SQLVAR occurrences
that were allocated. To obtain the description of the columns of the result table
of a prepared SELECT statement, the number of occurrences of SQLVAR
entries must not be less than the number of columns. Furthermore, if the
columns include LOBs or distinct types, the number of occurrences of SQLVAR
entries should be two times the number of columns. See “Determining how
many occurrences of SQLVAR entries are needed” on page 573 for more
information.

Among the possible ways to allocate the SQLDA are the three described below:

First technique
Allocate an SQLDA with enough occurrences of SQLVAR entries to
accommodate any select list that the application will have to process.
At the extreme, the number of SQLVARs could equal two times the
maximum number of columns allowed in a result table. Having done
the allocation, the application can use this SQLDA repeatedly.

This technique uses a large amount of storage that is never deallocated,
even when most of this storage is not used for a particular select list.

Second technique
Repeat the following three steps for every processed select list:
1. Execute a DESCRIBE statement with an SQLDA that has no

occurrences of SQLVAR entries; that is, an SQLDA for which SQLN
is zero. The value returned for SQLD is the number of columns in
the result table. This is either the required number of occurrences of

DESCRIBE

430 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SQLVAR entries or half the required number. Because there were no
SQLVAR entries, a warning will be issued.

2. If the SQLSTATE accompanying that warning is equal to 01005,
allocate an SQLDA with 2 * SQLD occurrences and set SQLN in the
new SQLDA to 2 * SQLD. Otherwise, allocate an SQLDA with
SQLD occurrences and set SQLN in the new SQLDA to the value of
SQLD.

3. Execute the DESCRIBE statement again, using this new SQLDA.

This technique allows better storage management than the first
technique, but it doubles the number of DESCRIBE statements.

Third technique
Allocate an SQLDA that is large enough to handle most, and perhaps
all, select lists but is also reasonably small. If an execution of
DESCRIBE fails because the SQLDA is too small, allocate a larger
SQLDA and execute DESCRIBE again. For the new SQLDA, use the
value of SQLD (or double the value of SQLD) returned from the first
execution of DESCRIBE for the number of occurrences of SQLVAR
entries.

This technique is a compromise between the first two techniques. Its
effectiveness depends on a good choice of size for the original SQLDA.

Examples
In a C program, execute a DESCRIBE statement with an SQLDA that has no
occurrences of SQLVAR entries. If SQLD is greater than zero, use the value to
allocate an SQLDA with the necessary number of occurrences of SQLVAR entrires
and then execute a DESCRIBE statement using that SQLDA.

EXEC SQL BEGIN DECLARE SECTION;
char stmt1_str [200];

EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLDA;
struct sqlda initialsqlda;
struct sqlda *sqldaPtr;

EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

... /* code to prompt user for a query, then to generate */
/* a select-statement in the stmt1_str */

EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;

... /* code to set SQLN to zero and SQLDABC to length of SQLDA */
EXEC SQL DESCRIBE STMT1_NAME INTO :initialsqlda;

if (initialsqlda.sqld > 0) /* statement is a select-statement */
{

... /* Code to allocate correct size SQLDA (sets sqldaPtr) */

if (strcmp(SQLSTATE,"01005") == 0)
{
sqldaPtr->sqln = 2*initialsqlda.sqld;
SETSQLDOUBLED(sqldaPtr, SQLDOUBLED);
}

else
{
sqldaPtr->sqln = initialsqlda.sqld;
SETSQLDOUBLED(sqldaPtr, SQLSINGLED);
}

EXEC SQL DESCRIBE STMT1_NAME INTO :*sqldaPtr;

DESCRIBE

Chapter 5. Statements 431

... /* code to prepare for the use of the SQLDA */
EXEC SQL OPEN DYN_CURSOR;

... /* loop to fetch rows from result table */
EXEC SQL FETCH DYN_CURSOR USING DESCRIPTOR :*sqldaPtr;

...
}

...

DESCRIBE

432 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

DROP
The DROP statement drops an object. Objects that are directly or indirectly
dependent on that object may also be dropped.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v Ownership of the object
v Administrative authority.

Syntax

�� DROP

�

ALIAS alias-name
DISTINCT TYPE distinct-type-name

FUNCTION function-name
()

,

parameter-type
SPECIFIC FUNCTION specific-name

INDEX index-name
PACKAGE package-name
PROCEDURE procedure-name
TABLE table-name
TRIGGER trigger-name
VIEW view-name

��

parameter-type:

data-type
AS LOCATOR

data-type:

built-in-type
distinct-type-name

built-in-type:

DROP

Chapter 5. Statements 433

SMALLINT
INTEGER
INT

(5,0)
DECIMAL
DEC ()

NUMERIC ,0
integer

, integer
(53)

FLOAT
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR () FOR BIT DATA

integer
CHARACTER VARYING ()
CHAR integer

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer)

CLOB K
M
G

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME
TIMESTAMP

Description
ALIAS alias-name

Identifies the alias that is to be dropped. The alias-name must identify an alias
that exists at the current server.

The specified alias is dropped from the schema. Dropping an alias has no
effect on any constraint that was defined using the alias. The effect on any
tables, views, routines, or triggers that reference the alias is product-specific.

DISTINCT TYPE distinct-type-name
Identifies the distinct type that is to be dropped. The distinct-type-name must
identify a distinct type that exists at the current server.

The specified type is dropped from the schema. All privileges on the distinct
type are also dropped. The effect on any tables, views, routines, or triggers that
reference the type is product-specific.

DROP

434 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

G
G

FUNCTION or SPECIFIC FUNCTION
Identifies the function that is to be dropped. The function must exist at the
current server and it must be a function that was defined with the CREATE
FUNCTION statement. The particular function can be identified by its name,
function signature, or specific name.

Functions implicitly generated by the CREATE DISTINCT TYPE statement
cannot be dropped using the DROP statement. They are implicitly dropped
when the distinct type is dropped.

The function cannot be dropped if another function is dependent on it. A
function is dependent on another function if it was identified in the SOURCE
clause of the CREATE FUNCTION statement.

The specified function is dropped from the schema. All privileges on the
user-defined function are also dropped. The effect on any routines, triggers, or
views that reference the function is product-specific.

FUNCTION function-name
Identifies the function by its name. The function-name must identify exactly
one function. The function may have any number of parameters defined
for it. If there is more than one function of the specified name in the
specified or implicit schema, an error is returned.

FUNCTION function-name (parameter-type, ...)
Identifies the function by its function signature, which uniquely identifies
the function. The function-name (parameter-type, ...) must identify a function
with the specified function signature. The specified parameters must match
the data types in the corresponding position that were specified when the
function was created. The number of data types, and the logical
concatenation of the data types is used to identify the specific function
instance which is to be dropped. Synonyms for data types are considered a
match.

If function-name () is specified, the function identified must have zero
parameters.

function-name
Identifies the name of the function.

(parameter-type, ...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, the database manager
searches the SQL path to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, use one
of the following:
v Empty parentheses indicate that the database manager ignores the

attribute when determining whether the data types match. For
example, DEC() will be considered a match for a parameter of a
function defined with a data type of DEC(7,2). However, FLOAT
cannot be specified with empty parenthesis because its parameter
value indicates a specific data type (REAL or DOUBLE).

v If a specific value for a length, precision, or scale attribute is
specified, the value must exactly match the value that was specified
(implicitly or explicitly) in the CREATE FUNCTION statement. If the
data type is FLOAT, the precision does not have to exactly match the
value that was specified because matching is based on the data type
(REAL or DOUBLE).

DROP

Chapter 5. Statements 435

G
G

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default attributes of the data type
are implied. The implicit length must exactly match the value that
was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this
parameter. If AS LOCATOR is specified, the data type must be a LOB
or a distinct type based on a LOB.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name. The specific-name must identify
a specific function that exists at the current server.

INDEX index-name
Identifies the index that is to be dropped. The index-name must identify an
index that exists at the current server, but it must not identify:
v A primary index.
v A unique index used to enforce a UNIQUE constraint.
v An index on a catalog table.

The specified index is dropped from the schema. See the product references for
additional restrictions on dropping indexes.

PACKAGE package-name
Identifies the package that is to be dropped. The package-name must identify a
package that exists at the current server.

The specified package is dropped from the schema. All privileges on the
package are also dropped.

PROCEDURE
Identifies the procedure that is to be dropped. The procedure-name must identify
a procedure that exists at the current server.

The specified procedure is dropped from the schema. All privileges on the
procedure are also dropped. The effect on any routines that reference the
procedure is product-specific.

TABLE table-name
Identifies the table that is to be dropped. The table-name must identify a base
table that exists at the current server, but it must not identify a catalog table.

The specified table is dropped from the schema. All privileges, constraints,
indexes, triggers, and views on the table are also dropped. Any referential
constraints in which the table is the parent are dropped. The effect on any
routines or triggers that reference the table is product-specific.

Any aliases that reference the specified table are not dropped.

TRIGGER trigger-name
Identifies the trigger that is to be dropped. The trigger-name must identify a
trigger that exists at the current server.

The specified trigger is dropped from the schema.

VIEW view-name
Identifies the view that is to be dropped. The view-name must identify a view
that exists at the current server.

DROP

436 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

G
G

The specified view is dropped from the schema. Any view that is directly or
indirectly dependent on that view is also dropped. Whenever a view is
dropped, all privileges on that view are also dropped. The effect on any
routines, or triggers that reference the view is product-specific.

Any aliases that reference the specified view are not dropped.

Notes
Drop effects: Whenever an object is dropped, its description is dropped from the
catalog and any access plans that reference the object are invalidated. For more
information, see “Packages and access plans” on page 9.

Drop restriction: In DB2 UDB for z/OS and OS/390, after an object is dropped, a
commit must be performed before recreating the object with the same name.

Examples
Example 1: Drop the table named MY_IN_TRAY.

DROP TABLE MY_IN_TRAY

Example 2: Drop your view named MA_PROJ.
DROP VIEW MA_PROJ

Example 3: Drop the package named PERS.PACKA.
DROP PACKAGE PERS.PACKA

Example 4: Drop the distinct type DOCUMENT.
DROP DISTINCT TYPE DOCUMENT

Example 5: Assume that ATOMIC_WEIGHT is the only function with that name in
schema CHEM. Drop ATOMIC_WEIGHT.

DROP FUNCTION CHEM.ATOMIC_WEIGHT

Example 6: Drop the function named CENTER, using the function signature to
identify the function instance to be dropped.

DROP FUNCTION CENTER (INTEGER, DOUBLE)

Example 7: Drop CENTER, using the specific name to identify the function instance
to be dropped.

DROP SPECIFIC FUNCTION JOHNSON.FOCUS97

Example 8: Assume that procedure OSMOSIS is in schema BIOLOGY. Drop
OSMOSIS.

DROP PROCEDURE BIOLOGY.OSMOSIS

Example 9: Assume that trigger BONUS exists in the default schema. Drop BONUS.
DROP TRIGGER BONUS

DROP

Chapter 5. Statements 437

G
G

G
G

END DECLARE SECTION
The END DECLARE SECTION statement marks the end of an SQL declare section.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in Java or REXX.

Authorization
None required.

Syntax

�� END DECLARE SECTION ��

Description
The END DECLARE SECTION statement can be coded in the application program
wherever declarations can appear in accordance with the rules of the host
language. It is used to indicate the end of an SQL declare section. An SQL declare
section starts with a BEGIN DECLARE SECTION statement described in “BEGIN
DECLARE SECTION” on page 295.

The BEGIN DECLARE SECTION and the END DECLARE SECTION statements
must be paired and may not be nested.

Examples
See “BEGIN DECLARE SECTION” on page 295 for examples that use the END
DECLARE SECTION statement.

END DECLARE SECTION

438 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

EXECUTE
The EXECUTE statement executes a prepared SQL statement.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. It must not be specified
in Java.

Authorization
See “PREPARE” on page 471 for the authorization required to create a prepared
statement.

Syntax

�� EXECUTE statement-name

�

,

USING host-variable
USING DESCRIPTOR descriptor-name

��

Description
statement-name

Identifies the prepared statement to be executed. When the EXECUTE
statement is executed, the name must identify a prepared statement at the
current server. The prepared statement cannot be a SELECT statement.

USING
Introduces a list of host variables whose values are substituted for the
parameter markers (question marks) in the prepared statement. (For an
explanation of parameter markers, see “PREPARE” on page 471.) If the
prepared statement includes parameter markers, the USING clause must be
used. USING is ignored if there are no parameter markers.

host-variable,...
Identifies one or more host structures or variables that must be declared in
the program in accordance with the rules for declaring host structures and
variables. A reference to a host structure is replaced by a reference to each
of its variables. The number of variables must be the same as the number
of parameter markers in the prepared statement. The nth variable
corresponds to the nth parameter marker in the prepared statement.

DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of host
variables.

Before the EXECUTE statement is processed, the user must set the
following fields in the SQLDA (Note that the rules for REXX are different.
For more information, see Appendix K, “Coding SQL statements in REXX
applications”, on page 687):
v SQLN to indicate the number of SQLVAR entries provided in the

SQLDA
v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA

EXECUTE

Chapter 5. Statements 439

v SQLD to indicate the number of variables used in the SQLDA when
processing the statement

v SQLVAR entries to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all occurrences of
SQLVAR entries. If an SQLVAR entry includes a LOB or distinct type based
on a LOB, there must be additional SQLVAR entries for each parameter.
For more information on the SQLDA, which includes a description of the
SQLVAR and an explanation on how to determine the number of SQLVAR
entries, see Appendix D, “SQLDA (SQL descriptor area)”, on page 571.

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN. It must be the same as the number of parameter markers
in the prepared statement. The nth variable described by the SQLDA
corresponds to the nth parameter marker in the prepared statement.

Notes
Parameter marker replacement: Before the prepared statement is executed, each
parameter marker in the statement is effectively replaced by its corresponding host
variable. The replacement of a parameter marker is an assignment operation in
which the source is the value of the host variable, and the target is a variable
within the database manager. For a typed parameter marker, the attributes of the
target variable are those specified by the CAST specification. For an untyped
parameter marker, the attributes of the target variable are determined according to
the context of the parameter marker. For the rules that affect parameter markers,
see Table 36 on page 473.

Let V denote a host variable that corresponds to parameter marker P. The value of
V is assigned to the target variable for P using storage assignment rules as
described in “Assignments and comparisons” on page 60. Thus:
v V must be compatible with the target.
v If V is a string, its length must not be greater than the length attribute of the

target.
v If V is a number, the whole part of the number must not be truncated.
v If the attributes of V are not identical to the attributes of the target, the value is

converted to conform to the attributes of the target.
v If the target cannot contain nulls, V must not be null.

When the prepared statement is executed, the value used in place of P is the value
of the target variable for P. For example, if V is CHAR(6) and the target is
CHAR(8), the value used in place of P is the value of V padded with two blanks.

Examples
This example of portions of a COBOL program shows how an INSERT statement
with parameter markers is prepared and executed.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
77 EMP PIC X(6).
77 PRJ PIC X(6).
77 ACT PIC S9(4) BINARY.
77 TIM PIC S9(3)V9(2).
01 HOLDER.

49 HOLDER-LENGTH PIC S9(4) BINARY.
49 HOLDER-VALUE PIC X(80).

EXEC SQL END DECLARE SECTION END-EXEC.
.

EXECUTE

440 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

.

.
MOVE 70 TO HOLDER-LENGTH.
MOVE "INSERT INTO EMPPROJACT (EMPNO, PROJNO, ACTNO, EMPTIME)

- "VALUES (?, ?, ?, ?)" TO HOLDER-VALUE.
EXEC SQL PREPARE MYINSERT FROM :HOLDER END-EXEC.

IF SQLCODE = 0
PERFORM DO-INSERT THRU END-DO-INSERT

ELSE
PERFORM ERROR-CONDITION.

DO-INSERT.
MOVE "000010" TO EMP.
MOVE "AD3100" TO PRJ.
MOVE 160 TO ACT.
MOVE .50 TO TIM.
EXEC SQL EXECUTE MYINSERT USING :EMP, :PRJ, :ACT, :TIM END-EXEC.

END-DO-INSERT.
.
.
.

EXECUTE

Chapter 5. Statements 441

EXECUTE IMMEDIATE
The EXECUTE IMMEDIATE statement:
v Prepares an executable form of an SQL statement from a character string form of

the statement
v Executes the SQL statement

EXECUTE IMMEDIATE combines the basic functions of the PREPARE and
EXECUTE statements. It can be used to prepare and execute SQL statement that
contain neither host variables nor parameter markers.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. It must not be specified
in Java.

Authorization
The authorization rules are those defined for the SQL statement specified by
EXECUTE IMMEDIATE. For example, see “INSERT” on page 461 for the
authorization rules that apply when an INSERT statement is executed using
EXECUTE IMMEDIATE.

The authorization ID is the run-time authorization ID.

Syntax

�� EXECUTE IMMEDIATE host-variable ��

Description
host-variable

Identifies a host variable that must be described in accordance with the rules
for declaring character-string host variables. The host variable must not have a
CLOB data type, and an indicator variable must not be specified.

In COBOL it must be a varying-length string variable. In C, it must be the
VARCHAR structured form of a string variable rather than the
NUL-terminated form.

The value of the identified host variable is called the statement string.

The statement string must be one of the following SQL statements:68

ALTER DROP REVOKE
COMMENT GRANT ROLLBACK
COMMIT INSERT SAVEPOINT
CREATE LOCK TABLE SET PATH
DECLARE GLOBAL
TEMPORARY TABLE

RELEASE SAVEPOINT UPDATE

DELETE RENAME

68. A select-statement is not allowed. To dynamically process a select-statement, use the PREPARE, DECLARE CURSOR, and OPEN
statements.

EXECUTE IMMEDIATE

442 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

The statement string must not:
v Begin with EXEC SQL.
v End with END-EXEC or a semicolon.
v Include references to host variables.
v Include parameter markers.
v Include comments.

When an EXECUTE IMMEDIATE statement is executed, the specified statement
string is parsed and checked for errors. If the SQL statement is invalid, it is not
executed and the error is returned. If the SQL statement is valid, but an error
occurs during its execution, that error is returned.

Notes
Performance considerations: If the same SQL statement is to be executed more
than once, it is more efficient to use the PREPARE and EXECUTE statements rather
than the EXECUTE IMMEDIATE statement.

Examples
Use C to execute the SQL statement in the host variable Qstring.
EXEC SQL INCLUDE SQLCA;
void main ()

{

EXEC SQL BEGIN DECLARE SECTION;

char Qstring[100] =
"INSERT INTO WORK_TABLE SELECT * FROM EMPPROJACT WHERE ACTNO >= 100";

EXEC SQL END DECLARE SECTION;

.

.

.
EXEC SQL EXECUTE IMMEDIATE :Qstring;

return;
}

EXECUTE IMMEDIATE

Chapter 5. Statements 443

FETCH
The FETCH statement positions a cursor on the next row of its result table and
assigns the values of that row to host variables.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization
See “DECLARE CURSOR” on page 411 for an explanation of the authorization
required to use a cursor.

Syntax

��
FROM

FETCH cursor-name �

,

INTO host-variable
USING DESCRIPTOR descriptor-name

��

Description
cursor-name

Identifies the cursor to be used in the fetch operation. The cursor-name must
identify either a declared cursor as explained in “DECLARE CURSOR” on
page 411 or when used in Java, an instance of an SQLJ iterator. When the
FETCH statement is executed, the cursor must be in the open state.

INTO host-variable,...
Identifies one or more host structures or variables that must be described in
accordance with the rules for declaring host structures and variables. In the
operational form of INTO, a reference to a structure is replaced by a reference
to each of its variables. The first value in the result row is assigned to the first
host variable in the list, the second value to the second host variable, and so
on.

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of zero or more
output host variables.

Before the FETCH statement is processed, the user must set the following
fields in the SQLDA (note that the rules for REXX are different, for more
information see Appendix K, “Coding SQL statements in REXX applications”,
on page 687):
v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA.
v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA
v SQLD to indicate the number of variables used in the SQLDA when

processing the statement
v SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR occurrences.
Therefore, the value in SQLDABC must be greater than or equal to 16 +
SQLN*(N), where N is the length of an SQLVAR occurrence. If LOBs are

FETCH

444 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

specified, there must be two SQLVAR entries for each parameter marker and
SQLN must be set to two times the number of parameter markers.

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN. For more information, see Appendix D, “SQLDA (SQL
descriptor area)”, on page 571.

Notes
Cursor position: An open cursor has three possible positions:
v Before a row
v On a row
v After the last row.

If the cursor is currently positioned on or after the last row of the result table:
v SQLSTATE is set to '02000'.
v The cursor is positioned after the last row.
v Values are not assigned to host variables.

If the cursor is currently positioned before a row, the cursor is positioned on that
row, and the values of that row are assigned to host variables as specified by INTO
or USING.

If the cursor is currently positioned on a row other than the last row, the cursor is
positioned on the next row and values of that row are assigned to host variables as
specified by INTO or USING.

If a cursor is on a row, that row is called the current row of the cursor. A cursor
referenced in an UPDATE or DELETE statement must be positioned on a row. A
cursor can only be on a row as a result of a FETCH statement.

It is possible for an error to occur that makes the state of the cursor unpredictable.

Host variable assignment: The nth variable identified by the INTO clause or
described in the SQLDA corresponds to the nth column of the result table of the
cursor. The data type of each variable must be compatible with its corresponding
column.

Each assignment to a variable is made according to the Retrieval Assignment rules
described in “Assignments and comparisons” on page 60. If the number of
variables is less than the number of values in the row, the SQLWARN3 field of the
SQLCA is set to 'W'. Note that there is no warning if there are more variables than
the number of result columns. If the value is null, an indicator variable must be
provided. If an assignment error occurs, the values in the host variables are
unpredictable.

Result column evaluation considerations: If an error occurs as the result of an
arithmetic expression in the select list of an outer SELECT statement (such as
division by zero or overflow) or a character conversion error occurs, the result is
the null value. As in any other case of a null value, an indicator variable must be
provided. The value of the host variable is undefined. In this case, however, the
indicator variable is set to -2. Processing of the statement continues and a warning
is returned. If an indicator variable is not provided, an error is returned and no

FETCH

Chapter 5. Statements 445

more values are assigned to variables. It is possible that some values have already
been assigned to host variables and will remain assigned when the error occurs. 69

If the specified host variable is not large enough to contain the result, a warning is
returned (SQLSTATE 01004) and ’W’ is assigned to SQLWARN1 in the SQLCA. The
actual length of the result is returned in the indicator variable associated with the
host-variable, if an indicator variable is provided. If a CLOB, DBCLOB or BLOB
value is truncated, the length may not be returned in the indicator variable.

It is possible that a warning may not be returned on a FETCH. This occurs as a
result of optimizations such as the use of system temporary tables or blocking. It is
also possible that the returned warning applies to a previously fetched row.

When a datetime value is returned, the length of the variable must be large
enough to store the complete value. Otherwise, depending on how much of the
value would have to be truncated, a warning or an error is returned. See
“Datetime assignments” on page 64 for details.

Examples
Example 1: In this C example, the FETCH statement fetches the results of the
SELECT statement into the program variables dnum, dname, and mnum. When no
more rows remain to be fetched, the not found condition is returned.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO FROM TDEPT
WHERE ADMRDEPT = ’A00’;

EXEC SQL OPEN C1;
while (SQLCODE==0) {

EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;
}
EXEC SQL CLOSE C1;

Example 2: This FETCH statement uses an SQLDA.
FETCH CURS USING DESCRIPTOR :sqlda3

69. In DB2 UDB for LUW, the database configuration parameter dft_sqlmathwarn must be set to yes for this behavior to be
supported.

FETCH

446 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

FREE LOCATOR
The FREE LOCATOR statement removes the association between a locator variable
and its value.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that can be dynamically prepared. However, the EXECUTE
statement with the USING clause must be used to execute the prepared statement.
FREE LOCATOR cannot be used with the EXECUTE IMMEDIATE statement. It
must not be specified in Java.

Authorization
None required.

Syntax

�� FREE LOCATOR �

,

host-variable ��

Description
host-variable, ...

Identifies one or more locator variables that must be declared in accordance
with the rules for declaring locator variables. The locator variable type must be
a binary large object locator, a character large object locator, or a double-byte
character large object locator.

The host-variable must currently have a locator assigned to it. That is, a locator
must have been assigned during this unit of work (by a FETCH, SELECT
INTO, assignment statement, or VALUES INTO statement) and must not
subsequently have been freed (by a FREE LOCATOR statement); otherwise, an
error is returned.

If more than one locator is specified and an error is returned on one of the
locators, it is possible that some locators have been freed and others have not
been freed.

Examples
Assume that the employee table contains columns RESUME, HISTORY, and
PICTURE and that the locators have been established in a program to represent the
column values. In a COBOL program, free the CLOB locator variables LOCRES
and LOCHIST, and the BLOB locator variable LOCPIC.

EXEC SQL
FREE LOCATOR :LOCRES, :LOCHIST, :LOCPIC
END-EXEC.

FREE LOCATOR

Chapter 5. Statements 447

GRANT (Distinct Type Privileges)
This form of the GRANT statement grants privileges on a distinct type.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

In DB2 UDB for LUW, this statement is not supported. Instead, PUBLIC implicitly
has the USAGE privilege on all distinct types.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v Ownership of the distinct type
v The USAGE privilege on the distinct type with the WITH GRANT OPTION
v Administrative authority.

If WITH GRANT OPTION is specified, the privileges held by the authorization ID
of the statement must include at least one of the following:
v Ownership of the distinct type
v Administrative authority.

Syntax

�� GRANT USAGE ON DISTINCT TYPE distinct-type-name �

� �

,

TO authorization-name
PUBLIC WITH GRANT OPTION

��

Description
USAGE

Grants the privilege to use the distinct type in tables, functions, procedures, or
CAST expressions.

ON DISTINCT TYPE distinct-type-name
Identifies the distinct type on which the privilege is granted. The
distinct-type-name must identify a distinct type that exists at the current server.

TO
Indicates to whom the privilege is granted.

authorization-name,...
Lists one or more authorization IDs.70

70. In DB2 UDB for z/OS and OS/390, the CURRENT RULES special register must be set to ’STD’ to grant privileges to the
authorization ID of the GRANT statement itself.

GRANT (Distinct Type Privileges)

448 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

PUBLIC
Grants the privilege to a set of users (authorization IDs). For more
information, see “Authorization, privileges and object ownership” on
page 11.

WITH GRANT OPTION
Allows the specified authorization-names to grant the USAGE privilege to other
users.

If WITH GRANT OPTION is omitted, the specified authorization-names cannot
grant the USAGE privilege to others unless they have received that authority
from some other source.

Notes
Cast function implications: The GRANT (Distinct Type Privileges) statement does
not grant a user the privilege to execute the cast functions that are associated with
the distinct type. The GRANT (Function or Procedure Privileges) statement must
be used to grant the EXECUTE privilege to the cast functions associated with the
distinct type.

Examples
Grant the USAGE privilege on distinct type SHOE_SIZE to user JONES.
GRANT USAGE

ON DISTINCT TYPE SHOE_SIZE
TO JONES

GRANT (Distinct Type Privileges)

Chapter 5. Statements 449

GRANT (Function or Procedure Privileges)
This form of the GRANT statement grants privileges on a function or procedure.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v Ownership of the function or procedure
v The EXECUTE privilege on the function or procedure with the WITH GRANT

OPTION
v Administrative authority.

If WITH GRANT OPTION is specified, the privileges held by the authorization ID
of the statement must include at least one of the following:
v Ownership of the function or procedure
v Administrative authority.

Syntax

�� GRANT EXECUTE ON �

�

�

FUNCTION function-name
()

,

parameter-type
SPECIFIC FUNCTION specific-name
PROCEDURE procedure-name

�

� �

,

TO authorization-name
PUBLIC WITH GRANT OPTION

��

parameter-type:

data-type
AS LOCATOR

data-type:

built-in-type
distinct-type-name

GRANT (Function or Procedure Privileges)

450 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

built-in-type:

SMALLINT
INTEGER
INT

(5,0)
DECIMAL
DEC ()

NUMERIC ,0
integer

, integer
(53)

FLOAT
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR () FOR BIT DATA

integer
CHARACTER VARYING ()
CHAR integer

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer)

CLOB K
M
G

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME
TIMESTAMP

Description
EXECUTE

Grants the privilege to execute the function or procedure.

FUNCTION or SPECIFIC FUNCTION
Identifies the function on which the privilege is granted. The function must
exist at the current server, and it must be a user-defined function. The function
can be identified by name, function signature, or specific name.

FUNCTION function-name
Identifies the function by its name. The function-name must identify exactly
one function. The function may have any number of parameters defined
for it. If there is more than one function of the specified name in the
specified or implicit schema, an error is returned.

GRANT (Function or Procedure Privileges)

Chapter 5. Statements 451

FUNCTION function-name (parameter-type, ...)
Identifies the function by its function signature, which uniquely identifies
the function. The function-name (parameter-type, ...) must identify a function
with the specified function signature. The specified parameters must match
the data types in the corresponding position that were specified when the
function was created. The number of data types, and the logical
concatenation of the data types is used to identify the specific function
instance on which the privilege is to be granted. Synonyms for data types
are considered a match.

If function-name () is specified, the function identified must have zero
parameters.

function-name
Identifies the name of the function.

(parameter-type, ...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, the database manager
searches the SQL path to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, use one
of the following:
v Empty parentheses indicate that the database manager ignores the

attribute when determining whether the data types match. For
example, DEC() will be considered a match for a parameter of a
function defined with a data type of DEC(7,2). However, FLOAT
cannot be specified with empty parenthesis because its parameter
value indicates a specific data type (REAL or DOUBLE).

v If a specific value for a length, precision, or scale attribute is
specified, the value must exactly match the value that was specified
(implicitly or explicitly) in the CREATE FUNCTION statement. If the
data type is FLOAT, the precision does not have to match the value
that was specified because matching is based on the data type
(REAL or DOUBLE).

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default attributes of the data type
are implied. The implicit length must exactly match the value that
was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this
parameter. If AS LOCATOR is specified, the data type must be a LOB
or a distinct type based on a LOB.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name. The specific-name must identify
a specific function that exists at the current server.

PROCEDURE procedure-name
Identifies the procedure on which the privilege is granted. The procedure-name
must identify a procedure that exists at the current server.

TO
Indicates to whom the privilege is granted.

GRANT (Function or Procedure Privileges)

452 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

authorization-name,...
Lists one or more authorization IDs.71

PUBLIC
Grants the privilege to a set of users (authorization IDs). For more
information, see “Authorization, privileges and object ownership” on
page 11.

WITH GRANT OPTION
Allows the specified authorization-names to grant the EXECUTE privilege to
others users.

If WITH GRANT OPTION is omitted, the specified authorization-names cannot
grant the EXECUTE privilege to others unless they have received that
authority from some other source.

Notes
Built-in functions: Privileges cannot be granted on built-in functions.

Examples
Grant the EXECUTE privilege on procedure PROCA to PUBLIC.
GRANT EXECUTE

ON PROCEDURE PROCA
TO PUBLIC

71. In DB2 UDB for z/OS and OS/390, the CURRENT RULES special register must be set to ’STD’ to grant privileges to the
authorization ID of the GRANT statement itself.

GRANT (Function or Procedure Privileges)

Chapter 5. Statements 453

GRANT (Package Privileges)
This form of the GRANT statement grants the privilege to execute statements in a
package.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v Ownership of the package
v The EXECUTE privilege on the package with the WITH GRANT OPTION
v Administrative authority.

If WITH GRANT OPTION is specified, the privileges held by the authorization ID
of the statement must include at least one of the following:
v Ownership of the package
v Administrative authority.

Syntax

�� GRANT EXECUTE ON PACKAGE package-name �

,

TO authorization-name
PUBLIC

�

�
WITH GRANT OPTION

��

Description
EXECUTE

Grants the privilege to execute SQL statements in a package.

ON PACKAGE package-name
Identifies the package on which the EXECUTE privilege is granted. The
package-name must identify a package that exists at the current server.

TO
Indicates to whom the privilege is granted.

authorization-name,...
Lists one or more authorization IDs. In DB2 UDB for LUW, the
authorization ID of the GRANT statement itself cannot be specified.72

72. In DB2 UDB for z/OS and OS/390, the CURRENT RULES special register must be set to ’STD’ to grant privileges to the
authorization ID of the GRANT statement itself.

GRANT (Package Privileges)

454 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

PUBLIC
Grants the privilege to a set of users (authorization IDs). For more
information, see “Authorization, privileges and object ownership” on
page 11.

WITH GRANT OPTION
Allows the specified authorization-names to grant the EXECUTE privilege to
others users.

If WITH GRANT OPTION is omitted, the specified authorization-names cannot
grant the EXECUTE privilege to others unless they have received that
authority from some other source.

In DB2 UDB for LUW, WITH GRANT OPTION is not supported.

Examples
Grant the EXECUTE privilege on PACKAGE PKGA to PUBLIC.

GRANT EXECUTE
ON PACKAGE PKGA
TO PUBLIC

GRANT (Package Privileges)

Chapter 5. Statements 455

G

GRANT (Table or View Privileges)
This form of the GRANT statement grants privileges on a table or view.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v Ownership of the table or view
v The WITH GRANT OPTION for at least one of the specified privileges. If ALL is

specified, the authorization ID must have some grantable privilege on the table
or view

v Administrative authority.

If WITH GRANT OPTION is specified, the privileges held by the authorization ID
of the statement must include at least one of the following:
v Ownership of the table
v Administrative authority.

Syntax

�� GRANT

�

�

�

ALL PRIVILEGES
,

ALTER
DELETE
INDEX
INSERT
REFERENCES

,

(column-name)
SELECT
UPDATE

,

(column-name)

�

�
TABLE

ON table-name
view-name

�

� �

,

TO authorization-name
PUBLIC WITH GRANT OPTION

��

GRANT (Table or View Privileges)

456 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Description
ALL PRIVILEGES

Grants one or more privileges on the specified table or view. The privileges
granted are all those grantable privileges that the authorization ID of the
statement has on the identified table or view.

ALTER
Grants the privilege to alter the specified table or create a trigger on the
specified table. This privilege cannot be granted on a view.

DELETE
Grants the privilege to delete rows from the specified table or view. If a view is
specified, it must be a deletable view.

INDEX
Grants the privilege to create an index on the specified table. This privilege
cannot be granted on a view.

INSERT
Grants the privilege to insert rows into the specified table or view. If a view is
specified, it must be an insertable view.

REFERENCES
Grants the privilege to add a referential constraint in which the specified table
is a parent. If a list of column names is not specified or if REFERENCES is
granted via the specification of ALL PRIVILEGES, the grantee(s) can define
referential constraints using all columns of the table as a parent key, even those
added later via the ALTER TABLE statement. This privilege cannot be granted
on a view.

REFERENCES (column-name,...)
Grants the privilege to add a referential constraint in which the specified table
is a parent using only those columns specified in the column list as a parent
key. Each column-name must be an unqualified name that identifies a column of
the table identified in the ON clause. This privilege cannot be granted on a
view.

SELECT
Grants the privilege to create a view or read data from the specified table or
view. For example, the SELECT privilege is required if a table or view is
specified in a query.

UPDATE
Grants the privilege to update rows in the specified table or view. If a list of
column names is not specified or if UPDATE is granted via the specification of
ALL PRIVILEGES, the grantee(s) can update all updatable columns of the table
or view, even those added later via the ALTER TABLE statement. If a view is
specified, it must be an updatable view.

UPDATE (column-name,...)
Grants the privilege to use the UPDATE statement for the specified table or
view to update only those columns that are identified in the column list. Each
column-name must be an unqualified name that identifies a column of the table
or view identified in the ON clause. If a view is specified, it must be an
updatable view and the specified columns must be updatable columns.

ON table-name or view-name
Identifies the table or view on which the privileges are granted. The table-name
or view-name must identify a table or view that exists at the current server but
must not identify a declared temporary table.

GRANT (Table or View Privileges)

Chapter 5. Statements 457

TO
Indicates to whom the privileges are granted.

authorization-name,...
Lists one or more authorization IDs. 73

PUBLIC
Grants the privilege(s) to a set of users (authorization IDs). For more
information, see “Authorization, privileges and object ownership” on
page 11.

WITH GRANT OPTION
Allows the specified authorization-names to grant the privileges to others users.

If WITH GRANT OPTION is omitted, the specified authorization-names cannot
grant the privileges to others unless they have received that authority from
some other source.

Notes
GRANT rules: The GRANT statement will grant only those privileges that the
authorization ID of the statement is allowed to grant. If no privileges were granted,
an error is returned.

Examples
Example 1: Grant all privileges on the table WESTERN_CR to PUBLIC.

GRANT ALL PRIVILEGES ON WESTERN_CR
TO PUBLIC

Example 2: Grant the appropriate privileges on the CALENDAR table so that PHIL
and CLAIRE can read it and insert new entries into it. Do not allow them to
change or remove any existing entries.

GRANT SELECT, INSERT ON CALENDAR
TO PHIL, CLAIRE

73. In DB2 UDB for z/OS and OS/390, the CURRENT RULES special register must be used to grant privileges to the authorization
ID of the GRANT statement itself.

GRANT (Table or View Privileges)

458 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

INCLUDE
The INCLUDE statement inserts application code, including declarations and
statements, into a source program.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in Java or REXX.

Authorization
None required.

Syntax

�� INCLUDE SQLCA
SQLDA
name

��

Description
SQLCA

Indicates the description of an SQL communication area (SQLCA) is to be
included. INCLUDE SQLCA must not be specified if the program includes a
stand-alone SQLSTATE or stand-alone SQLCODE. In COBOL, INCLUDE
SQLCA can only be specified within the WORKING-STORAGE SECTION. If
INCLUDE SQLCA is not specified in C or COBOL, then the variable
SQLSTATE or SQLCODE must appear in the program.

INCLUDE SQLCA must not be specified more than once in the same program.
For more information, see “SQL return codes” on page 279.

For a description of the SQLCA, see Appendix C, “SQLCA (SQL
communication area)”, on page 567.

SQLDA
Indicates the description of an SQL descriptor area (SQLDA) is to be included.
INCLUDE SQLDA can be specified in C and COBOL programs. In COBOL,
INCLUDE SQLDA can only be specified within the WORKING-STORAGE
SECTION.

For a description of the SQLDA, see Appendix D, “SQLDA (SQL descriptor
area)”, on page 571.

name
Identifies an external file or member containing text that is to be included in
the source program being precompiled. In COBOL, INCLUDE name must not
be specified in other than the DATA DIVISION or PROCEDURE DIVISION.

The rules for forming the name and the technique used to map the name to an
external file or library member are product-specific.

The included text can contain any statements of the host language and any
SQL statements other than INCLUDE statements.

When a program is precompiled, the INCLUDE statement is replaced by source
statements.

INCLUDE

Chapter 5. Statements 459

G
G

The INCLUDE statement must be specified at a point in a program where its
source statements are allowed.

Examples
Include an SQL descriptor area in a C program.

EXEC SQL INCLUDE SQLDA;

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO FROM TDEPT

WHERE ADMRDEPT = ’A00’;

EXEC SQL OPEN C1;

while (SQLCODE==0) {
EXEC SQL FETCH C1 INTO :dnum, :dname, mnum;

/* Print results */

}

EXEC SQL CLOSE C1;

INCLUDE

460 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

INSERT
The INSERT statement inserts rows into a table or view. Inserting a row into a
view also inserts the row into the table on which the view is based.

There are two forms of this statement:
v The INSERT using VALUES form is used to insert a single row into the table or

view using the values provided or referenced.
v The INSERT using fullselect form is used to insert one or more rows into the table

or view using values from the result of the query.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The INSERT privilege for the table or view
v Ownership of the table 74

v Administrative authority.

If a fullselect is specified, the privileges held by the authorization ID of the
statement must also include at least one of the following:
v For every table or view identified in the fullselect:

– The SELECT privilege on the table or view, or
– Ownership of the table or view.

v Administrative authority.

Syntax

�� INSERT INTO table-name
view-name

�

,

(column-name)

�

�

�

VALUES expression
DEFAULT
NULL

,

(expression)
DEFAULT
NULL

fullselect
isolation-clause

��

74. The INSERT privilege on a view is only inherent in administrative authority. Ownership of a view does not necessarily include
the INSERT privilege on the view because the privilege may not have been granted when the view was created, or it may have
been granted, but subsequently revoked.

INSERT

Chapter 5. Statements 461

isolation-clause:

WITH RR
RS
CS

Description
INTO table-name or view-name

Identifies the object of the insert operation. The name must identify a table or
view that exists at the current server, but it must not identify a catalog table, a
view of a catalog table, or a view that is not insertable. For an explanation of
insertable views, see “CREATE VIEW” on page 406.

(column-name,...)
Specifies the columns for which insert values are provided. Each name must be
an unqualified name that identifies a column of the table or view. The same
column must not be identified more than once. A view column that is not
updatable must not be identified. If the object of the insert operation is a view
with such columns, a list of column names must be specified and the list must
not identify those columns. For an explanation of updatable columns in views,
see “CREATE VIEW” on page 406.

Omission of the column list is an implicit specification of a list in which every
column of the table or view is identified in left-to-right order. This list is
established when the statement is prepared and therefore does not include
columns that were added to a table after the statement was prepared.

In all the products, SQL statements can be implicitly or explicitly rebound
(prepared again). The effect of a rebind on INSERT statements that do not
include a column list is as follows:
v In DB2 UDB for z/OS and OS/390, and DB2 UDB for LUW, the implicit list

of names is reestablished. Therefore, the number of columns into which data
is inserted may change.

v In DB2 UDB for iSeries, the list of names is not reestablished. Therefore, the
number of columns into which data is inserted by the statement does not
change.

VALUES
Specifies one new row in the form of a list of values. Each host variable in the
clause must identify a host structure or variable that is declared in the program
in accordance with the rules for declaring host structures and variables. In the
operational form of the statement, a reference to a structure is replaced by a
reference to each of its variables. For further information on host variables and
structures, see “References to host variables” on page 87 and “Host structures”
on page 91.

The number of values in the VALUES clause must equal the number of names
in the implicit or explicit column list. The first value is inserted into the first
column in the list, then the second value into the second column, and so on.

expression
Any expression of the type described in “Expressions” on page 99, that
does not include a column name. If expression is a host-variable, the host
variable can identify a structure.

DEFAULT
The default value assigned to the column. DEFAULT can be specified only

INSERT

462 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
G

G
G
G

for columns that have a default value. For information on default values of
data types, see the description of the DEFAULT clause for CREATE TABLE
in “CREATE TABLE” on page 379.

NULL
Specifies the null value as the value of the column. Specify NULL only for
nullable columns.

fullselect
Specifies a set of new rows in the form of the result table of a fullselect. If the
result table is empty, SQLSTATE is set to ‘02000’.

For an explanation of fullselect, see “fullselect” on page 261.

When the base object of the INSERT and the base object of the fullselect or any
subquery of the fullselect, are the same table, the fullselect is completely
evaluated before any rows are inserted.

The number of columns in the result table must equal the number of names in
the column list. The value of the first column of the result is inserted in the
first column in the list, then the second value in the second column, and so on.

In DB2 UDB for z/OS and OS/390, if the object table is self-referencing, the
fullselect must not return more than one row.

isolation-clause
Specifies the isolation level used by the statement.

WITH

Introduces the isolation level, which may be one of:
v RR Repeatable read
v RS Read stability
v CS Cursor stability

If isolation-clause is not specified, the default isolation is used. See “Isolation
level” on page 16 for a description of how the default is determined.

INSERT Rules
Default values: The value inserted in any column that is not in the column list is
the default value of the column. Columns without a default value must be
included in the column list. Similarly, if the insert is into a view, the default value
is inserted into any column of the base table that is not included in the view.
Hence, all columns of the base table that are not in the view must have a default
value.

Assignment: Insert values are assigned to columns in accordance with the storage
assignment rules described in “Assignments and comparisons” on page 60.

Validity: Inserts must obey the following rules. If they do not, or if any other
errors occur during the execution of the INSERT statement, no rows are inserted.
v Unique constraints and unique indexes: If the identified table, or the base table of

the identified view, has one or more unique indexes or unique constraints, each
row inserted into the table must conform to the limitations imposed by those
indexes and constraints (SQLSTATE 23505).
All uniqueness checks are effectively made at the end of the statement. In the
case of a multiple-row insert, this would occur after all rows were inserted.

INSERT

Chapter 5. Statements 463

G
G

v Check constraints: If the identified table, or the base table of the identified view,
has one or more check constraints, each check constraint must be true or
unknown for each row inserted into the table (SQLSTATE 23513).
All check constraints are effectively validated at the end of the statement. In the
case of a multiple-row insert, this would occur after all rows were inserted.

v Views and the CHECK OPTION clause: If a view is identified, the inserted rows
must conform to any applicable CHECK OPTION clause (SQLSTATE 44000). For
more information, see “CREATE VIEW” on page 406.

Triggers: If the identified table or the base table of the identified view has an insert
trigger, the trigger is activated. A trigger might cause other statements to be
executed or return error conditions based on the insert values.

Referential integrity: Each nonnull insert value of a foreign key must be equal to
some value of the parent key of the parent table in the relationship (SQLSTATE
23503).

The referential constraints (other than a referential constraint with a RESTRICT
delete rule) are effectively checked at the end of the statement. In the case of a
multiple-row insert, this would occur after all rows were inserted.

Notes
Insert operation errors: If an insert value violates any constraints, or if any other
error occurs during the execution of the INSERT statement, changes from this
statement and any triggered SQL statements are rolled back.

Number of rows inserted: After executing an INSERT statement, the value of
SQLERRD(3) of the SQLCA is the number of rows that the database manager
inserted. The value in SQLERRD(3) does not include the number of rows that were
inserted as a result of a trigger.

Locking: Unless appropriate locks already exist, one or more exclusive locks are
acquired during the execution of a successful INSERT statement. Until these locks
are released by a commit or rollback operation, an inserted row can only be
accessed by:
v The application process that performed the insert.
v Another application process using isolation level UR through a read-only cursor,

SELECT INTO statement, or subquery.

The locks can prevent other application processes from performing operations on
the table.

Examples
Example 1: Insert a new department with the following specifications into the
DEPARTMENT table:
v Department number (DEPTNO) is ‘E31’
v Department name (DEPTNAME) is ‘ARCHITECTURE’
v Managed by (MGRNO) a person with number ‘00390’
v Reports to (ADMRDEPT) department ‘E01’.

INSERT INTO DEPARTMENT
VALUES (’E31’, ’ARCHITECTURE’, ’00390’, ’E01’)

INSERT

464 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Example 2: Insert a new department into the DEPARTMENT table as in example 1,
but do not assign a manager to the new department.

INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)
VALUES (’E31’, ’ARCHITECTURE’, ’E01’)

Example 3: Create a table MA_EMPPROJACT with the same columns as the
EMPPROJACT table. Populate MA_EMPPROJACT with the rows from the
EMPPROJACT table with a project number (PROJNO) starting with the letters
‘MA’.

CREATE TABLE MA_EMPPROJACT LIKE EMPPROJACT

INSERT INTO MA_EMPPROJACT
SELECT * FROM EMPPROJACT

WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

Example 4: Use a Java program statement to add a skeleton project to the PROJECT
table on the connection context ’ctx’. Obtain the project number (PROJNO), project
name (PROJNAME), department number (DEPTNO), and responsible employee
(RESPEMP) from host variables. Use the current date as the project start date
(PRSTDATE). Assign a NULL value to the remaining columns in the table.

#sql [ctx] { INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTDATE)
VALUES (:PRJNO, :PRJNM, :DPTNO, :REMP, CURRENT DATE) };

INSERT

Chapter 5. Statements 465

LOCK TABLE
The LOCK TABLE statement either prevents concurrent application processes from
changing a table or prevents concurrent application processes from using a table.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:

The SELECT privilege for the table
Ownership of the table
Administrative authority.

Syntax

�� LOCK TABLE table-name IN SHARE
EXCLUSIVE

MODE ��

Description
table-name

Identifies the table to be locked. The table-name must identify a base table that
exists at the current server, but it must not identify a catalog table or a
declared temporary table.

IN SHARE MODE
Prevents concurrent application processes from executing any but read-only
operations on the table.

IN EXCLUSIVE MODE
Prevents concurrent application processes from executing any operations on
the table. This may or may not apply to concurrent application processes
running at isolation level UR. The rule is product-specific.

Notes
Locks obtained: Locking is used to prevent concurrent operations. A lock is not
necessarily acquired during the execution of the LOCK TABLE statement if a
suitable lock already exists. The lock that prevents concurrent operations is held
until the end of the unit of work.

Examples
Request an exclusive lock on the DEPARTMENT table.

LOCK TABLE DEPARTMENT IN EXCLUSIVE MODE

LOCK TABLE

466 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G

OPEN
The OPEN statement opens a cursor so that it can be used to fetch rows from its
result table.

Invocation
This statement can be embedded only in an application program. It is an
executable statement that cannot be dynamically prepared. It must not be specified
in Java.

Authorization
See “DECLARE CURSOR” on page 411 for the authorization required to use a
cursor.

Syntax

�� OPEN cursor-name

�

,

USING host-variable
USING DESCRIPTOR descriptor-name

��

Description
cursor-name

Identifies the cursor to be opened. The cursor-name must identify a declared
cursor as explained “Notes” on page 412. When the OPEN statement is
executed, the cursor must be in the closed state.

The SELECT statement associated with the cursor is either:
v The select-statement specified in the DECLARE CURSOR statement, or
v The prepared select-statement identified by the statement-name specified in the

DECLARE CURSOR statement. If the statement was not successfully
prepared, or is not a select-statement, an error is returned.

The result table of the cursor is derived by evaluating the SELECT statement.
The evaluation uses the current values of any special registers specified in the
SELECT statement and the current values of any host variables specified in the
SELECT statement or the USING clause of the OPEN statement. The rows of
the result table can either be derived during the execution of the OPEN
statement (in which case a temporary table is created for them), or they can be
derived during the execution of subsequent FETCH statements. In either case,
the cursor is placed in the open state and positioned before the first row of its
result table. If the table is empty, the state of the cursor is effectively 'after the
last row.' An empty table does not cause an SQLSTATE warning of ’02000’
when the OPEN statement is executed. A subsequent fetch for the cursor may
return the SQLSTATE warning of ’02000’.

USING
Introduces the values that are substituted for the parameter markers (question
marks) of a prepared statement. For an explanation of parameter markers, see
“PREPARE” on page 471. If the DECLARE CURSOR statement names a
prepared statement that includes parameter markers, USING must be used. If
the prepared statement does not include parameter markers, USING is ignored.

OPEN

Chapter 5. Statements 467

host-variable,...
Identifies host structures or variables that must be declared in the program
in accordance with the rules for declaring host structures and variables. A
reference to a host structure is replaced by a reference to each of its
variables. The resulting number of variables must be the same as the
number of parameter markers in the prepared statement. The nth variable
corresponds to the nth parameter marker in the prepared statement.

DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of input host
variables.

Before the OPEN statement is processed, the user must set the following
fields in the SQLDA:
v SQLN to indicate the number of SQLVAR entries provided in the

SQLDA
v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA
v SQLD to indicate the number of variables used in the SQLDA when

processing the statement
v SQLVAR entries to indicate the attributes of the variables.

Note that the rules for REXX are different. For more information see
Appendix K, “Coding SQL statements in REXX applications”, on page 687.

The SQLDA must have enough storage to contain all occurrences of
SQLVAR entries. If an SQLVAR entry includes a LOB or distinct type based
on a LOB, there must be additional SQLVAR entries for each parameter.
For more information on the SQLDA, which includes a description of the
SQLVAR and an explanation on how to determine the number of SQLVAR
entries, see Appendix D, “SQLDA (SQL descriptor area)”, on page 571.

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN. It must be the same as the number of parameter markers
in the prepared statement. The nth variable described by the SQLDA
corresponds to the nth parameter marker in the prepared statement.

Notes
Closed state of cursors: Cursors are in an open state after a successful OPEN
statement. The state of the cursor becomes closed in many ways:
v All cursors in a program are in a closed state when the program is first called.
v Cursors declared not using the WITH HOLD option are in a closed state when a

unit of work is committed.
v Cursors declared in a procedure not using the WITH RETURN clause may be

closed when the procedure returns. For more information, see “DECLARE
CURSOR” on page 411.

v Cursors are in a closed state when a unit of work is rolled back.

A cursor can also be in the closed state because:
v A CLOSE statement was executed.
v An error was detected that made the position of the cursor unpredictable.
v The connection with which the cursor was associated was in the release-pending

state and a successful COMMIT occurred.
v A CONNECT (Type 1) statement was executed.

OPEN

468 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

To retrieve rows from the result table of a cursor, the FETCH statement must be
executed when the cursor is open. The only way to change the state of a cursor
from closed to open is to execute an OPEN statement.

Effect of temporary tables: If the result table of a cursor is not read-only, its rows
are derived during the execution of subsequent FETCH statements. The same
method may be used for a read-only result table. However, if a result table is
read-only, the database manager may choose to use the temporary table method
instead. With this method the entire result table is inserted into a temporary table
during the execution of the OPEN statement. When a temporary table is used, the
results of a program can differ in these two ways:
v An error can occur during OPEN that would otherwise not occur until some

later FETCH statement.
v INSERT, UPDATE, and DELETE statements that are executed while the cursor is

open cannot affect the result table.

Conversely, if a temporary table is not used, INSERT, UPDATE, and DELETE
statements executed while the cursor is open can affect the result table. The effect
of such operations is not always predictable. For example, if cursor CUR is
positioned on a row of its result table defined as SELECT * FROM T, and a row is
inserted into T, the effect of that insert on the result table is not predictable because
its rows are not ordered. A subsequent FETCH CUR might or might not retrieve
the new row of T.

Parameter marker replacement: When the SELECT statement of the cursor is
evaluated, each parameter marker in the statement is effectively replaced by the
value of its corresponding host variable. The replacement of a parameter marker is
an assignment operation in which the source is the value of the host variable, and
the target is a variable within the database manager. For a typed parameter
marker, the attributes of the target variable are those specified by the CAST
specification. For an untyped parameter marker, the attributes of the target variable
are determined according to the context of the parameter marker. For the rules that
affect parameter markers, see Table 36 on page 473.

Let V denote a host variable that corresponds to parameter marker P. The value of
V is assigned to the target variable for P using storage assignment rules as
described in “Assignments and comparisons” on page 60. Thus:
v V must be compatible with the target.
v If V is a string, its length (including trailing blanks) must not be greater than the

length attribute of the target.
v If V is a number, the whole part of the number must not be truncated.
v If the attributes of V are not identical to the attributes of the target, the value is

converted to conform to the attributes of the target.
v If the target cannot contain nulls, V must not be null.

When the SELECT statement of the cursor is evaluated, the value used in place of
P is the value of the target variable for P. For example, if V is CHAR(6), and the
target is CHAR(8), the value used in place of P is the value of V padded with two
blanks.

The USING clause is intended for a prepared SELECT statement that contains
parameter markers. However, it can also be used when the SELECT statement of
the cursor is part of the DECLARE CURSOR statement. In this case the OPEN
statement is executed as if each host variable in the SELECT statement were a

OPEN

Chapter 5. Statements 469

parameter marker, except that the attributes of the target variables are the same as
the attributes of the host variables in the SELECT statement. The effect is to
override the values of the host variables in the SELECT statement of the cursor
with the values of the host variables specified in the USING clause.

Examples
Example 1: Write the embedded statements in a COBOL program that will:
1. Define a cursor CUR that is to be used to retrieve all rows from the

DEPARTMENT table for departments that are administered by (ADMRDEPT)
department ‘A00’.

2. Place the cursor CUR before the first row to be fetched.
EXEC SQL DECLARE CUR CURSOR FOR

SELECT DEPTNO, DEPTNAME, MGRNO FROM DEPARTMENT
WHERE ADMRDEPT = ’A00’ END-EXEC.

EXEC SQL OPEN CUR END-EXEC.

Example 2: Code an OPEN statement to associate a cursor DYN_CURSOR with a
dynamically defined select-statement in a C program. Assume each prepared
select-statement always defines two items in its select list with the first item having
a data type of INTEGER and the second item having a data type of
VARCHAR(64). (The related host variable definitions, PREPARE statement and
DECLARE CURSOR statement are also shown in the example below.)

EXEC SQL BEGIN DECLARE SECTION;
static long hv_int;
char hv_vchar64[65];
char stmt1_str[200];

EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;

EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

EXEC SQL OPEN DYN_CURSOR USING :hv_int, :hv_vchar64;

Example 3: Code an OPEN statement as in example 2, but in this case the number
and data types of the parameter markers in the WHERE clause are not known.

EXEC SQL BEGIN DECLARE SECTION;
char stmt1_str[200];

EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLDA;

EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str INTO :sqlda;
EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

/* Set up the SQLDA */

EXEC SQL OPEN DYN_CURSOR USING DESCRIPTOR :sqlda;

OPEN

470 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

PREPARE
The PREPARE statement creates an executable form of an SQL statement from a
character-string form of the statement. The character-string form is called a
statement string, and the executable form is called a prepared statement.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. It must not be specified
in Java.

Authorization
The authorization rules are the same as those defined for the SQL statement
specified by the PREPARE statement. For example, see Chapter 4, “Queries”, on
page 245 for the authorization rules that apply when a SELECT statement is
prepared. The authorization ID is the run-time authorization ID.

Syntax

�� PREPARE statement-name
INTO descriptor-name

FROM host-variable ��

Description
statement-name

Names the prepared statement. If the name identifies an existing prepared
statement, that prepared statement is destroyed. The name must not identify a
prepared statement that is the SELECT statement of an open cursor.

INTO
If INTO is used, and the PREPARE statement is successfully executed,
information about the prepared statement is placed in the SQLDA specified by
descriptor-name. Thus, the PREPARE statement:

EXEC SQL PREPARE S1 INTO :SQLDA FROM :V1;

is logically equivalent to:
EXEC SQL PREPARE S1 FROM :V1;
EXEC SQL DESCRIBE S1 INTO :SQLDA;

descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in
Appendix D, “SQLDA (SQL descriptor area)”, on page 571. Before the
PREPARE statement is executed, the following variable in the SQLDA must
be set (The rules for REXX are different. For more information, see
Appendix K, “Coding SQL statements in REXX applications”, on page
687.):

SQLN
Indicates the number of variables represented by SQLVAR. SQLN
provides the dimension of the SQLVAR array. SQLN must be set to a
value greater than or equal to zero before the PREPARE statement is
executed. For information on techniques to determine the number of
occurrences required, see “Determining how many occurrences of
SQLVAR entries are needed” on page 573.

PREPARE

Chapter 5. Statements 471

See “DESCRIBE” on page 429 for an explanation of the information that is
placed in the SQLDA.

FROM
Introduces the statement string. The statement string is the value of the
specified host-variable.

host-variable
Identifies the host-variable that contains the statement string. The
host-variable must identify a host variable that is described in the
application program in accordance with the rules for declaring character
string variables. The host variable must not have a CLOB data type, and
an indicator variable must not be specified. In COBOL, the host variable
must be a varying-length string variable. In C, the host variable must not
be a NUL-terminated string.

The statement string must be one of the following SQL statements:

ALTER DROP REVOKE
COMMENT GRANT ROLLBACK
COMMIT INSERT SAVEPOINT
CREATE LOCK TABLE select-statement
DECLARE GLOBAL
TEMPORARY TABLE

RELEASE SAVEPOINT SET PATH

DELETE RENAME UPDATE

The statement string must not:
v Begin with EXEC SQL.
v End with END-EXEC or a semicolon.
v Include references to host variables.
v Include comments.

Notes
Parameter Markers: Although a statement string cannot include references to host
variables, it may include parameter markers. These can be replaced by the values of
host variables when the prepared statement is executed. A parameter marker is a
question mark (?) that is used where a host variable could be used if the statement
string were a static SQL statement. For an explanation of how parameter markers
are replaced by values, see “OPEN” on page 467 and “EXECUTE” on page 439.

There are two types of parameter markers:

Typed parameter marker
A parameter marker that is specified along with its target data type. It has the
general form:

CAST(? AS data-type)

This invocation of a CAST specification is a “promise” that the data type of the
parameter at run time will be of the data type specified or some data type that
is assignable to the specified data type. For example, in:

UPDATE EMPLOYEE
SET LASTNAME = TRANSLATE(CAST(? AS VARCHAR(12)))

WHERE EMPNO = ?

PREPARE

472 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

the value of the argument of the TRANSLATE function will be provided at run
time. The data type of that value will either be VARCHAR(12), or some data
type that can be converted to VARCHAR(12). For more information, refer to
“Assignments and comparisons” on page 60.

Untyped parameter marker
A parameter marker that is specified without its target data type. It has the
form of a single question mark. The data type of an untyped parameter marker
is provided by context. For example, the untyped parameter marker in the
predicate of the above update statement is the same as the data type of the
EMPNO column.

Typed parameter markers can be used in dynamic SQL statements wherever a host
variable is supported and the data type is based on the promise made in the CAST
function.

Untyped parameters markers can be used in dynamic SQL statements only in
selected locations where host variables are supported. These locations and the
resulting data type are found in Table 36. The locations are grouped in this table
into expressions, predicates and functions to assist in determining applicability of
an untyped parameter marker.

Table 36. Untyped parameter marker usage

Untyped Parameter Marker Location Data Type

Expressions (including select list, CASE and VALUES)

Alone in a select list that is not in a subquery Error

Alone in a select list The data type of the other operand of the
subquery. 75

Both operands of a single arithmetic
operator, after considering operator
precedence and order of operation rules.

Includes cases such as:

? + ? + 10

Error

One operand of a single operator in an
arithmetic expression (not a datetime
expression)

Includes cases such as:

? + ? * 10

The data type of the other operand.

Labeled duration within a datetime
expression. (Note that the portion of a
labeled duration that indicates the type of
units cannot be a parameter marker.)

Error

Any other operand of a datetime expression
(for instance ’timecol + ?’ or ’? - datecol’).

Error

Any operands of a CONCAT operator Error

As a value on the right side of a SET clause
of an UPDATE statement.

The data type of the column. If the column is
defined as a distinct type, then it is the
source data type of the distinct type. 75

The expression following the CASE keyword
in a simple CASE expression

Error

PREPARE

Chapter 5. Statements 473

Table 36. Untyped parameter marker usage (continued)

Untyped Parameter Marker Location Data Type

At least one of the result-expressions in a
CASE expression (both Simple and Searched)
with the rest of the result-expressions either
untyped parameter marker or NULL.

Error

Any or all expressions following WHEN in a
simple CASE expression.

Result of applying the “Rules for result data
types” on page 70 to the expression following
CASE and the expressions following WHEN
that are not untyped parameter markers.

A result-expression in a CASE expression
(both Simple and Searched) where at least
one result-expression is not NULL and not
an untyped parameter marker.

Result of applying the “Rules for result data
types” on page 70 to all result-expressions
that are other than NULL or untyped
parameter markers.

Alone as a column-expression in a single-row
VALUES clause that is not within an INSERT
statement.

Error

Alone as a column-expression in a single-row
VALUES clause within an INSERT statement.

The data type of the column. If the column is
defined as a distinct type, then it is the
source data type of the distinct type.75

As a value on the right side of a SET special
register statement

The data type of the special register.

As a value in the INTO clause of the
VALUES INTO statement

The data type of the associated expression. 75

Predicates

Both operands of a comparison operator Error

One operand of a comparison operator
where the other operand is other than an
untyped parameter marker or a distinct type.

The data type of the other operand. 75

One operand of a comparison operator
where the other operand is a distinct type.

Error

All operands of a BETWEEN predicate Error

Two operands of a BETWEEN predicate
(either the first and second, or the first and
third)

Same as that of the only non-parameter
marker.

Only one operand of a BETWEEN predicate Result of applying the “Rules for result data
types” on page 70 on all operands that are
other than untyped parameter markers.

All operands of an IN predicate, for example,
? IN (?,?,?)

Error

The 1st operand of an IN predicate where
the right side is a subselect, for example, ?
IN (subselect).

Data type of the selected column

The 1st operand of an IN predicate where
the right side is not a subselect, for example,
? IN (?,A,B) or for example, ? IN (A,?,B,?).

Result of applying the “Rules for result data
types” on page 70 on all operands of the IN
list (operands to the right of IN keyword)
that are other than untyped parameter
markers.

PREPARE

474 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 36. Untyped parameter marker usage (continued)

Untyped Parameter Marker Location Data Type

Any or all operands of the IN list of the IN
predicate, for example, A IN (?,B,?).

Result of applying the “Rules for result data
types” on page 70 on all operands of the IN
predicate (operands to the left and right of
the IN predicate) that are other than untyped
parameter markers.

In DB2 UDB for z/OS and OS/390, the
operand to the left of the IN predicate are
not included.

All three operands of the LIKE predicate. Error

The match expression of the LIKE predicate. Error

The pattern expression of the LIKE predicate. Either VARCHAR(n) or VARGRAPHIC(n) or
BLOB(n) depending on the data type of the
match expression, where n is
product-specific.

For information on using fixed-length host
variables for the value of the pattern see
“LIKE Predicate Notes” on page 125.

The escape expression of the LIKE predicate. Either VARCHAR(n) or VARGRAPHIC(1) or
BLOB(1) depending on the data type of the
match expression, where n is 1 or 2
depending on the default CCSID.

Operand of the NULL predicate. Error

Functions

All operands of COALESCE, NULLIF, or
VALUE.

Error

Any operand of COALESCE, NULLIF, or
VALUE where at least one operand is other
than an untyped parameter marker.

Result of applying the “Rules for result data
types” on page 70 on all operands that are
other than untyped parameter markers.

The second operand of POSSTR. Either VARCHAR(n) or VARGRAPHIC(n) or
BLOB(n) depending on the data type of the
other operand, where n is product-specific.

All other operands of all other scalar
functions including user-defined functions.

Error

Operand of a column function. Error

Error checking: When a PREPARE statement is executed, the statement string is
parsed and checked for errors. If the statement string is invalid, a prepared
statement is not created and an error is returned.

A product-specific option may be used to cause some SQL statements to receive
″delayed″ errors. For example, DESCRIBE, EXECUTE, and OPEN might receive an
SQLCODE that normally occurs during PREPARE processing.

Reference and execution rules: Prepared statements can be referred to in the
following kinds of statements, with the following restrictions shown:

75. If the data type is DATE, TIME, or TIMESTAMP, then CHAR(n), where n is product-specific.

PREPARE

Chapter 5. Statements 475

G
G
G

G
G
G
G

G
G
G

G
G
G

Statement The prepared statement restrictions
DESCRIBE None
DECLARE CURSOR Must be SELECT when the cursor is opened
EXECUTE Must not be SELECT

A prepared statement can be executed many times. If a prepared statement is not
executed more than once and does not contain parameter markers, it is more
efficient to use the EXECUTE IMMEDIATE statement rather than the PREPARE
and EXECUTE statements.

Prepared statement persistence: All prepared statements are destroyed when:76

v A CONNECT (Type 1) statement is executed.
v A prepared statement is associated with a release-pending connection and a

successful commit occurs.

In DB2 UDB for z/OS and OS/390, all prepared statements are destroyed when
the unit of work ends except:
v if the SELECT statement whose cursor is declared with the option WITH HOLD

persists over the execution of a commit operation if the cursor is open when the
commit operation is executed

v if SELECT, INSERT, UPDATE, and DELETE statements that are bound with
KEEPDYNAMIC(YES).

Scope of a statement: The scope of statement-name is the source program in which
it is defined. A prepared statement can only be referenced by other SQL statements
that are precompiled with the PREPARE statement. For example, a program called
from another separately compiled program cannot use a prepared statement that
was created by the calling program.

Although the scope of a statement is the program in which it is defined, each
package created from the program includes a separate instance of the prepared
statement and more than one prepared statement can exist at run time. For
example, assume a program using CONNECT (Type 2) statements connects to
location X and location Y in the following sequence:

EXEC SQL CONNECT TO X;
EXEC SQL PREPARE S FROM :hv1;
EXEC SQL EXECUTE S;
.
.
.
EXEC SQL CONNECT TO Y;
EXEC SQL PREPARE S FROM :hv1;
EXEC SQL EXECUTE S;

The second prepare of S prepares another instance of S at Y.

Examples
Example 1: Prepare and execute a statement other than a select-statement in a
COBOL program. Assume the statement is contained in a host variable HOLDER
and that the program will place a statement string into the host variable based on
some instructions from the user. The statement to be prepared does not have any
parameter markers.

76. Prepared statements may be cached and not actually destroyed. However, a cached statement can only be used if the same
statement is prepared again.

PREPARE

476 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

G
G
G

G
G

EXEC SQL PREPARE STMT_NAME FROM :HOLDER END-EXEC.

EXEC SQL EXECUTE STMT_NAME END-EXEC.

Example 2: Prepare and execute a non-select-statement as in example 1, except
assume the statement to be prepared can contain any number of parameter
markers.

EXEC SQL PREPARE STMT_NAME FROM :HOLDER END-EXEC.

/* Set up the SQLDA */

EXEC SQL EXECUTE STMT_NAME USING DESCRIPTOR :INSERT_DA END-EXEC.

Assume that the following statement is to be prepared:
INSERT INTO DEPARTMENT VALUES(?, ?, ?, ?)

To insert department number G01 named COMPLAINTS, which has no manager
and reports to department A00, the structure INSERT_DA should have the
following values before issuing the EXECUTE statement.

┌───────┬───────┐
│SQLDAID│ │
│SQLDABC│16+4*N │
│SQLN │ 4 │
│SQLD │ 4 │
├───────┼───────┤
│SQLTYPE│ 452 │
│SQLLEN │ 3 │
│SQLDATA│───────┼───�G01
│SQLIND │───────┼───�0
│SQLNAME│ │
├───────┼───────┤
│SQLTYPE│ 448 │
│SQLLEN │ 29 │
│SQLDATA│───────┼───�COMPLAINTS
│SQLIND │───────┼───�0
│SQLNAME│ │
├───────┼───────┤
│SQLTYPE│ 453 │
│SQLLEN │ 6 │
│SQLDATA│ │
│SQLIND │───────┼───�─1
│SQLNAME│ │
├───────┼───────┤
│SQLTYPE│ 452 │
│SQLLEN │ 3 │
│SQLDATA│───────┼───�A00
│SQLIND │───────┼───�0
│SQLNAME│ │
└───────┴───────┘

PREPARE

Chapter 5. Statements 477

RELEASE (Connection)
The RELEASE statement places one or more connections in the release-pending
state.

Invocation
Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded within
an application program. It is an executable statement that cannot be dynamically
prepared. It must not be specified in Java or REXX.

Authorization
None required.

Syntax

�� RELEASE server-name
host-variable
CURRENT

SQL
ALL

��

Description
server-name or host-variable

Identifies a connection by the specified server name or the server name
contained in the host variable. If a host variable is specified:
v It must be a character-string variable with a length attribute that is not

greater than 18. In DB2 UDB for z/OS and OS/390, the maximum length of
the value is 16. In DB2 UDB for LUW, the maximum length of the value is 8.

v It must not be followed by an indicator variable
v If a reserved word is used as an identifier in SQL, it must be specified in

uppercase and either as a delimited identifier or in a host variable.
v If the length of the server name is less than the length of the host variable, it

must be padded on the right with blanks.

When the RELEASE statement is executed, the specified server name or the
server name contained in the host variable must identify an existing connection
of the application process.

CURRENT
Identifies the current connection of the application process. The application
process must be in the connected state.

An application server named CURRENT can only be identified by a host
variable or a delimited identifier.

ALL or ALL SQL
Identifies all existing connections of the application process (local as well as
remote connections).

An error or warning does not occur if no connections exist when the statement
is executed.

An application server named ALL can only be identified by a host variable or
a delimited identifier.

RELEASE (Connection)

478 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

If the RELEASE statement is successful, each identified connection is placed in the
release-pending state and will therefore be ended during the next commit
operation. If the RELEASE statement is unsuccessful, the connection state of the
application process and the states of its connections are unchanged.

Notes
RELEASE and CONNECT (Type 1): Using CONNECT (Type 1) semantics does not
prevent using RELEASE.

Scope of RELEASE: RELEASE does not close cursors, does not release any
resources, and does not prevent further use of the connection.

Resource considerations for remote connections: Resources are required to create
and maintain remote connections. Thus, a remote connection that is not going to be
reused should be in the release-pending state and one that is going to be reused
should not be in the release-pending state.

Connection states: ROLLBACK does not reset the state of a connection from
release-pending to held.

If the current connection is in the release-pending state when a commit operation
is performed, the connection is ended and the application process is in the
unconnected state. In this case, the next executed SQL statement must be
CONNECT or SET CONNECTION.

RELEASE ALL places the connection to the default application server in the
release-pending state. A connection in the release-pending state is ended during a
commit operation even though it has an open cursor defined with WITH HOLD.

Examples
Example 1: The connection to TOROLAB1 is not needed in the next unit of work.
The following statement will cause it to be ended during the next commit
operation:

EXEC SQL RELEASE TOROLAB;

Example 2: The current connection is not needed in the next unit of work. The
following statement will cause it to be ended during the next commit operation:

EXEC SQL RELEASE CURRENT;

Example 3: None of the existing connections are needed in the next unit of work.
The following statement will cause them to be ended during the next commit
operation

EXEC SQL RELEASE ALL;

RELEASE (Connection)

Chapter 5. Statements 479

RELEASE SAVEPOINT
The RELEASE SAVEPOINT statement releases the identified savepoint and any
subsequently established savepoints within a unit of work at the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

��
TO

RELEASE SAVEPOINT savepoint-name ��

Description
savepoint-name

Identifies the savepoint to release. The name must identify a savepoint that
exists at the current server. The named savepoint and all the savepoints at the
current server that were subsequently established in the unit of work are
released. After a savepoint is released, it is no longer maintained, and rollback
to the savepoint is no longer possible.

Notes
Savepoint names: The name of the savepoint that was released can be re-used in
another SAVEPOINT statement, regardless of whether the UNIQUE keyword was
specified on an earlier SAVEPOINT statement specifying this same savepoint
name.

Examples
Assume that a main routine sets savepoint A and then invokes a subroutine that
sets savepoints B and C. When control returns to the main routine, release
savepoint A and any subsequently set savepoints. Savepoints B and C, which were
set by the subroutine, are released in addition to A.

RELEASE SAVEPOINT A

RELEASE SAVEPOINT

480 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

RENAME
The RENAME statement renames an existing table.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v Ownership of the table
v Adminstrative authority.

Syntax

��
TABLE

RENAME table-name TO new-table-identifier ��

Description
table-name

Identifies the existing table that is to be renamed. The name, including the
implicit or explicit qualifier, must identify a table that exists at the current
server.

The table must not be:
v referenced in any existing view definitions
v referenced in triggered statements, and cannot have a trigger defined on it
v a declared temporary table
v a catalog table
v a parent or dependent table in any referential integrity constraints
v defined with any check constraints.

new-table-identifier
Specifies the new name for the table without a qualifier. The qualifier of the
table-name is used to qualify the new identifier for the table. The new qualified
name must not identify a table, view, alias, or index that already exists at the
current server.

Notes
Effects of the statement: The specified table is renamed to the new name. All
privileges, constraints, and indexes on the table are preserved.

Any access plans that refer to that table are invalidated. For more information, see
“Packages and access plans” on page 9.

Considerations for aliases: If an alias name is specified for table-name, the table
must exist at the current server, and the table that is identified by the alias is
renamed. The name of the alias is not changed and continues to refer to the old
table name after the rename.

RENAME

Chapter 5. Statements 481

There is no support for changing the name of an alias with the RENAME
statement. To change the name to which the alias refers, the alias must be dropped
and recreated.

Examples
Change the name of the EMPLOYEE table to CURRENT_EMPLOYEES:

RENAME TABLE EMPLOYEE
TO CURRENT_EMPLOYEES

RENAME

482 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

REVOKE (Distinct Type Privileges)
This form of the REVOKE statement revokes the privilege on a distinct type.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

In DB2 UDB for LUW, this statement is not supported. Instead, PUBLIC implicitly
has the USAGE privilege on all distinct types which cannot be revoked.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v Ownership of the distinct type
v Administrative authority.

Syntax

�� REVOKE USAGE ON DISTINCT TYPE distinct-type-name �

� �

,

FROM authorization-name
PUBLIC

��

Description
USAGE

Revokes the privilege to use a distinct type. The privilege may not be revoked
if the authorization ID of the statement did not grant the USAGE privilege on
the distinct type. For more information see, “Authorization, privileges and
object ownership” on page 11.

A user with administrative authority may revoke the USAGE privilege granted
by others. The technique is product-specific.

ON DISTINCT TYPE distinct-type-name
Identifies the distinct type from which the privilege is revoked. The
distinct-type-name must identify a distinct type that exists at the current server.

FROM
Identifies from whom the privilege is revoked.

authorization-name,...
Lists one or more authorization IDs. The same authorization-name must not
be specified more than once.

PUBLIC
Revokes a grant of the privilege to PUBLIC. For more information, see
“Authorization, privileges and object ownership” on page 11.

REVOKE (Distinct Type Privileges)

Chapter 5. Statements 483

G
G

G

Notes
REVOKE restrictions: The USAGE privilege must not be revoked on a distinct
type if:
v The authorization-name owns a function or procedure that uses the distinct type,

or
v The authorization-name owns a table that has a column that uses the distinct type.

Multiple grants: If authorization ID A granted the same privilege to authorization
ID B more than once, revoking that privilege from B nullifies all those grants.

Revoking WITH GRANT OPTION: The only way to revoke the WITH GRANT
OPTION is to revoke the privilege itself and then grant it again without specifying
WITH GRANT OPTION.

Privilege warning: Revoking a specific privilege from a user does not necessarily
prevent that user from performing an action that requires that privilege. For
example, the user may still have the privilege through PUBLIC or administrative
privileges.

Examples
Revoke the USAGE privilege on distinct type SHOESIZE from user JONES.

REVOKE USAGE
ON DISTINCT TYPE SHOESIZE
FROM JONES

REVOKE (Distinct Type Privileges)

484 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

REVOKE (Function or Procedure Privileges)
This form of the REVOKE statement revokes the privilege on a function or
procedure.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v Ownership of the function or procedure
v Administrative authority.

Syntax

�� REVOKE EXECUTE ON �

�

�

FUNCTION function-name
()

,

parameter-type
SPECIFIC FUNCTION specific-name
PROCEDURE procedure-name

�

� �

,

FROM authorization-name
PUBLIC

��

parameter-type:

data-type
AS LOCATOR

data-type:

built-in-type
distinct-type-name

built-in-type:

REVOKE (Function or Procedure Privileges)

Chapter 5. Statements 485

SMALLINT
INTEGER
INT

(5,0)
DECIMAL
DEC ()

NUMERIC ,0
integer

, integer
(53)

FLOAT
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR () FOR BIT DATA

integer
CHARACTER VARYING ()
CHAR integer

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer)

CLOB K
M
G

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME
TIMESTAMP

Description
EXECUTE

Revokes the privilege to execute a function or procedure. The privilege may
not be revoked if the authorization ID of the statement did not grant the
EXECUTE privilege on the function or procedure. For more information see,
“Authorization, privileges and object ownership” on page 11.

A user with administrative authority may revoke the EXECUTE privilege
granted by others. The technique is product-specific.

FUNCTION or SPECIFIC FUNCTION
Identifies the function from which the privilege is revoked. The function must
exist at the current server, and it must be a user-defined function. The function
can be identified by name, function signature, or specific name.

FUNCTION function-name
Identifies the function by its name. The function-name must identify exactly
one function. The function may have any number of parameters defined

REVOKE (Function or Procedure Privileges)

486 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G

for it. If there is more than one function of the specified name in the
specified or implicit schema, an error is returned.

FUNCTION function-name (parameter-type, ...)
Identifies the function by its function signature, which uniquely identifies
the function. The function-name (parameter-type, ...) must identify a function
with the specified function signature. The specified parameters must match
the data types in the corresponding position that were specified when the
function was created. The number of data types, and the logical
concatenation of the data types is used to identify the specific function
instance from which the privilege is to be revoked. Synonyms for data
types are considered a match.

If function-name () is specified, the function identified must have zero
parameters.

function-name
Identifies the name of the function.

(parameter-type, ...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, the database manager
searches the SQL path to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, use one
of the following:
v Empty parentheses indicate that the database manager ignores the

attribute when determining whether the data types match. For
example, DEC() will be considered a match for a parameter of a
function defined with a data type of DEC(7,2). However, FLOAT
cannot be specified with empty parenthesis because its parameter
value indicates a specific data type (REAL or DOUBLE).

v If a specific value for a length, precision, or scale attribute is
specified, the value must exactly match the value that was specified
(implicitly or explicitly) in the CREATE FUNCTION statement. If the
data type is FLOAT, the precision does not have to match the value
that was specified because matching is based on the data type
(REAL or DOUBLE).

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default attributes of the data type
are implied.
The implicit length must exactly match the value that was specified
(implicitly or explicitly) in the CREATE FUNCTION statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this
parameter. If AS LOCATOR is specified, the data type must be a LOB
or a distinct type based on a LOB.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name. The specific-name must identify
a specific function that exists at the current server.

PROCEDURE procedure-name
Identifies the procedure from which the privilege is revoked. The
procedure-name must identify a procedure that exists at the current server.

FROM
Identifies from whom the privilege is revoked.

REVOKE (Function or Procedure Privileges)

Chapter 5. Statements 487

authorization-name,...
Lists one or more authorization IDs. The same authorization-name must not
be specified more than once.

PUBLIC
Revokes a grant of the privilege to PUBLIC. For more information, see
“Authorization, privileges and object ownership” on page 11.

Notes
REVOKE restrictions: The EXECUTE privilege must not be revoked on a function
or procedure if the authorization-name owns any of the following objects:
v A function that is sourced on the function
v A view that uses the function
v A trigger that uses the function or procedure
v A table that uses the function in a DEFAULT clause

Multiple grants: If authorization ID A granted the same privilege to authorization
ID B more than once, revoking that privilege from B nullifies all those grants.

Revoking WITH GRANT OPTION: The only way to revoke the WITH GRANT
OPTION is to revoke the privilege itself and then grant it again without specifying
WITH GRANT OPTION.

Privilege warning: Revoking a specific privilege from a user does not necessarily
prevent that user from performing an action that requires that privilege. For
example, the user may still have the privilege through PUBLIC or administrative
privileges.

Examples
Revoke the EXECUTE privilege on procedure PROCA from PUBLIC.

REVOKE EXECUTE
ON PROCEDURE PROCA
FROM PUBLIC

REVOKE (Function or Procedure Privileges)

488 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

REVOKE (Package Privileges)
This form of the REVOKE statement revokes the privilege to execute statements in
a package.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v Ownership of the package
v Administrative authority.

Syntax

�� REVOKE EXECUTE ON PACKAGE package-name �

� �

,

FROM authorization-name
PUBLIC

��

Description
EXECUTE

Revokes the privilege to execute SQL statements in a package. The privilege
may not be revoked if the authorization ID of the statement did not grant the
EXECUTE privilege on the package. For more information see, “Authorization,
privileges and object ownership” on page 11.

A user with administrative authority may revoke the EXECUTE privilege
granted by others. The technique is product-specific.

ON PACKAGE package-name
Identifies the package from which the EXECUTE privilege is revoked. The
package-name must identify a package that exists at the current server.

FROM
Identifies from whom the privilege is revoked.

authorization-name,...
Lists one or more authorization IDs. The same authorization-name must not
be specified more than once.

PUBLIC
Revokes a grant of the privilege to PUBLIC. For more information, see
“Authorization, privileges and object ownership” on page 11.

Notes
Multiple grants: If authorization ID A granted the same privilege to authorization
ID B more than once, revoking that privilege from B nullifies all those grants.

REVOKE (Package Privileges)

Chapter 5. Statements 489

G

Revoking WITH GRANT OPTION: The only way to revoke the WITH GRANT
OPTION is to revoke the privilege itself and then grant it again without specifying
WITH GRANT OPTION.

Privilege warning: Revoking a specific privilege from a user does not necessarily
prevent that user from performing an action that requires that privilege. For
example, the user may still have the privilege through PUBLIC or administrative
privileges.

Examples
Example 1: Revoke the EXECUTE privilege on package PKGA from PUBLIC.

REVOKE EXECUTE
ON PACKAGE PKGA
FROM PUBLIC

Example 2: Revoke the EXECUTE privilege on package RRSP_PKG from user
FRANK and PUBLIC.

REVOKE EXECUTE
ON PACKAGE RRSP_PKG
FROM FRANK, PUBLIC

REVOKE (Package Privileges)

490 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

REVOKE (Table and View Privileges)
This form of the REVOKE statement revokes privileges on a table or view.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v Ownership of the table or view
v Administrative authority.

Syntax

�� REVOKE

�

ALL PRIVILEGES
,

ALTER
DELETE
INDEX
INSERT
REFERENCES
SELECT
UPDATE

TABLE
ON table-name

view-name
�

� �

,

FROM authorization-name
PUBLIC

��

Description
Each keyword revokes the privilege described, but only as it applies to the table or
view named in the ON clause. The same keyword must not be specified more than
once.

A privilege may not be revoked if the authorization ID of the statement did not
grant the specified privilege on the table or view. For more information see,
“Authorization, privileges and object ownership” on page 11.

A user with administrative authority may revoke privileges granted by others. The
technique is product-specific.

ALL PRIVILEGES
Revokes one or more privileges from each authorization-name. The privileges
revoked are all those privileges on the identified table or view which were
granted to the authorization-name.

ALTER
Revokes the privilege to alter the specified table or create a trigger on the
specified table.

REVOKE (Table and View Privileges)

Chapter 5. Statements 491

G
G

DELETE
Revokes the privilege to delete rows from the specified table or view.

INDEX
Revokes the privilege to create an index on the specified table.

INSERT
Revokes the privilege to insert rows in the specified table or view.

REFERENCES
Revokes the privilege to add a referential constraint in which the specified
table is the parent.

SELECT
Revokes the privilege to create a view or read data from the specified table or
view.

UPDATE
Revokes the privilege to update rows in the specified table or view.

ON table-name or view-name
Identifies the table or view from which the privileges are revoked. The
table-name or view-name must identify a table or view that exists at the current
server, but must not identify a declared temporary table.

FROM
Identifies from whom the privileges are revoked.

authorization-name,...
Lists one or more authorization IDs. The same authorization-name must not
be specified more than once.

PUBLIC
Revokes a grant of privileges to PUBLIC. For more information, see
“Authorization, privileges and object ownership” on page 11.

Notes
Multiple grants: If authorization ID A granted the same privilege to authorization
ID B more than once, revoking that privilege from B nullifies all those grants.

Revoking WITH GRANT OPTION: The only way to revoke the WITH GRANT
OPTION is to revoke the privilege itself and then grant it again without specifying
WITH GRANT OPTION.

Privilege warning: Revoking a specific privilege from a user does not necessarily
prevent that user from performing an action that requires that privilege. For
example, the user may still have the privilege through PUBLIC or administrative
privileges.

Effect on views and access plans: Revoking a privilege that was used to create a
view might cause the view to be dropped. Revoking a privilege that was used to
create an access plan may invalidate the access plan. In both cases, the rules are
product-specific.

Dependent privileges: In DB2 UDB for z/OS and OS/390, when a privilege is
revoked from a user, every privilege dependent on that privilege is also revoked.
For more information see the DB2 UDB for z/OS and OS/390 product books. In
DB2 UDB for iSeries and DB2 UDB for LUW, privileges are not dependent upon
other privileges.

REVOKE (Table and View Privileges)

492 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

G
G
G
G
G

Examples
Example 1: Revoke SELECT privileges on table EMPLOYEE from user ENGLES.

REVOKE SELECT
ON EMPLOYEE
FROM ENGLES

Example 2: Revoke update privileges on table EMPLOYEE previously granted to all
users. Note that grants to specific users are not affected.

REVOKE UPDATE
ON EMPLOYEE
FROM PUBLIC

Example 3: Revoke all privileges on table EMPLOYEE from users PELLOW and
ANDERSON.

REVOKE ALL
ON EMPLOYEE
FROM PELLOW, ANDERSON

REVOKE (Table and View Privileges)

Chapter 5. Statements 493

ROLLBACK
The ROLLBACK statement can be used to either:
v End a unit of work and back out all the relational database changes that were

made by that unit of work. If relational databases are the only recoverable
resources used by the application process, ROLLBACK also ends the unit of
work.

v Back out only the changes that were made after a savepoint was set within the
unit of work at the current server without ending the unit of work. Rolling back
to a savepoint enables selected changes to be undone.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

�� ROLLBACK
WORK

TO SAVEPOINT
savepoint-name

��

Description
When ROLLBACK is used without the TO SAVEPOINT clause, the unit of work in
which it is executed is ended. All changes made by SQL schema statements and
SQL data change statements during the unit of work are backed out. For more
information see Chapter 5, “Statements”, on page 273.

The generation of identity values is not under transaction control. Values generated
and consumed by inserting rows into a table that has an identity column are
independent of executing the ROLLBACK statement. Also, executing the
ROLLBACK statement does not affect the IDENTITY_VAL_LOCAL function.

Special registers are not under transaction control. Executing a ROLLBACK
statement does not affect special registers.

TO SAVEPOINT
Specifies that the unit of work is not to be ended and that only a partial
rollback (to a savepoint) is to be performed. If a savepoint name is not
specified, rollback is to the last active savepoint. For example, if in a unit of
work, savepoints A, B, and C are set in that order and then C is released,
ROLLBACK TO SAVEPOINT causes a rollback to savepoint B. If no savepoint
is active, an error occurs.

savepoint-name
Identifies the savepoint to which to roll back. The name must identify a
savepoint that exists at the current server.

After a successful ROLLBACK TO SAVEPOINT, the savepoint continues to
exist.

ROLLBACK

494 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

All database changes (including changes made to declared temporary tables)
that were made after the savepoint was set are backed out. All locks and LOB
locators are retained.

The impact on cursors resulting from a ROLLBACK TO SAVEPOINT depends
on the statements within the scope of the savepoint:
v If the savepoint contains SQL schema statements on which a cursor is

dependent, the cursor is closed. Attempts to use such a cursor after a
ROLLBACK TO SAVEPOINT results in an error.

v Otherwise, the cursor is not affected by the ROLLBACK TO SAVEPOINT (it
remains open and positioned).

Any savepoints at the current server that are set after the one to which rollback
is performed are released. The savepoint to which rollback is performed is not
released.

Notes
Recommended coding practices: Code an explicit COMMIT or ROLLBACK
statement at the end of an application process. Either an implicit commit or
rollback operation will be performed at the end of an application process
depending on the application environment. Thus, a portable application should
explicitly execute a COMMIT or ROLLBACK before execution ends in those
environments where explicit COMMIT or ROLLBACK is permitted.

Other effects of rollback: Rollback without the TO SAVEPOINT clause causes the
following to occur:
v All cursors that were opened during the unit of work are closed.
v All LOB locators are freed.
v All locks acquired by the unit of work are released.
v For DB2 UDB for z/OS and OS/390, all statements that were prepared during

the unit of work are destroyed. Any cursors associated with a prepared
statement that is destroyed cannot be opened until the statement is prepared
again.

ROLLBACK has no effect on the state of connections.

Other transaction environments: SQL ROLLBACK may not be available in other
transaction environments, such as IMS and CICS. To do a rollback operation in
these environments, SQL programs must use the call prescribed by their
transaction manager.

Examples
Example 1: See “Examples” on page 310 under COMMIT which shows the use of
the ROLLBACK statement.

Example 2: After a unit of recovery started, assume that three savepoints A, B, and
C were set and that C was released:

SAVEPOINT A ON ROLLBACK RETAIN CURSORS;
...
SAVEPOINT B ON ROLLBACK RETAIN CURSORS;
....
SAVEPOINT C ON ROLLBACK RETAIN CURSORS;
...
RELEASE SAVEPOINT C

ROLLBACK

Chapter 5. Statements 495

G
G
G

G
G
G
G

SAVEPOINT
The SAVEPOINT statement sets a savepoint within a unit of work at the current
server to identify a point in time to which relational database changes can be
rolled back.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

�� SAVEPOINT savepoint-name
UNIQUE

�

�

(1)
ON ROLLBACK RETAIN LOCKS

ON ROLLBACK RETAIN CURSORS ��

Notes:

1 The ROLLBACK options can be specified in any order.

Description
savepoint-name

Names a new savepoint. The specified savepoint-name cannot begin with ’SYS’.

In DB2 UDB for LUW, savepoints must not be nested. If a savepoint statement
is issued, and there is already an established savepoint present, then an error
occurs.

UNIQUE
Specifies that the application program cannot reuse the savepoint name within
the unit of work. An error occurs if a savepoint with the same name as
savepoint-name already exists within the unit of work.

Omitting UNIQUE indicates that the application can reuse the savepoint name
within the unit of work. If savepoint-name identifies a savepoint that already
exists within the unit of work and the savepoint was not created with the
UNIQUE option, the existing savepoint is destroyed and a new savepoint is
created. Destroying a savepoint to reuse its name for another savepoint is not
the same as releasing the savepoint. Reusing a savepoint name destroys only
one savepoint. Releasing a savepoint with the RELEASE SAVEPOINT
statement releases the savepoint and all savepoints that have been
subsequently set.

ON ROLLBACK RETAIN CURSORS
Specifies that cursors that are opened after the savepoint is set are not closed
upon rollback to the savepoint.

SAVEPOINT

496 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
G

v If SQL schema statements are executed for a table or view within the scope
of the SAVEPOINT statement, any cursor that references that table or view is
closed. Attempts to use such a cursor after a ROLLBACK TO SAVEPOINT
results in an error.

v Otherwise, the cursor is not affected by the ROLLBACK TO SAVEPOINT (it
remains open and positioned).

Although these cursors remain open after rollback to the savepoint, they might
not be usable. For example, if rolling back to the savepoint causes the insertion
of a row on which the cursor is positioned to be rolled back, using the cursor
to update or delete the row results in an error.

ON ROLLBACK RETAIN LOCKS
Specifies that any locks that are acquired after the savepoint is set are not
released on rollback to the savepoint.

Notes
Savepoint persistence: A savepoint, S, is destroyed when:
v A COMMIT or ROLLBACK (without a TO SAVEPOINT clause) statement is

executed.
v A ROLLBACK TO SAVEPOINT statement is executed that specifies savepoint S

or a savepoint that was established earlier than S in the unit of work.
v A RELEASE SAVEPOINT statement is executed that specifies savepoint S or a

savepoint that was established earlier than S in the unit of work.
v A SAVEPOINT statement specifies the same name as an existing savepoint that

was not created with the UNIQUE keyword.

Examples
Assume that you want to set three savepoints at various points in a unit of work.
Name the first savepoint A and allow the savepoint name to be reused. Name the
second savepoint B and do not allow the name to be reused. Because you no
longer need savepoint A when you are ready to set the third savepoint, reuse A as
the name of the savepoint.

SAVEPOINT A ON ROLLBACK RETAIN CURSORS;
.
.
.
SAVEPOINT B UNIQUE ON ROLLBACK RETAIN CURSORS;
.
.
.
SAVEPOINT A ON ROLLBACK RETAIN CURSORS;

SAVEPOINT

Chapter 5. Statements 497

SELECT
The SELECT statement is a form of query. It can be embedded in an SQLJ
application program or issued interactively. For detailed information, see
“select-statement” on page 263 and Chapter 4, “Queries”, on page 245.

SELECT

498 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SELECT INTO
The SELECT INTO statement produces a result table consisting of at most one row,
and assigns the values in that row to host variables.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. It must not be specified
in REXX.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v For each table or view identified in the statement, one of the following:

The SELECT privilege on the table or view
Ownership of the table or view

v Administrative authority.

Syntax

�� select-clause INTO �

,

host-variable from-clause
where-clause

�

�
group-by-clause having-clause isolation-clause

��

Description
The result table is derived by evaluating the isolation-clause, from-clause,
where-clause, group-by-clause, having-clause, and select-clause, in this order.

See Chapter 4, “Queries”, on page 245 for a description of the select-clause,
from-clause, where-clause, group-by-clause, having-clause, and isolation-clause.

INTO host variable,...
Identifies one or more host structures or variables that must be declared in the
program in accordance with the rules for declaring host structures and
variables. In the operational form of INTO, a reference to a host structure is
replaced by a reference to each of its variables. The first value in the result row
is assigned to the first host variable in the list, the second value to the second
host variable, and so on.

Notes
Host variable assignment: Each assignment to a host variable is performed
according to the retrieval assignment rules described in “Assignments and
comparisons” on page 60. If the number of variables is less than the number of
values in the row, the SQLWARN3 field of the SQLCA is set to 'W'. Note that there
is no warning if there are more variables than the number of result columns. If a
value is null, an indicator variable must be provided for that value.

SELECT INTO

Chapter 5. Statements 499

If the specified host variable is character and is not large enough to contain the
result, 'W' is assigned to SQLWARN1 in the SQLCA. The actual length of the result
may be returned in the indicator variable associated with the host-variable, if an
indicator variable is provided. For further information, see “References to
variables” on page 87.

If an assignment error occurs, the values in the host variables are unpredictable.

Empty result table: If the result table is empty, the statement assigns '02000' to the
SQLSTATE variable and does not assign values to the host variables.

Result tables with more than one row: If more than one row satisfies the search
condition, statement processing is terminated and an error is returned (SQLSTATE
21000). If an error occurs because the result table has more than one row, values
may or may not be assigned to the host variables. If values are assigned to the host
variables, the row that is the source of the values is undefined and not predictable.

Result column evaluation considerations: If an error occurs while evaluating a
result column in the select list of a SELECT INTO statement, as the result of an
arithmetic expression (such as division by zero, or overflow) or a numeric or
character conversion error, the result is the null value. As in any other case of a
null value, an indicator variable must be provided. The value of the host variable
is undefined. In this case, however, the indicator variable is set to the value of -2.
Processing of the statement continues and a warning is returned. If an indicator
variable is not provided, an error is returned and no more values are assigned to
variables. It is possible that some values have already been assigned to host
variables and will remain assigned when the error is returned. 77

When a datetime value is returned, the length of the variable must be large
enough to store the complete value. Otherwise, depending on how much of the
value would have to be truncated, a warning or an error is returned. See
“Datetime assignments” on page 64 for details.

Examples
Example 1: Using a COBOL program statement, put the maximum salary (SALARY)
from the EMPLOYEE table into the host variable MAX-SALARY.

EXEC SQL SELECT MAX(SALARY)
INTO :MAX-SALARY
FROM EMPLOYEE

END-EXEC.

Example 2: Using a Java program statement, select the row from the EMPLOYEE
table on the connection context ’ctx’ with a employee number (EMPNO) value the
same as that stored in the host variable HOST_EMP (java.lang.String). Then put the
last name (LASTNAME) and education level (EDLEVEL) from that row into the
host variables HOST_NAME (java.lang.String) and HOST_EDUCATE
(java.lang.Integer).
#sql [ctx] { SELECT LASTNAME, EDLEVEL

INTO :HOST_NAME, :HOST_EDUCATE
FROM EMPLOYEE
WHERE EMPNO = :HOST_EMP };

77. In DB2 UDB for LUW, the database configuration parameter dft_sqlmathwarn must be set to yes for this behavior to be
supported.

SELECT INTO

500 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SET CONNECTION
The SET CONNECTION statement establishes the current server of the process by
identifying one of its existing connections.

Invocation
Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded within
an application program. It is an executable statement that cannot be dynamically
prepared. It must not be specified in Java or REXX.

Authorization
None required.

Syntax

�� SET CONNECTION server-name
host-variable

��

Description
server-name or host-variable

Identifies the connection by the specified server name or the server name
contained in the host variable. If host-variable is specified:
v It must be a character-string variable with a length attribute that is not

greater than 18. In DB2 UDB for z/OS and OS/390, the maximum length of
the value is 16. In DB2 UDB for LUW, the maximum length of the value is 8.

v It must not be followed by an indicator variable
v The server name must be left-justified within the host variable and must

conform to the rules for forming an ordinary identifier
v If the length of the server name is less than the length of the host variable, it

must be padded on the right with blanks.

Let S denote the specified server name or the server name contained in the host
variable. S must identify an existing connection of the application process. If S
identifies the current connection, the state of S and all other connections of the
application process are unchanged but information about S is placed in the
SQLERRP field of the SQLCA. The following rules apply when S identifies a
dormant connection.

If the SET CONNECTION statement is successful:
v Connection S is placed in the current state.
v S is placed in the CURRENT SERVER special register.
v Information about application server S is placed in the SQLERRP field of the

SQLCA. The format below applies if the application server is a DB2 Universal
Database product. The information has the form pppvvrrm, where:
– ppp is:

DSN for DB2 UDB for z/OS and OS/390
QSQ for DB2 UDB for iSeries
SQL for DB2 UDB for LUW

– vv is a two-digit version identifier such as ’07’.

SET CONNECTION

Chapter 5. Statements 501

G
G

– rr is a two-digit release identifier such as ’01’.
– m is a one-digit modification level such as ’0’.

For example, if the server is Version 7 of DB2 UDB for z/OS and OS/390, the
value would be 'DSN07010'.

v Additional information about the connection is placed in the SQLERRMC field
of the SQLCA. The contents are product-specific.

v Any previously current connection is placed in the dormant state.

If the SET CONNECTION statement is unsuccessful, the connection state of the
application process and the states of its connections are unchanged.

Notes
SET CONNECTION for CONNECT (Type 1): The use of CONNECT (Type 1)
statements does not prevent the use of SET CONNECTION, but the statement
either fails or does nothing because dormant connections do not exist.

Status after connection is restored: When a connection is used, made dormant,
and then restored to the current state in the same unit of work, the status of locks,
cursors, and prepared statements for that connection reflects its last use by the
application process.

Examples
Execute SQL statements at TOROLAB, execute SQL statements at STLLAB, and
then execute more SQL statements at TOROLAB.

EXEC SQL CONNECT TO TOROLAB;

(execute statements referencing objects at TOROLAB)

EXEC SQL CONNECT TO STLLAB;

(execute statements referencing objects at STLLAB)

EXEC SQL SET CONNECTION TOROLAB;

(execute statements referencing objects at TOROLAB)

The first CONNECT statement creates the TOROLAB1 connection, the second
CONNECT statement places it in the dormant state, and the SET CONNECTION
statement returns it to the current state.

SET CONNECTION

502 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G

SET PATH
The SET PATH statement changes the value of the CURRENT PATH special
register.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
No authorization is required to execute this statement.

Syntax

��
CURRENT

SET PATH
=

�

,
(1)

schema-name
SYSTEM PATH
USER
CURRENT PATH
host-variable
string-constant

��

Notes:

1 SYSTEM PATH, USER, and CURRENT PATH may each be specified at most
once on the right side of the statement.

Description
schema-name

Identifies a schema. No validation that the schema exists is made at the time
the SQL path is set. For example, if a schema-name is misspelled, it could affect
the way subsequent SQL operates. Although not recommended, PATH can be
specified as a schema-name if it is specified as a delimited identifier.

SYSTEM PATH
Specifies the schema names for the system path for the platform.

USER
Specifies the value of the USER special register.

CURRENT PATH
Specifies the value of the CURRENT PATH special register before the execution
of this statement.

host-variable
Specifies a host variable that contains a schema name.

The host variable:
v Must be a CHAR or VARCHAR variable. The actual length of the contents

of the host-variable must not exceed the length of a schema name. See
Appendix A, “SQL limits”, on page 551.

v Must not be followed by an indicator variable.
v Must not be the null value.

SET PATH

Chapter 5. Statements 503

v Must include a schema name that is left justified and conforms to the rules
for forming an ordinary identifier. The schema name must not be specified
as a delimited identifier.

v Must not contain lowercase letters or characters that cannot be specified in
an ordinary identifier.

v Must be padded on the right with blanks if the host variable is fixed length
character.

v Must not contain SYSTEM PATH, USER, or CURRENT PATH.

string-constant
Specifies a string contant that contains a schema name. The string constant:
v Must have a length that does not exceed the maximum length of a schema

name. See Appendix A, “SQL limits”, on page 551.
v Must include a schema name that is left justified and conforms to the rules

for forming an ordinary identifier. The schema name must not be specified
as a delimited identifier.

v Must not contain lowercase letters or characters that cannot be specified in
an ordinary identifier.

v Must not contain SYSTEM PATH, USER, or CURRENT PATH.

Notes
Transaction considerations: The SET PATH statement is not a commitable
operation. ROLLBACK has no effect on the SQL path.

Rules for the content of the SQL path:

v A schema name cannot appear more than once in the SQL path.
v The number of schemas that can be specified is limited by the total length of the

CURRENT PATH special register. The special register string is built by taking
each schema name specified and removing trailing blanks, delimiting with
double quotes, changing each double quote character to two double quote
characters within the schema name as necessary, and then separating each
schema name by a comma. The length of the resulting string cannot exceed 254.
See Appendix A, “SQL limits”, on page 551 for more information.

v A schema name that does not conform to the rules for an ordinary identifier (for
example: a schema name that contains lowercase characters or characters that
cannot be specified in an ordinary identifier), must be specified as a delimited
schema name and must not be specified within a host variable or string constant.
If the schema name changes dynamically in the application then the SET PATH
statement must be dynamically prepared using the PREPARE and EXECUTE
statements rather than changing the content of a host variable.

v There is a difference between specifying a single keyword (such as USER, or
PATH, or CURRENT_PATH) as a single keyword, or as a delimited identifier. To
indicate that the current value of a special register specified as a single keyword
should be used in the SQL path, specify the name of the special register as a
keyword. If the name of the special register is specified as a delimited identifier
instead (for example, ″USER″), it is interpreted as a schema name of that value
(’USER’). For example on DB2 UDB for z/OS and OS/390, assuming that the
current value of the USER special register is SMITH, then SET PATH = SYSIBM,
SYSPROC, USER, ″USER″ results in a CURRENT PATH value of
″SYSIBM″,″SYSPROC″,″SMITH″,″USER″.

v The following rules are used to determine whether a value specified in a SET
PATH statement is a variable or a schema-name:

SET PATH

504 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

– If name is the same as a parameter or SQL variable in the SQL procedure,
name is interpreted as a parameter or SQL variable, and the value in name is
assigned to PATH.

– If name is not the same as a parameter or SQL variable in the SQL procedure,
name is interpreted as schema-name, and the value name is assigned to PATH.

The system path: SYSTEM PATH refers to the system path for a platform. The
schemas in the system path are platform-specific.
v For DB2 UDB for LUW and DB2 UDB for z/OS and OS/390, the schemas of the

system path are ″SYSIBM″, ″SYSFUN″, and ″SYSPROC″, and SYSTEM PATH is
the same as specifying ″SYSIBM″, ″SYSFUN″, ″SYSPROC″.

v For DB2 UDB for iSeries, the schemas of the system path are ″QSYS″ and
″QSYS2″, and SYSTEM PATH is the same as specifying ″QSYS″, ″QSYS2″.

When using the SET PATH statement, the system path must be specified explicity
using SYSTEM PATH or implicitly by using CURRENT PATH which already
includes the system path.

Using the SQL path: The CURRENT PATH special register specifies the SQL path
used to resolve user-defined distinct types, functions and procedures in dynamic
SQL statements. See “SQL path” on page 40.

Examples
Example 1: The following statement sets the CURRENT PATH special register.
SET PATH = FERMAT, "McDuff", SYSIBM

The following statement retrieves the current value of the SQL path special register
into the host variable called CURPATH.
EXEC SQL VALUES (CURRENT PATH) INTO :CURPATH;

The value would be ″FERMAT″,″McDuff″,″SYSIBM″ if set by the previous example.

SET PATH

Chapter 5. Statements 505

G
G

G
G
G

G
G

SET transition-variable
The SET transition-variable statement assigns values to new transition variables.

Invocation
This statement can only be used as an SQL statement in a before trigger. It is an
executable statement that cannot be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The UPDATE privilege on any column associated with a transition-variable that

occurs on the left side of the SET transition-variable statement in a before trigger
v Administrative authority.

The privileges required to set a transition-variable is checked at the time the trigger
is created. For more information, see “CREATE TRIGGER” on page 398.

Syntax

�� SET �

� �

� �

,

transition-variable = expression
NULL

, ,
(1)

(transition-variable) = (expression)
NULL

��

Notes:

1 The number of expressions and NULLs must match the number of
transition-variables.

Description
transition-variable

Identifies the column to be updated in the new row. A transition-variable must
identify a column in the subject table of a trigger, optionally qualified by a
correlation name that identifies the new value. An OLD transition-variable must
not be identified.

A transition-variable must not be identified more than once in the same SET
transition-variable statement.

The data type of each transition-variable must be compatible with its
corresponding result column. Values are assigned to transition-variables
according to the storage assignment rules. For more information see
“Assignments and comparisons” on page 60.

expression
Indicates the new value of the transition-variable. The expression is any
expression of the type described in “Expressions” on page 99 that does not
include a column function.

SET transition-variable

506 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

An expression may contain references to OLD and NEW transition-variables. If
the CREATE TRIGGER statement contains both OLD and NEW clauses,
references to transition-variables must be qualified by the correlation-name to
specify which transition-variable.

NULL
Specifies the null value. NULL can only be specified for nullable columns.

Notes
Multiple assignments: If more than one assignment is included in the same SET
clause, all expressions are evaluated before the assignments are performed. Thus,
references to transition-variables in an expression are always the value of the
transition-variable prior to any assignment in the single SET statement.

Examples
Example 1: Ensure that the salary column is never greater than 50000. If the new
value is greater than 50000, set it to 50000.
CREATE TRIGGER LIMIT_SALARY

BEFORE INSERT ON EMPLOYEE
REFERENCING NEW AS NEW_VAR
FOR EACH ROW MODE DB2SQL
WHEN (NEW_VAR.SALARY > 50000)

BEGIN ATOMIC
SET NEW_VAR.SALARY = 50000;

END

Example 2: When the job title is updated, increase the salary based on the new job
title. Assign the years in the position to 0.
CREATE TRIGGER SET_SALARY

BEFORE UPDATE OF JOB ON STAFF
REFERENCING OLD AS OLD_VAR

NEW AS NEW_VAR
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

SET (NEW_VAR.SALARY, NEW_VAR.YEARS) =
(OLD_VAR.SALARY * CASE NEW_VAR.JOB

WHEN ’Sales’ THEN 1.1
WHEN ’Mgr’ THEN 1.05
ELSE 1 END ,0);

END

SET transition-variable

Chapter 5. Statements 507

UPDATE
The UPDATE statement updates the values of specified columns in rows of a table
or view. Updating a row of a view updates a row of its base table.

There are two forms of this statement:
v The Searched UPDATE form is used to update one or more rows, optionally

determined by a search condition.
v The Positioned UPDATE form is used to update exactly one row, as determined

by the current position of a cursor.

Invocation
A Searched UPDATE statement can be embedded in an application program or
issued interactively. A Positioned UPDATE can be embedded in an application
program. Both forms are executable statements that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The UPDATE privilege for the table or view
v The UPDATE privilege on each column to be updated
v Ownership of the table 78

v Administrative authority.

If the right side of assignment-clause contains a reference to a column of the table or
view, or if search-condition in a Searched UPDATE contains a reference to a column
of the table or view, then the privileges held by the authorization ID of the
statement must also include one of the following:
v The SELECT privilege for the table or view 79

v Ownership of the table or view
v Administrative authority.

If the statement includes a subquery, the privileges held by the authorization ID of
the statement must also include at least one of the following:
v For every table or view identified in the subquery:

– The SELECT privilege on the table or view, or
– Ownership of the table or view

v Administrative authority.

For more information about the subquery authorization rules, see Chapter 4,
“Queries”, on page 245.

78. The UPDATE privilege on a view is only inherent in administrative authority. Ownership of a view does not necessarily include
the UPDATE privilege on the view because the privilege may not have been granted when the view was created, or it may have
been granted, but subsequently revoked.

79. In DB2 UDB for z/OS and OS/390, and DB2 UDB for LUW, the authorization ID of the statement only requires the UPDATE
privilege for the table or view. To require the SELECT privilege, a standards option must be in effect. For DB2 UDB for z/OS
and OS/390 use the program preparation option SQLRULES(STD) or set the CURRENT RULES special register to ’STD’. For
DB2 UDB for LUW, use the program preparation option LANGLEVEL SQL92E.

UPDATE

508 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Syntax
Searched UPDATE:

�� UPDATE table-name
view-name correlation-name

SET assignment-clause �

�
WHERE search-condition isolation-clause

��

Positioned UPDATE:

�� UPDATE table-name
view-name correlation-name

SET assignment-clause �

� WHERE CURRENT OF cursor-name ��

assignment-clause:

�

� �

,

column-name = expression
NULL
(scalar-subselect)

, ,

(column-name) = (expression)
NULL

row-subselect

isolation-clause:

WITH RR
RS
CS

Description
table-name or view-name

Identifies the table or view to be updated. The name must identify a table or
view that exists at the current server, but it must not identify a catalog table, a
view of a catalog table, or a view that is not updatable. For an explanation of
updatable views, see “CREATE VIEW” on page 406.

correlation-name
Can be used within search-condition or assignment-clause to designate the table
or view. For an explanation of correlation-name, see “Correlation names” on
page 81.

SET
Introduces the assignment of values to column names .

assignment-clause
If scalar-subselect is specified, only one column-name is allowed. If row-subselect is
specified, the number of columns in the result of row-subselect must match the
number of column-names that are specified. If neither scalar-subselect nor

UPDATE

Chapter 5. Statements 509

row-subselect is specified, the number of expressions and NULLs must match the
number of column-names that are specified.

column-name
Identifies a column to be updated. The column-name must identify a
column of the specified table or view, and that column must be an
updatable column. The column names must not be qualified, and a column
name must not be specified more than once.

For a Positioned UPDATE:
v If the FOR UPDATE clause was specified in the select-statement of the

cursor, each column-name must also appear in the FOR UPDATE clause.
v If the FOR UPDATE clause was not specified in the select-statement of the

cursor, the name of any updatable column may be specified.80

For more information, see “update-clause” on page 267.

A view column derived from the same column as another column of the
view can be updated, but both columns cannot be updated in the same
UPDATE statement.

expression
Indicates the new value of the column. The expression is any expression of
the type described in “Expressions” on page 99, that does not include a
column function.

A column-name in an expression must name a column of the named table or
view. For each updated row, the value of the column in the expression is
the value of the column in the row before the row is updated.

NULL
Specifies the null value as the new value of the column. Specify NULL
only for nullable columns.

scalar-subselect
Specifies a subselect that returns a single result row with a single column.
The column value is assigned to the corresponding column-name. If the
subselect returns no rows, the null value is assigned.

For a positioned update, if the table or view that is the object of the
UPDATE statement is used in the subselect, the column from the instance
of the table or view in the subselect cannot be the same as column-name,
the column being updated.

The subselect must not contain a GROUP BY or HAVING clause. If the
subselect refers to columns to be updated, the value of such a column in
the subselect is the value of the column in the row before the row is
updated.

row-subselect
Specifies a subselect that returns a single result row. The column values are
assigned to each corresponding column-name. If row-subselect returns no
rows, null values are assigned.

80. In DB2 UDB for z/OS and OS/390, and DB2 UDB for LUW, a program preparation option must be used if the UPDATE clause
is not specified and the cursor is referenced in subsequent Positioned UPDATE statements. If this program preparation option is
not used and the UPDATE clause is not specified, the cursor cannot be referenced in a Positioned UPDATE statement. For DB2
UDB for z/OS and OS/390 the program preparation option is STDSQL(YES) or NOFOR, for DB2 UDB for UWO it is
LANGLEVEL SQL92E.

UPDATE

510 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

The subselect must not contain a GROUP BY or HAVING clause. If the
subselect refers to columns to be updated, the value of such a column in
the subselect is the value of the column in the row before the row is
updated.

WHERE
Specifies the rows to be updated. The clause can be omitted, or a
search-condition or cursor-name can be specified. If the clause is omitted, all rows
of the table or view are updated.

search-condition
Specifies a search condition, as described in “Search conditions” on
page 129. Each column-name in the search-condition, other than in a
subquery, must name a column of the table or view. The search-condition
must not include a subquery where the base object of both the UPDATE
and the subquery is the same table.

The search-condition is applied to each row of the table or view and the
updated rows are those for which the result of the search-condition is true.

If search-condition contains a subquery, the subquery can be thought of as
being executed each time the search-condition is applied to a row, and the
results used in applying the search-condition. In actuality, a subquery with
no correlated references may be executed only once, whereas a subquery
with a correlated reference may have to be executed once for each row.

CURRENT OF cursor-name
Identifies the cursor to be used in the update operation. The cursor-name
must identify a declared cursor as explained in “DECLARE CURSOR” on
page 411.

The table or view specified must also be identified in the FROM clause of
the select-statement of the cursor, and the cursor must be updatable. For an
explanation of updatable cursors, see “DECLARE CURSOR” on page 411.

When the UPDATE statement is executed, the cursor must be open and
positioned on a row and that row is updated.

In DB2 UDB for z/OS and OS/390, if a Positioned UPDATE statement is
embedded in a program, the associated DECLARE CURSOR statement
must include a select-statement rather than a statement-name.

isolation-clause
Specifies the isolation level used by the statement.

WITH

Introduces the isolation level, which may be one of:
v RR Repeatable read
v RS Read stability
v CS Cursor stability

If isolation-clause is not specified, the default isolation is used. See “Isolation
level” on page 16 for a description of how the default is determined.

UPDATE Rules
Assignment: Update values are assigned to columns in accordance with the
storage assignment rules described in “Assignments and comparisons” on page 60.

Validity: Updates must obey the following rules. If they do not, or if any other
errors occur during the execution of the UPDATE statement, no rows are updated.

UPDATE

Chapter 5. Statements 511

G
G
G

v Subselects: The row-subselect or scalar-subselect shall return no more than one row
(SQLSTATE 21000).

v Unique constraints and unique indexes: If the identified table, or the base table of
the identified view, has one or more unique indexes or unique constraints, each
row update in the table must conform to the limitations imposed by those
indexes and constraints (SQLSTATE 23505).
All uniqueness checks are effectively made at the end of the statement. In the
case of a multiple-row update of a column involved in a unique index or unique
constraint, this would occur after all rows were updated.

v Check constraints: If the identified table, or the base table of the identified view,
has one or more check constraints, each check constraint must be true or
unknown for each row updated in the table (SQLSTATE 23513).
All check constraints are effectively validated at the end of the statement. In the
case of a multiple-row update, this would occur after all rows were updated.

v Views and the WITH CHECK OPTION: If a view is identified, the updated rows
must conform to any applicable WITH CHECK OPTION (SQLSTATE 44000). For
more information, see “CREATE VIEW” on page 406.

Triggers: If the identified table or the base table of the identified view has an
update trigger, the trigger is activated. A trigger might cause other statements to be
executed or return error conditions based on the updated values.

Referential integrity: The value of the parent key in a parent row must not be
changed.

If the update values produce a foreign key that is nonnull, the foreign key must be
equal to some value of the parent key of the parent table of the relationship.

The referential constraints (other than a referential constraint with a RESTRICT
delete rule) are effectively checked at the end of the statement. In the case of a
multiple-row update, this would occur after all rows were updated.

Notes
Update operation errors: If an update value violates any constraints, or if any
other error occurs during the execution of the UPDATE statement, changes from
this statement, referential constraints, and any triggered SQL statements are rolled
back.

It is possible for an error to occur that makes the state of the cursor unpredictable.

Number of rows updated: When an UPDATE statement completes execution, the
value of SQLERRD(3) in the SQLCA is the number of rows updated. The value in
SQLERRD(3) does not include the number of rows that were updated as a result of
a trigger. For a description of the SQLCA, see Appendix C, “SQLCA (SQL
communication area)”, on page 567.

Locking: Unless appropriate locks already exist, one or more exclusive locks are
acquired during the execution of a successful UPDATE statement. Until these locks
are released by a commit or rollback operation, an updated row can only be
accessed by:
v the application process that performed the update,
v another application process using isolation level UR through a read-only cursor,

a SELECT INTO statement, or a subquery.

UPDATE

512 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

The locks can prevent other application processes from performing operations on
the table.

Examples
Example 1: Change the job (JOB) of employee number (EMPNO) ‘000290’ in the
EMPLOYEE table to ‘LABORER’.
UPDATE EMPLOYEE

SET JOB = ’LABORER’
WHERE EMPNO = ’000290’

Example 2: Increase the project staffing (PRSTAFF) by 1.5 for all projects that
department (DEPTNO) ‘D21’ is responsible for in the PROJECT table.

UPDATE PROJECT
SET PRSTAFF = PRSTAFF + 1.5
WHERE DEPTNO = ’D21’

Example 3: All the employees except the manager of department (WORKDEPT)
‘E21’ have been temporarily reassigned. Indicate this by changing their job (JOB) to
NULL and their pay (SALARY, BONUS, COMM) values to zero in the EMPLOYEE
table.

UPDATE EMPLOYEE
SET JOB=NULL, SALARY=0, BONUS=0, COMM=0
WHERE WORKDEPT = ’E21’ AND JOB <> ’MANAGER’

Example 4: In a Java program display the rows from the EMPLOYEE table on the
connection context ’ctx’ and then, if requested to do so, change the job (JOB) of
certain employees to the new job keyed in (NEWJOB).

#sql iterator empIterator implements sqlj.runtime.ForUpdate
with(updateColumns=’JOB’)
(...);

empIterator C1;

#sql [ctx] C1 = { SELECT * FROM EMPLOYEE };

#sql { FETCH :C1 INTO ... };
while (!C1.endFetch()) {

System.out.println(...);
...

if (condition for updating row) {
#sql [ctx] { UPDATE EMPLOYEE

SET JOB = :NEWJOB
WHERE CURRENT OF :C1 };

}

#sql { FETCH :C1 INTO ... };
}
C1.close();

UPDATE

Chapter 5. Statements 513

VALUES
The VALUES statement provides a method for invoking a user-defined function
from a trigger. Transition variables can be passed to the user-defined function.

Invocation
This statement can only be used in the triggered action of a CREATE TRIGGER
statement.

Authorization
None required.

Syntax

��

�

VALUES expression
NULL

,

(expression)
NULL

��

Description
VALUES

Introduces a single row consisting of one of more columns.

expression
Specifies any expression of the type described in “Expressions” on page 99.

NULL
Specifies the null value.

Notes
Effects of the statement: The statement is evaluated, but the resulting values are
discarded and are not assigned to any output variables. If an error is returned, the
database manager stops executing the trigger and rolls back any triggered actions
that were performed.

Examples
Example: Create an after trigger EMPISRT1 that invokes user-defined function
NEWEMP when the trigger is activated. An insert operation on table EMPLOYEE
activates the trigger. Pass transition variables for the new employee number, last
name, and first name to the user-defined function.

CREATE TRIGGER EMPISRT1
AFTER INSERT ON EMPLOYEE
REFERENCING NEW AS N
FOR EACH ROW
MODE DB2SQL
BEGIN ATOMIC

VALUES(NEWEMP(N.EMPNO, N.LASTNAME, N.FIRSTNAME));
END

VALUES

514 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

VALUES INTO
The VALUES INTO statement produces a result table consisting of at most one row
and assigns the values in that row to host variables.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization
None required.

Syntax

Description
VALUES

Introduces a single row consisting of one or more columns.

expression
Specifies the new value of the host variable. The expression is any
expression of the type described in “Expressions” on page 99. The
expression must not include a column name. Host structures are not
supported.

INTO host variable,...
Identifies one or more host structures or variables that must be declared in the
program in accordance with the rules for declaring host structures and
variables. In the operational form of INTO, a reference to a host structure is
replaced by a reference to each of its variables. The first value specified is
assigned to the first host variable, the second value to the second host variable,
and so on.

Notes
Host variable assignment: Each assignment to a host variable is performed
according to the retrieval assignment rules described in “Assignments and
comparisons” on page 60. Assignments are made in sequence through the list. If
the number of variables is less than the number of values in the row, the
SQLWARN3 field of the SQLCA is set to 'W'. See Appendix C, “SQLCA (SQL
communication area)”, on page 567. Note that there is no warning if there are more
variables than values. If a value is null, an indicator variable must be provided for
that value.

If the specified host variable is character and is not large enough to contain the
result, 'W' is assigned to SQLWARN1 in the SQLCA. The actual length of the result
may be returned in the indicator variable associated with the host-variable, if an
indicator variable is provided. For further information, see “References to
variables” on page 87.

�� VALUES

�

expression
,

(expression)

INTO �

,

host-variable ��

VALUES INTO

Chapter 5. Statements 515

If an assignment error occurs, the values in the host variables are unpredictable.

Result column evaluation considerations: If an error occurs while evaluating a
result column in the expression list of a VALUES INTO statement as the result of
an arithmetic expression (such as division by zero, or overflow) or a numeric or
character conversion error, the result is the null value. As in any other case of a
null value, an indicator variable must be provided. The value of the host variable
is undefined. In this case, however, the indicator variable is set to the value of -2.
Processing of the statement continues and a warning is returned. If an indicator
variable is not provided, an error is returned and no more values are assigned to
variables. It is possible that some values have already been assigned to host
variables and will remain assigned when the error is returned.81

When a datetime value is returned, the length of the variable must be large
enough to store the complete value. Otherwise, depending on how much of the
value would have to be truncated, a warning or an error is returned. See
“Datetime assignments” on page 64 for details.

Special register considerations: The special register CURRENT SERVER can be
referenced only in a VALUES INTO statement that results in the assignment of a
single host variable and not those that result in setting more than one value.

Examples
Example 1: Assign the value of the CURRENT PATH special register to host
variable HV1.

EXEC SQL VALUES CURRENT PATH
INTO :HV1;

Example 2: Assume that LOB locator LOB1 is associated with a CLOB value. Assign
a portion of the CLOB value to host variable DETAILS using the LOB locator, and
assign CURRENT TIMESTAMP to the host variable TIMETRACK.

EXEC SQL VALUES (SUBSTR(:LOB1,1,35), CURRENT TIMESTAMP)
INTO :DETAILS, :TIMETRACK;

81. In DB2 UDB for LUW, the database configuration parameter dft_sqlmathwarn must be set to yes for this behavior to be
supported.

VALUES INTO

516 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

WHENEVER
The WHENEVER statement specifies the action to be taken when a specified
exception condition occurs.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in Java or REXX. See “Handling SQL
errors and warnings in Java” on page 680 or “Handling SQL errors and warnings
in REXX” on page 691 for more information.

Authorization
None required.

Syntax

�� WHENEVER NOT FOUND
SQLERROR
SQLWARNING

CONTINUE
GOTO host-label
GO TO :

��

Description
The NOT FOUND, SQLERROR, or SQLWARNING clause is used to identify the
type of exception condition. See Appendix E, “SQLSTATE values—common return
codes”, on page 581.

NOT FOUND
Identifies any condition that results in an SQLSTATE of '02000' or an
SQLCODE of +100.

SQLERROR
Identifies any condition that results in an SQLSTATE value where the first two
characters are not '00', '01', or '02'.

SQLWARNING
Identifies any condition that results in an SQLSTATE value where the first two
characters are '01', or a warning condition (SQLWARN0 is 'W').

The CONTINUE or GOTO clause is used to specify the next statement to be
executed when the identified type of exception condition exists.

CONTINUE
Specifies the next sequential statement of the source program.

GOTO or GO TO host-label
Specifies the statement identified by host-label. For host-label, substitute a single
token, optionally preceded by a colon. The form of the token depends on the
host language. In a COBOL program, for example, it can be a section-name or
an unqualified paragraph-name.

Notes
WHENEVER statement scope: Every executable SQL statement in a program is
within the scope of one implicit or explicit WHENEVER statement of each type
(NOT FOUND, SQLERROR, and SQLWARNING). The scope of a WHENEVER
statement is related to the listing sequence of the statements in the program, not
their execution sequence.

WHENEVER

Chapter 5. Statements 517

An SQL statement is within the scope of the last WHENEVER statement of each
type that is specified before that SQL statement in the source program. If a
WHENEVER statement of some type is not specified before an SQL statement, that
SQL statement is within the scope of an implicit WHENEVER statement of that
type in which CONTINUE is specified.

Subroutines are supported in COBOL and C. However, normal COBOL and C
scoping rules are not followed. That is, the last WHENEVER statement specified in
the program source prior to the subroutine remains in effect for that subroutine.
The label referenced in the WHENEVER statement must be duplicated within that
subroutine. Alternatively, the subroutine could specify a new WHENEVER
statement.

Examples
The following statements can be embedded in a COBOL program.

Example 1: Go to the label HANDLER for any statement that produces an error.
EXEC SQL WHENEVER SQLERROR GOTO HANDLER END-EXEC.

Example 2: Continue processing for any statement that produces a warning.
EXEC SQL WHENEVER SQLWARNING GOTO CONTINUE END-EXEC.

Example 3: Go to the label ENDDATA for any statement that does not return data
when expected to do so.

EXEC SQL WHENEVER NOT FOUND GOTO ENDDATA END-EXEC.

WHENEVER

518 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Chapter 6. SQL control statements

Control statements are SQL statements that allow SQL to be used in a manner
similar to writing a program in a structured programming language. SQL control
statements provide the capability to control the logic flow, declare and set
variables, and handle warnings and exceptions. Some SQL control statements
include other nested SQL statements.

SQL-control-statement:

assignment-statement
CALL statement
CASE statement
compound-statement
GET DIAGNOSTICS statement
GOTO statement
IF statement
LEAVE statement
LOOP statement
REPEAT statement
RESIGNAL statement
RETURN statement
SIGNAL statement
WHILE statement

Control statements are supported in SQL procedures. SQL procedures are created
by specifying LANGUAGE SQL and an SQL routine body on the CREATE
PROCEDURE statement. The SQL routine body must be a single SQL statement
which may be an SQL control statement.

The remainder of this chapter contains a description of the control statements
including syntax diagrams, semantic descriptions, usage notes, and examples of the
use of the statements that constitute the SQL routine body. There is also a section
on referencing SQL parameters and variables found in “References to SQL
parameters and SQL variables” on page 520. There are two common elements that
are used in describing specific SQL control statements. These are:
v SQL control statements as described above
v “SQL-procedure-statement” on page 521.

For syntax and additional information on the SQL control statements see the
following topics:
v “assignment-statement” on page 522
v “CALL statement” on page 523
v “CASE statement” on page 525
v “compound-statement” on page 527
v “GET DIAGNOSTICS statement” on page 534
v “GOTO statement” on page 536
v “IF statement” on page 537
v “LEAVE statement” on page 539
v “LOOP statement” on page 540

© Copyright IBM Corp. 1982, 2003 519

v “REPEAT statement” on page 541
v “RESIGNAL statement” on page 543
v “RETURN statement” on page 545
v “SIGNAL statement” on page 547
v “WHILE statement” on page 549

References to SQL parameters and SQL variables
SQL parameters and SQL variables can be referenced anywhere in the statement
where an expression or host variable can be specified. Host variables cannot be
specified in SQL routines. SQL parameters can be referenced anywhere in the
routine and can be qualified with the routine name. SQL variables can be
referenced anywhere in the compound statement in which they are declared and
can be qualified with the label name specified at the beginning of the compound
statement.

All SQL parameters and SQL variables are considered nullable. The name of an
SQL parameter or SQL variable in an SQL routine can be the same as the name of
a column in a table or view referenced in the routine. In this case, explicitly qualify
the name to indicate whether it is a column,SQL variable, or SQL parameter.

If the name is not qualified, the following rules describe whether the name refers
to the column or to the SQL variable or SQL parameter:
v If the tables and views specified in an SQL routine body exist at the time the

routine is created, the name will first be checked as a column name. If not found
as a column, it will then be checked as an SQL variable or SQL parameter name.

v If the referenced tables or views do not exist at the time the routine is created,
the name will first be checked as an SQL variable or SQL parameter name. If not
found, it will be assumed to be a column.

In DB2 UDB for z/OS and OS/390, existence of tables or views is not checked
during routine creation and therefore the name will always be checked first for an
SQL variable or SQL parameter name.

The name of an SQL parameter or SQL variable in an SQL routine can be the same
as the name of an identifier used in certain SQL statements. If the name is not
qualified, the following rules describe whether the name refers to the identifier or
to the SQL parameter or SQL variable:
v In the SET PATH statement, the name is checked as an SQL parameter or SQL

variable name. If not found as an SQL variable or SQL parameter name, it will
then be used as an identifier.

v In the CONNECT statement, the name is used as an identifier.

520 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
G

SQL-procedure-statement
An SQL control statement may allow multiple SQL statements to be specified
within the SQL control statement. These statements are defined as SQL procedure
statements.

Syntax

�� SQL-control-statement
CLOSE-statement
COMMENT-statement
COMMIT-statement
CREATE INDEX-statement
CREATE TABLE-statement
CREATE VIEW-statement
DELETE-statement
DROP INDEX-statement
DROP TABLE-statement
DROP VIEW-statement
EXECUTE-statement
EXECUTE IMMEDIATE-statement
FETCH-statement
GRANT-statement
INSERT-statement
LOCK TABLE-statement
OPEN-statement
PREPARE-statement
ROLLBACK-statement
SELECT INTO-statement
SET PATH-statement
UPDATE-statement

��

Notes
Comments: Comments can be included within the body of an SQL procedure. In
addition to the double-dash form of comments (--), a comment can begin with /*
and end with */. The following rules apply to this form of a comment.
v The beginning characters /* must be on the same line.
v The ending characters */ must be on the same line.
v Comments can be started wherever a space is valid.
v Comments can be continued to the next line.

SQL-procedure-statement

Chapter 6. SQL control statements 521

assignment-statement
The assignment statement assigns a value to an SQL parameter or an SQL variable.

Syntax

��
label:

SET SQL-parameter-name = expression
SQL-variable-name NULL

��

Description
label

Specifies the label for the assignment statement. The label must be unique
within the procedure and cannot be the same as the procedure name.

SQL-parameter-name
Identifies the SQL parameter that is the assignment target. The parameter must
be specified in parameter-declaration in the CREATE PROCEDURE statement.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables can
only be declared in a compound-statement and must be declared before they are
used.

expression or NULL
Specifies the expression or value that is the source for the assignment.

Notes
Assignment rules: Assignments in the assignment statement must conform to the
SQL assignment rules as described in “Assignments and comparisons” on page 60.
If assigning to a string variable, storage assignment rules apply.

Assignments involving SQL parameters: An IN parameter can appear on the left
or right side in an assignment statement. When control returns to the caller, the
original value of the IN parameter is retained. An OUT parameter can also appear
on the left or right side in an assignment statement. If used without first being
assigned a value, the value is undefined. When control returns to the caller, the last
value that is assigned to an OUT parameter is returned to the caller. For an INOUT
parameter, the first value of the parameter is determined by the caller, and the last
value that is assigned to the parameter is returned to the caller.

Examples
Example 1: Increase the SQL variable p_salary by 10 percent.

SET p_salary = p_salary * 1.10

Example 2: Set SQL variable p_salary to the null value.
SET p_salary = NULL

assignment-statement

522 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

CALL statement
The CALL statement invokes a procedure. For additional details, see “CALL” on
page 297.

Syntax

�� CALL procedure-name argument-list ��

argument-list:

�

()
,

SQL-variable-name
SQL-parameter-name
constant
NULL
special-register
cast-function-name (SQL-variable-name)

SQL-parameter-name
constant

Description
procedure-name

Identifies the procedure to call. The procedure-name must identify a procedure
that exists at the current server and the procedure must be defined as an SQL
procedure or a LANGUAGE C external procedure.

argument-list
Identifies a list of values to be passed as parameters to the procedure. The nth
value corresponds to the nth parameter in the procedure.

Each parameter defined (using CREATE PROCEDURE) as OUT or INOUT
must be specified as either a SQL-variable-name or a SQL-parameter-name.

The number of arguments specified must be the same as the number of
parameters of a procedure defined at the current server with the specified
procedure-name.

The application requester assumes all parameters that are variables are INOUT
parameters. All parameters that are not variables are assumed to be input
parameters. The actual attributes of the parameters are determined by the
current server.

SQL-variable-name
Specifies an SQL variable as an argument to the procedure. For an
explanation of references to SQL variables see “References to SQL
parameters and SQL variables” on page 520.

SQL-parameter-name
Specifies an SQL parameter as an argument to the procedure. For an
explanation of references to SQL parameters see “References to SQL
parameters and SQL variables” on page 520.

CALL statement

Chapter 6. SQL control statements 523

constant or NULL
Specifies a constant value or null value as an argument to the procedure.
For an explanation of constant see “Constants” on page 75.

special-register
Specifies the value of a special register as an argument to the procedure.
For an explanation of special-register see “Special registers” on page 78.

cast-function-name
This form of an argument can only be used with parameters defined as a
BLOB, CLOB, DBCLOB, DATE, TIME or TIMESTAMP data types. The
following table describes the allowed uses of these cast-functions.

Parameter Type Cast Function Name

BLOB, CLOB, or DBCLOB BLOB, CLOB, or DBCLOB82

DATE, TIME, or TIMESTAMP DATE, TIME, or TIMESTAMP82

SQL-variable-name or SQL-parameter-name
Specifies a variable as the argument. The variable must be a string data
type supported by the cast function.

constant
Specifies a constant as the argument. The constant must be a string
constant supported by the cast function.

Notes
Related information: See “CALL” on page 297 for more information.

Examples
Call procedure proc1 and pass SQL variables as parameters.

CALL proc1(v_empno, v_salary)

82. The name of the function must match the name of the data type

CALL statement

524 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

CASE statement
The CASE statement selects an execution path based on multiple conditions.

Syntax

�� CASE simple-when-clause
searched-when-clause else-clause

END CASE ��

simple-when-clause:

expression � �WHEN expression THEN SQL-procedure-statement ;

searched-when-clause:

� �WHEN search-condition THEN SQL-procedure-statement ;

else-clause:

ELSE � SQL-procedure-statement ;

Description
simple-when-clause

The value of the expression prior to the first WHEN keyword is tested for
equality with the value of the expression that follows each WHEN keyword. If
the comparison is true, the statements in the associated THEN clause are
executed and processing of the CASE statement ends. If the result is unknown
or false, processing continues to the next comparison. If the result does not
match any of the comparisons, and an ELSE clause is present, the statements in
the ELSE clause are executed.

searched-when-clause
The search-condition following the WHEN keyword is evaluated. If it evaluates
to true, the statements in the associated THEN clause are executed and
processing of the CASE statement ends. If it evaluates to false, or unknown,
the next search-condition is evaluated. If no search-condition evaluates to true and
an ELSE clause is present, the statements in the ELSE clause are executed.

else-clause
If none of the conditions specified in the simple-when-clause or
searched-when-clause are true, then the statements in the else-clause are executed.

If none of the conditions specified in the WHEN are true, and an ELSE clause
is not specified, an error is returned at run time, and the execution of the
CASE statement is terminated (SQLSTATE 20000).

CASE statement

Chapter 6. SQL control statements 525

SQL-procedure-statement
Specifies a statement to execute. See “SQL-procedure-statement” on page 521.

Notes
Nesting CASE statements: CASE statements that use a simple-when-clause can be
nested up to three levels. CASE statements that use a searched-when-clause have no
limit to the number of nesting levels.

Examples
Example 1: Depending on the value of SQL variable v_workdept, update column
DEPTNAME in table DEPARTMENT with the appropriate name.

The following example shows how to do this using the syntax for a
simple-when-clause:

CASE v_workdept
WHEN’A00’

THEN UPDATE department SET deptname = ’DATA ACCESS 1’;
WHEN ’B01’

THEN UPDATE department SET deptname = ’DATA ACCESS 2’;
ELSE UPDATE department SET deptname = ’DATA ACCESS 3’;

END CASE

Example 2: The following example shows how to do this using the syntax for a
searched-when-clause:

CASE
WHEN v_workdept = ’A00’

THEN UPDATE department SET deptname = ’DATA ACCESS 1’;
WHEN v_workdept = ’B01’

THEN UPDATE department SET deptname = ’DATA ACCESS 2’;
ELSE UPDATE department SET deptname = ’DATA ACCESS 3’;

END CASE

CASE statement

526 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

compound-statement
A compound statement groups other statements together in an SQL procedure. A
compound statement allows the declaration of SQL variables, cursors, and
condition handlers.

Syntax

��
label:

NOT ATOMIC
BEGIN

� SQL-variable-declaration ;
condition-declaration
return-codes-declaration

�

�

� DECLARE CURSOR-statement ; � handler-declaration ;

�

� � SQL-procedure-statement ; END
label

��

SQL-variable-declaration:

DECLARE �

,

SQL-variable-name
DEFAULT NULL

built-in-type
DEFAULT constant

condition-declaration:

DECLARE condition-name CONDITION FOR �

�

VALUE
SQLSTATE

string-constant

return-codes-declaration:

DECLARE
DEFAULT ’00000’

SQLSTATE CHARACTER(5)
CHAR(5) DEFAULT string-constant

DEFAULT 0
SQLCODE INTEGER

INT DEFAULT integer-constant

compound-statement

Chapter 6. SQL control statements 527

handler-declaration:

DECLARE CONTINUE
EXIT

HANDLER FOR specific-condition-value
general-condition-value

�

� SQL-procedure-statement

specific-condition-value:

�

,
VALUE

SQLSTATE string-constant
condition-name

general-condition-value:

SQLEXCEPTION
SQLWARNING
NOT FOUND

built-in-type:

compound-statement

528 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SMALLINT
INTEGER
INT

(5,0)
DECIMAL
DEC ,0

NUMERIC (integer)
, integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(1)
CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer)
CHAR

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer)

CLOB K
M
G

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME
TIMESTAMP

Description
label

Specifies the label for the compound-statement. If the beginning label is specified,
it can be used to qualify SQL variables declared in the compound-statement and
can also be specified on a LEAVE statement. If the ending label is specified, it
must be the same as the beginning label. The label must be unique within the
procedure and cannot be the same as the procedure name.

NOT ATOMIC
NOT ATOMIC indicates that an unhandled error within the compound-statement
does not cause the compound-statement to be rolled back.

SQL-variable-declaration
Declares an SQL variable that is local to the compound-statement.

SQL-variable-name
Defines the name of a local SQL variable. The database manager
converts all undelimited SQL variable names to uppercase. The name

compound-statement

Chapter 6. SQL control statements 529

must not be the same as another SQL variable within the same
compound-statement and cannot be the same as a parameter name. Do
not name SQL variables the same as column names or parameter
names. See “References to SQL parameters and SQL variables” on
page 520 for how SQL variable names are resolved when there are
columns with the same name involved in a statement. Do not begin
SQL variable names with ’SQL’.

built-in-type
Specifies the data type of the SQL variable. Refer to “Data types” on
page 44 for a description of SQL data types.

DB2 UDB for z/OS and OS/390 does not support LOB types for SQL
variables.

DEFAULT constant or NULL
Defines the default for the SQL variable. The SQL variable is initialized
when the SQL procedure is called. If a default value is not specified,
the SQL variable is initialized to NULL.

condition-declaration
Declares a condition name and corresponding SQLSTATE value.

condition-name
Specifies the name of the condition. The condition name must be
unique within the compound-statement in which it is declared.

FOR SQLSTATE string-constant
Specifies the SQLSTATE that is associated with the condition. The
string-constant must be specified as five characters and cannot be
'00000'.

return-codes-declaration
Declares special SQL variables called SQLSTATE and SQLCODE that are set
automatically to the SQL return codes returned after executing an SQL
statement. Assignment to these SQL variables is not prohibited. However,
assignment is ignored by handlers and processing of the next SQL statement
replaces the assigned value. The SQLCODE and SQLSTATE variables cannot be
set to NULL.

Save SQLCODE and SQLSTATE variables immediately to another SQL variable
if there is any intention to use the values. If a handler is defined that handles
the SQLSTATE, this assignment must be the first statement in the handler to
avoid having the value replaced by the next SQL procedure statement.

DECLARE CURSOR-statement
Declares a cursor in the procedure body. Each cursor must have a unique name
within the compound-statement in which it is declared. The cursor can be
referenced only from within the compound-statement. Use an OPEN statement to
open the cursor, a FETCH statement to read a row using the cursor, and a
CLOSE statement to close the cursor. If the cursor is intended for use as a
result set:
v specify WITH RETURN when declaring the cursor
v create the procedure using the DYNAMIC RESULT SETS clause with a

non-zero value
v do not specify a CLOSE statement for the cursor in the compound-statement.

Any open cursor that does not meet these criteria is closed at the end of the
compound-statement.

compound-statement

530 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

For more information on declaring a cursor, refer to “DECLARE CURSOR” on
page 411.

handler-declaration
Specifies a handler, an SQL-procedure-statement to execute when an exception or
completion condition occurs in the compound-statement. SQL-procedure-statement
is a statement that executes when the handler receives control. A
handler-declaration can only include a single SQL-procedure-statement that does
not contain any other SQL-procedure-statements.

A handler is active for the set of SQL-procedure-statements that follow the
handler-declarations within the compound-statement in which it is declared.

There are two types of condition handlers:

CONTINUE
Specifies that after the handler is activated and completes successfully,
control is returned to the SQL statement that follows the statement that
returned the exception. If the error that returned the exception is an IF,
CASE, WHILE, or REPEAT statement (but not an SQL-procedure-statement
within one of these), then control returns to the statement that follows
END IF, END CASE, END WHILE, or END REPEAT.

EXIT
Specifies that after the handler is activated and completes successfully,
control is returned to the end of the compound-statement that declared the
handler.

The condition that causes the handler to be invoked are defined in the
handler-declaration as follows.

SQLSTATE VALUE string
Specifies that the handler is invoked when the specific SQLSTATE occurs.
The first two characters of the SQLSTATE value must not be '00'.

condition-name
Specifies that the handler is invoked when the specific SQLSTATE
associated with the condition name occurs. The condition-name must be
previously defined in a condition-declaration.

SQLEXCEPTION
Specifies that the handler is invoked when an exception condition occurs.
An exception condition is represented by an SQLSTATE value where the
first two characters are not '00', '01', or '02'.

SQLWARNING
Specifies that the handler is invoked when a warning condition occurs. A
warning condition is represented by an SQLSTATE value where the first
two characters are '01'.

NOT FOUND
Specifies that the handler is invoked when a NOT FOUND condition
occurs. A NOT FOUND condition is represented by an SQLSTATE value
where the first two characters are '02'.

If the SQL-procedure-statement is either a SIGNAL or RESIGNAL statement with
an exception SQLSTATE, the procedure will exit with the specified exception
since there is no handler in the scope of this exception.

compound-statement

Chapter 6. SQL control statements 531

Notes
Nesting compound statements: Compound statements cannot be nested.

Rules for handler-declarations:

v Handler declarations within the same compound-statement cannot contain
duplicate conditions.

v A handler declaration cannot contain the same condition code or SQLSTATE
value more than once, and cannot contain an SQLSTATE value and a condition
name that represent the same SQLSTATE value. For a list of SQLSTATE values
and more information, refer to Appendix E, “SQLSTATE values—common return
codes”, on page 581.

v A handler is activated when it is the most appropriate handler for an exception
or completion condition. The most appropriate handler is a handler (for the
exception or completion condition) that is defined in the compound-statement
which most closely matches the SQLSTATE of the exception or completion
condition. For example, if a handler exists for SQLSTATE 22001 as well as a
handler for SQLEXCEPTION, the handler for SQLSTATE 22001 would be the
most appropriate handler when an SQLSTATE 22001 is returned. If an exception
occurs for which there is no handler, execution of the compound-statement is
terminated. If a warning or not found condition occurs for which there is no
handler, processing continues with the next statement.

Examples
Create a procedure body with a compound statement that performs the following
actions.
1. Declares SQL variables.
2. Declares a cursor to return the salary of employees in a department determined

by an IN parameter.
3. Declares an EXIT handler for the condition NOT FOUND (end of file) which

assigns the value 6666 to the OUT parameter medianSalary.
4. Select the number of employees in the given department into the SQL variable

v_numRecords.

5. Fetch rows from the cursor in a WHILE loop until 50% + 1 of the employees
have been retrieved.

6. Return the median salary.
CREATE PROCEDURE DEPT_MEDIAN

(IN deptNumber SMALLINT,
OUT medianSalary DOUBLE)
LANGUAGE SQL
BEGIN
DECLARE v_numRecords INTEGER DEFAULT 1;
DECLARE v_counter INTEGER DEFAULT 0;
DECLARE c1 CURSOR FOR

SELECT salary FROM staff
WHERE DEPT = deptNumber
ORDER BY salary;

DECLARE EXIT HANDLER FOR NOT FOUND
SET medianSalary = 6666;
/* initialize OUT parameter */
SET medianSalary = 0;
SELECT COUNT(*) INTO v_numRecords FROM staff

WHERE DEPT = deptNumber;
OPEN c1;
WHILE v_counter < (v_numRecords / 2 + 1) DO

FETCH c1 INTO medianSalary;

compound-statement

532 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SET v_counter = v_counter + 1;
END WHILE;
CLOSE c1;

END

compound-statement

Chapter 6. SQL control statements 533

GET DIAGNOSTICS statement
The GET DIAGNOSTICS statement obtains information about the previous SQL
statement that was executed.

Syntax

�� GET DIAGNOSTICS SQL-variable-name =
SQL-parameter-name

ROW_COUNT
RETURN_STATUS

��

Description
SQL-variable-name

Identifies the SQL variable that is the assignment target. The SQL variable
must be an integer variable.

SQL-parameter-name
Identifies the SQL parameter that is the assignment target. The SQL parameter
must be an integer that is defined as an OUT or INOUT parameter.

ROW_COUNT
Specifies that the number of rows associated with the previous SQL statement
that was executed is to be returned in the identified SQL variable or SQL
parameter. If the previous SQL statement is a DELETE, INSERT, or UPDATE
statement, ROW_COUNT identifies the number of rows deleted, inserted, or
updated by that statement, excluding rows affected by either triggers or
referential integrity constraints.

RETURN_STATUS
Specifies that the status value returned from the previous SQL CALL statement
is to be returned in the identified SQL variable or SQL parameter. If the
previous statement is not a CALL statement, the value returned has no
meaning and is unpredictable. For more information, see “RETURN statement”
on page 545.

In DB2 UDB for z/OS and OS/390, the RETURN_STATUS value is not
supported.

Notes
Effect of statement: The GET DIAGNOSTICS statement does not change the
contents of the diagnostics area (SQLCA). If an SQLSTATE or SQLCODE special
variable is declared in the SQL procedure, these are respectively set to the
SQLSTATE or SQLCODE returned from issuing the GET DIAGNOSTICS statement.

Examples
Example 1: In an SQL procedure, execute a GET DIAGNOSTICS statement to
determine how many rows were updated.

CREATE PROCEDURE sqlprocg (IN deptnbr VARCHAR(3))
LANGUAGE SQL
BEGIN

DECLARE SQLSTATE CHAR(5);
DECLARE rcount INTEGER;
UPDATE CORPDATA.PROJECT

SET PRSTAFF = PRSTAFF + 1.5
WHERE DEPTNO = deptnbr;

GET DIAGNOSTICS statement

534 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

GET DIAGNOSTICS rcount = ROW_COUNT;
-- At this point, rcount contains the number of rows that were updated.

...
END

Example 2: Within an SQL procedure, handle the returned status value from the
invocation of an SQL procedure called TRYIT. TRYIT could use the RETURN
statement to explicitly return a status value or a status value could be implicitly
returned by the database manager. If the procedure is successful, it returns a value
of zero.

CREATE PROCEDURE TESTIT ()
LANGUAGE SQL
A1:BEGIN

DECLARE RETVAL INTEGER DEFAULT 0;
...
CALL TRYIT();
GET DIAGNOSTICS RETVAL = RETURN_STATUS;
IF RETVAL <> 0 THEN

...
LEAVE A1;

ELSE
...

END IF;
END A1

GET DIAGNOSTICS statement

Chapter 6. SQL control statements 535

GOTO statement
The GOTO statement is used to branch to a user-defined label within an SQL
routine.

Syntax

�� GOTO label ��

Description
label

Specifies a labeled statement where processing is to continue. Neither the
labeled statement nor the GOTO statement can appear in a handler-declaration.

Notes
Using a GOTO statement: It is recommended that the GOTO statement be used
sparingly. This statement interferes with normal sequence of processing SQL
statements, thus making a routine more difficult to read and maintain. Before
using a GOTO statement, determine whether another statement, such as IF or
LEAVE, can be used in place, to eliminate the need for a GOTO statement.

Examples
In the following compound statement used in a CREATE PROCEDURE statement,
the parameters rating and v_empno are passed into the procedure, which then
returns the output parameter return_parm as a date duration. If the employee’s
time in service with the company is less than 6 months, the GOTO statement
transfers control to the end of the procedure, and new_salary is left unchanged.

CREATE PROCEDURE adjust_salary
(IN v_empno CHAR(6),
IN rating INTEGER,
OUT return_parm DECIMAL (8,2))
LANGUAGE SQL
MODIFIES SQL DATA
BEGIN

DECLARE new_salary DECIMAL(9,2);
DECLARE service DECIMAL(8,2);

SELECT salary, CURRENT_DATE - hiredate
INTO new_salary, service
FROM employee
WHERE empno = v_empno;

IF service < 600
THEN GOTO EXIT1;

END IF;
IF rating = 1

THEN SET new_salary = new_salary + (new_salary * .10);
ELSEIF rating = 2

THEN SET new_salary = new_salary + (new_salary * .05);
END IF;
UPDATE EMPLOYEE

SET SALARY = new_salary
WHERE EMPNO = v_empno;

EXIT1: SET return_parm = service;
END

GOTO statement

536 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

IF statement
The IF statement executes different sets of SQL statements based on the result of
search conditions.

Syntax

�� IF search-condition THEN � SQL-procedure-statement ; �

� �

�ELSEIF search-condition THEN SQL-procedure-statement ;

�

�

�ELSE SQL-procedure-statement ;

END IF ��

Description
search-condition

Specifies the search-condition for which an SQL statement should be executed. If
the condition is unknown or false, processing continues to the next search
condition, until either a condition is true or processing reaches the ELSE
clause.

SQL-procedure-statement
Specifies an SQL statement to be executed if the preceding search-condition is
true.

Examples
The following SQL procedure accepts two IN parameters: an employee number
and an employee rating. Depending on the value of rating, the employee table is
updated with new values in the salary and bonus columns.

CREATE PROCEDURE UPDATE_SALARY_IF
(IN employee_number CHAR(6),
INOUT rating SMALLINT)
LANGUAGE SQL
BEGIN

DECLARE not_found CONDITION FOR SQLSTATE ’02000’;
DECLARE EXIT HANDLER FOR not_found

SET rating = -1;
IF rating = 1

THEN UPDATE employee
SET salary = salary * 1.10, bonus = 1000
WHERE empno = employee_number;

ELSEIF rating = 2
THEN UPDATE employee
SET salary = salary * 1.05, bonus = 500
WHERE empno = employee_number;

ELSE UPDATE employee

IF statement

Chapter 6. SQL control statements 537

SET salary = salary * 1.03, bonus = 0
WHERE empno = employee_number;

END IF;
END

IF statement

538 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

LEAVE statement
The LEAVE statement transfers program control out of a LOOP, REPEAT, WHILE
or compound statement.

Syntax

�� LEAVE label ��

Description
label

Specifies the label of the compound, LOOP, REPEAT, or WHILE statement to
exit.

Notes
Effect on open cursors: When a LEAVE statement transfers control out of a
compound statement, all open cursors in the compound statement, except cursors
that are used to return result sets, are closed.

Examples
This example contains a loop that fetches data for cursor c1. If the value of SQL
variable at_end is not zero, the LEAVE statement transfers control out of the loop.

CREATE PROCEDURE LEAVE_LOOP(OUT counter INTEGER)
LANGUAGE SQL
BEGIN

DECLARE v_counter INTEGER;
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE at_end SMALLINT DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE ’02000’;
DECLARE c1 CURSOR FOR

SELECT firstnme, midinit, lastname
FROM employee;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

SET v_counter = 0;
OPEN c1;
fetch_loop:
LOOP

FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
IF at_end <> 0 THEN LEAVE fetch_loop;
END IF;
SET v_counter = v_counter + 1;

END LOOP fetch_loop;
SET counter = v_counter;
CLOSE c1;

END

LEAVE statement

Chapter 6. SQL control statements 539

LOOP statement
The LOOP statement repeats the execution of a statement or a group of statements.

Syntax

��
label:

LOOP � SQL-procedure-statement ; END LOOP
label

��

Description
label

Specifies the label for the LOOP statement. If the beginning label is specified,
that label can be specified on the LEAVE statement. If the ending label is
specified, a matching beginning label must be specified. A label name cannot
be the same as another label name in the same compound-statement and it
cannot be the name of the SQL procedure in which the label is used.

SQL-procedure-statement
Specifies an SQL statement to be executed in the loop.

Examples
This procedure uses a LOOP statement to fetch values from the employee table.
Each time the loop iterates, the OUT parameter counter is incremented and the
value of v_midinit is checked to ensure that the value is not a single space (' '). If
v_midinit is a single space, the LEAVE statement passes the flow of control outside
of the loop.

CREATE PROCEDURE LOOP_UNTIL_SPACE(OUT counter INTEGER)
LANGUAGE SQL
BEGIN

DECLARE v_counter INTEGER DEFAULT 0;
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE c1 CURSOR FOR

SELECT firstnme, midinit, lastname
FROM employee;

DECLARE CONTINUE HANDLER FOR NOT FOUND
SET counter = -1;

OPEN c1;
fetch_loop:
LOOP

FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
IF v_midinit = ’ ’ THEN

LEAVE fetch_loop;
END IF;
SET v_counter = v_counter + 1;

END LOOP fetch_loop;
SET counter = v_counter;
CLOSE c1;

END

LOOP statement

540 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

REPEAT statement
The REPEAT statement executes a statement or group of statements until a search
condition is true.

Syntax

��
label:

REPEAT � SQL-procedure-statement ; �

� UNTIL search-condition END REPEAT
label

��

Description
label

Specifies the label for the REPEAT statement. If the beginning label is specified,
that label can be specified on the LEAVE statements. If an ending label is
specified, a matching beginning label also must be specified. A label name
cannot be the same as another label name in the same compound-statement and
it cannot be the name of the SQL procedure in which the label is used.

SQL-procedure-statement
Specifies an SQL statement to be executed within the REPEAT loop.

search-condition
The search-condition is evaluated after each execution of the REPEAT loop. If
the condition is true, the loop will exit. If the condition is unknown or false,
the looping continues.

Examples
A REPEAT statement fetches rows from a table until the not_found condition
handler is invoked.

CREATE PROCEDURE REPEAT_STMT(OUT counter INTEGER)
LANGUAGE SQL
BEGIN

DECLARE v_counter INTEGER DEFAULT 0;
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE at_end SMALLINT DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE ’02000’;
DECLARE c1 CURSOR FOR

SELECT firstnme, midinit, lastname
FROM employee;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

OPEN c1;
fetch_loop:
REPEAT

FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
SET v_counter = v_counter + 1;
UNTIL at_end > 0

REPEAT statement

Chapter 6. SQL control statements 541

END REPEAT fetch_loop;
SET counter = v_counter;
CLOSE c1;

END

REPEAT statement

542 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

RESIGNAL statement
The RESIGNAL statement is used within a handler to resignal an error or warning
condition. It causes an error or warning to be returned with the specified
SQLSTATE, along with optional message text.

In DB2 UDB for z/OS and OS/390, the RESIGNAL statement is not supported.

Syntax

�� RESIGNAL �

�
VALUE

SQLSTATE sqlstate-string-constant
condition-name signal-information

��

signal-information:

SET MESSAGE_TEXT = SQL-variable-name
SQL-parameter-name
diagnostic-string-constant

Description
SQLSTATE VALUE sqlstate-string-constant

Specifies the SQLSTATE that will be returned. The sqlstate-string-constant must
be a character string constant with exactly 5 characters that follow the rules for
SQLSTATEs:
v Each character must be from the set of digits ('0' through '9') or upper case

letters ('A' through 'Z') without diacritical marks
v The SQLSTATE class (first two characters) cannot be '00', since this

represents successful completion.

If the SQLSTATE does not conform to these rules, an error is returned

condition-name
Specifies the name of a condition that will be returned. The condition-name
must be declared within the compound-statement.

SET MESSAGE_TEXT
Specifies a string that describes the error or warning. The string is returned in
the SQLERRMC field of the SQLCA. If the actual string is longer than 70 bytes,
it is truncated without warning.

SQL-variable-name
Identifies an SQL variable, declared within the compound-statement, that
contains the message text. The SQL variable must be defined as a CHAR or
VARCHAR data type.

SQL-parameter-name
Identifies an SQL parameter, defined for the procedure, that contains the
message text. The SQL parameter must be defined as a CHAR or
VARCHAR data type.

diagnostic-string-constant
Specifies a character string constant that contains the message text.

RESIGNAL statement

Chapter 6. SQL control statements 543

G

Notes
SQLSTATE values: Any valid SQLSTATE value can be used in the RESIGNAL
statement. However, it is recommended that programmers define new SQLSTATEs
based on ranges reserved for applications. This prevents the unintentional use of
an SQLSTATE value that might be defined by the database manager in a future
release.

For more information on SQLSTATEs, see Appendix E, “SQLSTATE
values—common return codes”, on page 581.

Processing a RESIGNAL statement:

v If the RESIGNAL statement is specified without an SQLSTATE clause or a
condition-name, the identical condition that activated the handler is returned.

v If a RESIGNAL statement is issued, and an SQLSTATE or condition-name was
specified, the SQLCODE returned is based on the SQLSTATE value as follows:
– If the specified SQLSTATE class is either ’01’ or ’02’, a warning or not found

is returned and the SQLCODE is set to +438
– Otherwise, an exception is returned and the SQLCODE is set to −438.

Examples
This example detects a division-by-zero error. The IF statement uses a SIGNAL
statement to invoke the overflow condition handler. The condition handler uses a
RESIGNAL statement to return a different SQLSTATE value to the client
application.

CREATE PROCEDURE divide
(IN numerator INTEGER,
IN denominator INTEGER,
OUT divide_result INTEGER)
LANGUAGE SQL
CONTAINS SQL
BEGIN

DECLARE overflow CONDITION FOR SQLSTATE ’22003’;
DECLARE CONTINUE HANDLER FOR overflow

RESIGNAL SQLSTATE'22375' ;
IF denominator = 0 THEN

SIGNAL overflow;
ELSE

SET divide_result = numerator / denominator;
END IF;

END

RESIGNAL statement

544 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

RETURN statement
The RETURN statement is used to return from the routine. For SQL functions, it
returns the result of the function. For an SQL procedure, it optionally returns an
integer status value.

In DB2 UDB for z/OS and OS/390, the RETURN statement is not supported in an
SQL procedure.

Syntax

��
label:

RETURN
expression
NULL

��

Description
label

Specifies the label for the RETURN statement. A label can only be specified for
a RETURN statement within a compound-statement. A label name cannot be the
same as another label name in the same compound-statement and it cannot be
the name of the SQL procedure in which the label is used.

expression
Specifies a value that is returned from the routine:
v If the routine is a function, expression must be specified and the value of

expression must conform to the SQL assignment rules as described in
“Assignments and comparisons” on page 60. If assigning to a string variable,
storage assignment rules apply.

v If the routine is a procedure, the data type of expression must be INTEGER. If
the expression evaluates to the null value, a value of 0 is returned.

NULL
The null value is returned from the SQL function. NULL is not allowed in SQL
procedures.

Notes
Returning from a procedure:

v If a RETURN statement with a specified return value is used to return from a
procedure then the SQLCODE, SQLSTATE, and message length in the SQLCA
are initialized to zeros, and message text is set to blanks. An error is not
returned to the caller.

v If a RETURN statement is not used to return from a procedure or if a value is
not specified on the RETURN statement,
– if the procedure returns with an SQLCODE that is greater or equal to zero,

the specified target for RETURN_STATUS in a GET DIAGNOSTICS statement
will be set to a value of 0

– if the procedure returns with an SQLCODE that is less than zero, the
specified target for RETURN_STATUS in a GET DIAGNOSTICS statement
will be set to a value of −1.

v When a value is returned from a procedure, the caller may access the value
using:
– the GET DIAGNOSTICS statement to retrieve the RETURN_STATUS when

the SQL procedure was called from another SQL procedure

RETURN statement

Chapter 6. SQL control statements 545

G
G

– the parameter bound for the return value parameter marker in the escape
clause CALL syntax (?=CALL...) in a CLI or JDBC application

– directly from the SQLCA returned from processing the CALL of an SQL
procedure by retrieving the value of sqlerrd[0] when the SQLCODE is not less
than zero. When the SQLCODE is less than zero, the sqlerrd[0] value is not
set and the application should assume a return status value of -1.

Examples
Example 1: Use a RETURN statement to return from an SQL procedure with a
status value of zero if successful, and −200 if not.

BEGIN
...

GOTO FAIL;
...

SUCCESS: RETURN 0;
FAIL: RETURN -200;

END

Example 2: Define a scalar function that returns the tangent of a value using the
existing sine and cosine functions.

CREATE FUNCTION mytan (x DOUBLE)
RETURNS DOUBLE
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC
RETURN SIN(x)/COS(x)

RETURN statement

546 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SIGNAL statement
The SIGNAL statement is used to signal an error or warning condition. It causes
an error or warning to be returned with the specified SQLSTATE, along with
optional message text.

In DB2 UDB for z/OS and OS/390, the SIGNAL statement is not supported.

Syntax

�� SIGNAL
VALUE

SQLSTATE sqlstate-string-constant
condition-name

�

�
signal-information

��

signal-information:

SET MESSAGE_TEXT = SQL-variable-name
SQL-parameter-name
diagnostic-string-constant

(diagnostic-string-constant)

Description
SQLSTATE VALUE sqlstate-string-constant

Specifies an SQLSTATE that will be returned. The sqlstate-string-constant must
be a character string constant with exactly 5 characters that follow the rules for
SQLSTATEs:
v Each character must be from the set of digits ('0' through '9') or upper case

letters ('A' through 'Z') without diacritical marks
v The SQLSTATE class (first two characters) cannot be '00', since this

represents successful completion.

If the SQLSTATE does not conform to these rules, an error is returned.

condition-name
Specifies the name of the condition that will be returned. The condition-name
must be declared within the compound-statement.

SET MESSAGE_TEXT
Specifies a string that describes the error or warning. The string is returned in
the SQLERRMC field of the SQLCA. If the actual string is longer than 70 bytes,
it is truncated without warning.

SQL-variable-name
Identifies an SQL variable, declared within the compound-statement, that
contains the message text. The SQL variable must be defined as a CHAR or
VARCHAR data type.

SQL-parameter-name
Identifies an SQL parameter, defined for the procedure, that contains the
message text. The SQL parameter must be defined as a CHAR or
VARCHAR data type.

SIGNAL statement

Chapter 6. SQL control statements 547

G

diagnostic-string-constant
Specifies a character string constant that contains the message text. If the
string is longer than 70 bytes, it will be truncated without warning.

(diagnostic-string-constant)
Specifies a character string constant that contains the message text. If the string
is longer than 70 bytes, it will be truncated without warning. Within the
triggered action of a CREATE TRIGGER statement, the message text can only
be specified using this syntax:
SIGNAL SQLSTATE sqlstate-string-constant (diagnostic-string-constant);

Notes
SQLSTATE values: Any valid SQLSTATE value can be used in the SIGNAL
statement. However, it is recommended that programmers define new SQLSTATEs
based on ranges reserved for applications. This prevents the unintentional use of
an SQLSTATE value that might be defined by the database manager in a future
release.

For more information on SQLSTATEs, see Appendix E, “SQLSTATE
values—common return codes”, on page 581.

Processing a SIGNAL statement: If a SIGNAL statement is issued, the SQLCODE
returned is based on the SQLSTATE value as follows:
v If the specified SQLSTATE class is either ’01’ or ’02’, a warning or not found is

returned and the SQLCODE is set to +438
v Otherwise, an exception is returned and the SQLCODE is set to −438.

Examples
An SQL procedure for an order system that signals an application error when a
customer number is not known to the application. The ORDERS table includes a
foreign key to the CUSTOMER table, requiring that the CUSTNO exist before an
order can be inserted.

CREATE PROCEDURE SUBMIT_ORDER
(IN ONUM INTEGER, IN CNUM INTEGER,
IN PNUM INTEGER, IN QNUM INTEGER)
LANGUAGE SQL
MODIFIES SQL DATA
BEGIN

DECLARE EXIT HANDLER FOR SQLSTATE VALUE ’23503’
SIGNAL SQLSTATE ’75002’

SET MESSAGE_TEXT = ’Customer number is not known’;
INSERT INTO ORDERS (ORDERNO, CUSTNO, PARTNO, QUANTITY)

VALUES (ONUM, CNUM, PNUM, QNUM);
END

SIGNAL statement

548 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

WHILE statement
The WHILE statement repeats the execution of a statement or group of statements
while a specified condition is true.

Syntax

��
label:

WHILE search-condition DO � SQL-procedure-statement ; �

� END WHILE
label

��

Description
label

Specifies the label for the WHILE statement. If the beginning label is specified,
it can be specified in the LEAVE statement. If the ending label is specified, it
must be the same as the beginning label. A label name cannot be the same as
another label name in the same compound-statement and it cannot be the name
of the SQL procedure in which the label is used.

search-condition
Specifies a condition that is evaluated before each execution of the WHILE
loop. If the condition is true, the SQL-procedure-statements in the WHILE loop
are executed.

SQL-procedure-statement
Specifies an SQL statement or statements to execute within the WHILE loop.

Examples
This example uses a WHILE statement to iterate through FETCH and SET
statements. While the value of SQL variable v_counter is less than half of number
of employees in the department identified by the IN parameter deptNumber, the
WHILE statement continues to perform the FETCH and SET statements. When the
condition is no longer true, the flow of control leaves the WHILE statement and
closes the cursor.

CREATE PROCEDURE dept_median
(IN deptNumber SMALLINT,
OUT medianSalary DECIMAL(7,2))
LANGUAGE SQL
BEGIN

DECLARE v_numRecords INTEGER DEFAULT 1;
DECLARE v_counter INTEGER DEFAULT 0;
DECLARE c1 CURSOR FOR

SELECT salary
FROM staff
WHERE dept = deptNumber
ORDER BY salary;

DECLARE EXIT HANDLER FOR NOT FOUND
SET medianSalary = 6666;

SET medianSalary = 0;
SELECT COUNT(*) INTO v_numRecords

FROM staff
WHERE DEPT = deptNumber;

WHILE statement

Chapter 6. SQL control statements 549

OPEN c1;
WHILE v_counter < (v_numRecords / 2 + 1) DO

FETCH c1 INTO medianSalary;
SET v_counter = v_counter + 1;

END WHILE;
CLOSE c1;

END

WHILE statement

550 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Appendix A. SQL limits

The following tables describe certain SQL and database limits imposed by the IBM
relational database products. Adhering to the most restrictive case can help the
programmer design application programs that are easily portable.

Note:

v System storage limits may preclude the limits specified here. For example,
see “Byte Counts” on page 395.

v A limit of storage means that the limit is dependent on the amount of
storage available.

v A limit of statement means that the limit is dependent on the limit for the
maximum length of a statement.

Table 37. Identifier length limits

Identifier Limits DB2 UDB for
z/OS and OS/390

DB2 UDB for
iSeries

DB2 UDB for
LUW

DB2 UDB SQL

Longest authorization name 8 10 30 8

Longest condition name 64 128 64 64

Longest constraint name 887 128 18 887

Longest correlation name 18 128 128 18

Longest cursor name 18 18 18 18

Longest external program name
(unqualified form)

8 10 18 8

Longest external program name
(string form)

1305 279 254 254

Longest host identifier84 64 64 255 64

Longest savepoint name 128 128 128 128

Longest schema name 883 10 885 8

Longest server name 16 18 8 18

Longest statement name 18 18 18 18

Longest SQL label 64 128 64 64

Longest unqualified alias name 18 128 128 18

Longest unqualified column name 18 30 30 18

Longest unqualified distinct type
name

18 128 18 18

Longest unqualified function name 18 128 18 18

Longest unqualified index name 18 128 18 18

Longest unqualified package name 8 10 8 8

Longest unqualified procedure name 18 128 128 18

Longest unqualified specific name 18 128 128 18

Longest unqualified SQL parameter
name

18 128 6486 18

Longest unqualified SQL variable
name

18 128 64 18

© Copyright IBM Corp. 1982, 2003 551

Table 37. Identifier length limits (continued)

Identifier Limits DB2 UDB for
z/OS and OS/390

DB2 UDB for
iSeries

DB2 UDB for
LUW

DB2 UDB SQL

Longest unqualified table and view
name

18 128 128 18

Longest unqualified trigger name 8 128 18 18

Table 38. Numeric limits

Numeric Limits DB2 UDB for
z/OS and OS/390

DB2 UDB for
iSeries

DB2 UDB for
LUW

DB2 UDB SQL

Smallest SMALLINT value −32 768 −32 768 −32 768 −32 768

Largest SMALLINT value +32 767 +32 767 +32 767 +32 767

Smallest INTEGER value −2 147 483 648 −2 147 483 648 −2 147 483 648 −2 147 483 648

Largest INTEGER value +2 147 483 647 +2 147 483 647 +2 147 483 647 +2 147 483 647

Largest decimal precision 31 31 31 31

Smallest DOUBLE value88 −7.2x1075 −1.79x10308 −1.79x10308 −7.2x1075

Largest DOUBLE value88 +7.2x1075 +1.79x10308 +1.79x10308 +7.2x1075

Smallest positive DOUBLE value88 +5.4x10−79 +2.23x10−308 +2.23x10−307 +5.4x10−79

Largest negative DOUBLE value88 −5.4x10−79 −2.23x10−308 −2.23x10−307 −5.4x10−79

Smallest REAL value88 −7.2x1075 −3.4x1038 −3.4x1038 −3.4x1038

Largest REAL value88 +7.2x1075 +3.4x1038 +3.4x1038 +3.4x1038

Smallest positive REAL value88 +5.4x10−79 +1.18x10−38 +1.17x10−37 +1.17x10−37

Largest negative REAL value88 −5.4x10−79 −1.18x10−38 −1.17x10−37 −1.17x10−37

Table 39. String limits

String Limits DB2 UDB for
z/OS and OS/390

DB2 UDB for
iSeries

DB2 UDB for
LUW

DB2 UDB SQL

Maximum length of CHAR (in bytes) 255 32 76590 254 254

Maximum length of VARCHAR (in
bytes)

32 704 32 73990 32 672 32 672

Maximum length of CLOB (in bytes) 2 147 483 647 2 147 483 647 2 147 483 647 2 147 483 647

Maximum length of GRAPHIC (in
double-byte characters)

127 16 38290 127 127

Maximum length of VARGRAPHIC
(in double-byte characters)

16 352 16 36990 16 336 16 336

83. 18 for packages.

84. Individual host languages may vary.

85. The schema name can be up to 30 bytes for the schema name of all objects except distinct types.

86. The limit is 128 for external routines.

87. For referential constraints. The limit for other constraints is 18.

88. The values shown are approximate.

SQL limits

552 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 39. String limits (continued)

String Limits DB2 UDB for
z/OS and OS/390

DB2 UDB for
iSeries

DB2 UDB for
LUW

DB2 UDB SQL

Maximum length of DBCLOB (in
double-byte characters)

1 073 741 823 1 073 741 823 1 073 741 823 1 073 741 823

Maximum length of BLOB (in bytes) 2 147 483 647 2 147 483 647 2 147 483 647 2 147 483 647

Maximum length of character
constant

255 32 740 32 672 255

Maximum length of a graphic
constant89

124 16 370 16 336 124

Maximum length of a concatenated
character string

2 147 483 647 2 147 483 647 2 147 483 647 32 766

Maximum length of a concatenated
graphic string

1 073 741 823 1 073 741 823 1 073 741 823 16 370

Maximum length of a concatenated
binary string

2 147 483 647 2 147 483 647 2 147 483 647 32 766

Maximum number of hex constant
digits

254 65 480 16 336 254

Maximum length of catalog
comments (in bytes)

254 2000 254 254

Table 40. Datetime limits for IBM SQL and all IBM relational database products

Datetime Limits103 DB2 UDB SQL and All IBM Relational Database Products

Smallest DATE value 0001-01-01

Largest DATE value 9999-12-31

Smallest TIME value 00:00:00

Largest TIME value 24:00:00

Smallest TIMESTAMP value 0001-01-01-00.00.00.000000

Largest TIMESTAMP value 9999-12-31-24.00.00.000000

89. Further restricted by individual utilities and preprocessors.

90. If the column is NOT NULL, the limit is one more.

91. The limits are greater when partitioned. See product documentation.

92. Row size may be further restricted by the page size of the table space.

93. If the table is not a dependent table, the limit is 750.

94. The numbers shown are architectural limits and approximations. The practical limits may be less.

95. The longest index key is actually the number provided in the table minus the number of columns that allow nulls.

96. The maximum can be less depending on index options.

97. This is an approximate guideline. In a complex SELECT, the number of tables that can be joined may be significantly less.

98. In REXX, the maximum number of prepared statements is 100. Of these, no more than 50 can be declared cursors with the WITH
HOLD clause, and no more than 50 can be declared cursors without the WITH HOLD clause.

99. Further limited by the presence of nested procedures and functions.

100. Depending on parameter style, the limit may be up to 255.

101. For some languages the limit may be more.

102. The limit may be less in the presence of result sets.

SQL limits

Appendix A. SQL limits 553

Table 41. Database manager limits

Database Manager Limits DB2 UDB for
z/OS and OS/390

DB2 UDB for
iSeries

DB2 UDB for
LUW

DB2 UDB SQL

Most columns in a table 74993 8000 1012 750

Most columns in a view 750 8000 5000 750

Maximum length of a row including
all overhead

32 71492 32 766 32 67792 32 677

Maximum number of parameters in
a function

200101 90 90 90

Maximum number of parameters in
a procedure

200102, 101 90100 32767 90

Maximum size of a table94, 91 64 gigabytes 1 terabyte 512 gigabytes 512 gigabytes

Maximum size of an index94, 91 64 gigabytes 1 terabyte 512 gigabytes 512 gigabytes

Maximum number of rows in a
table

88, 91
1x1012 4 294 967 288 4x109 4x109

Longest index key95 25596 2000 1024 255

Most columns in an index key 64 120 16 16

Most indexes on a table storage 400088 32 767 or storage 400088

Most tables referenced in an SQL
statement

22597 256 storage 22597

Most tables referenced in a view 22597 32 storage 32

Most host variable declarations in a
precompiled program

storage storage storage storage

Most host variables in an SQL
statement

statement 4096 statement 4096

Longest host variable value used for
insert or update (in bytes)

2 147 483 647 2 147 483 647 2 147 483 647 2 147 483 647

Longest SQL statement (in bytes) 32 765 65 535 65 535 32 765

Longest CHECK constraint (in bytes) 3800 statement 65 535 3800

Most elements in a select list 750 8000 1012 750

Most predicates in a WHERE or
HAVING clause

750 statement statement 750

Maximum number of columns in a
GROUP BY clause

4000 120 1012 120

Maximum total length of columns in
a GROUP BY clause

4000 32 766 32 677 4000

Maximum number of columns in an
ORDER BY clause

4000 10 000 1012 1012

Maximum total length of columns in
an ORDER BY clause

4000 10 000 32 677 4000

Maximum number of prepared
statements

storage storage storage98 storage

Most declared cursors in a program storage storage storage storage

103. Shown in ISO format.

SQL limits

554 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 41. Database manager limits (continued)

Database Manager Limits DB2 UDB for
z/OS and OS/390

DB2 UDB for
iSeries

DB2 UDB for
LUW

DB2 UDB SQL

Maximum number of cursors opened
at one time

storage storage storage storage

Most tables in a relational database94 storage storage storage storage

Maximum number of triggers on a
table

storage 300 storage 300

Maximum number of nested trigger
levels

1699 200 16 16

Maximum length of a password 8 128 18 8

Maximum number of constraints on
a table

storage 300 storage 300

Maximum length of a path 254 3483 254 254

SQL limits

Appendix A. SQL limits 555

SQL limits

556 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Appendix B. Characteristics of SQL statements

This appendix contains information on the characteristics of SQL statements
pertaining to the various places where they are used.
v “Actions allowed on SQL statements” on page 558 shows whether an SQL

statement can be executed, prepared interactively or dynamically, and whether
the statement is processed by the requester, the server or the precompiler.

v “SQL statement data access classification for routines” on page 560 shows the
level of SQL data access that must be specified to use the SQL statement in a
routine.

v “Considerations for using distributed relational database” on page 562 provides
information about the use of SQL statements when the application server is not
the same as the application requester.

© Copyright IBM Corp. 1982, 2003 557

Actions allowed on SQL statements
Table 42 shows whether a specific SQL statement can be executed, issued
interactively or prepared dynamically, or processed by the requester, the server, or
the precompiler. The letter Y means yes.

Table 42. Actions allowed on SQL statements

SQL statement Executable

Issued
interactively

or
dynamically

prepared

Processed by

Requesting
system Server Precompiler

ALTER Y Y Y

BEGIN DECLARE
SECTION105,106

Y

CALL104 Y Y

CLOSE105 Y Y

COMMENT Y Y Y

COMMIT Y Y Y

CONNECT (Type 1 and Type
2)105,106

Y Y

CREATE Y Y Y

DECLARE CURSOR105 Y

DECLARE GLOBAL
TEMPORARY TABLE

Y Y Y

DELETE Y Y Y

DESCRIBE105 Y Y

DROP Y Y Y

END DECLARE SECTION105,106 Y

EXECUTE105 Y Y

EXECUTE IMMEDIATE105 Y Y

FETCH Y Y

FREE LOCATOR105,106 Y Y

GRANT Y Y Y

INCLUDE105,106 Y

INSERT Y Y Y

LOCK TABLE Y Y Y

OPEN105 Y Y

PREPARE105 Y Y

RELEASE connection105,106 Y Y

RELEASE SAVEPOINT Y Y Y

RENAME Y Y Y

104. The statement can be dynamically prepared, but only from a CLI, ODBC or JDBC driver that supports dynamic CALL
statements.

105. This statement is not applicable in a Java program.

106. This statement is not supported in a REXX program.

Characteristics of SQL statements

558 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 42. Actions allowed on SQL statements (continued)

SQL statement Executable

Issued
interactively

or
dynamically

prepared

Processed by

Requesting
system Server Precompiler

REVOKE Y Y Y

ROLLBACK Y Y Y

ROLLBACK TO SAVEPOINT Y Y Y

SAVEPOINT Y Y Y

SELECT INTO106 Y Y

SET CONNECTION105,106 Y Y

SET PATH Y Y Y

SET transition-variable107 Y Y

SQL-control-statement Y Y

UPDATE Y Y Y

VALUES107 Y Y

VALUES INTO106 Y Y

WHENEVER105,106 Y

107. This statement can only be used in the triggered action of a trigger.

Characteristics of SQL statements

Appendix B. Characteristics of SQL statements 559

SQL statement data access classification for routines
Table 43 indicates (using the letter Y) whether an SQL statement (specified in the
first column) is allowed to execute in a routine with the specified SQL data access
classification.

Table 43. SQL data access classification of SQL statements

SQL Statement NO SQL CONTAINS
SQL

READS SQL
DATA

MODIFIES
SQL DATA

ALTER Y

BEGIN DECLARE SECTION Y108 Y Y Y

CALL Y109 Y109 Y109

CLOSE Y Y

COMMENT Y

COMMIT Y Y Y

CONNECT(Type 1 and Type
2)110

CREATE Y

DECLARE CURSOR Y108 Y Y Y

DECLARE GLOBAL
TEMPORARY TABLE

Y

DELETE Y

DESCRIBE Y Y

DROP Y

END DECLARE SECTION Y108 Y Y Y

EXECUTE Y111 Y111 Y

EXECUTE IMMEDIATE Y111 Y111 Y

FETCH Y Y

FREE LOCATOR Y Y Y

GRANT Y

INCLUDE Y108 Y Y Y

INSERT Y

LOCK TABLE Y Y Y

OPEN Y Y

PREPARE Y Y Y

RELEASE connection110

RELEASE SAVEPOINT Y

RENAME Y

REVOKE Y

ROLLBACK, Y Y Y

108. Although the NO SQL option implies that no SQL statements can be specified, non-executable statements are not restricted.

109. A CALL statement can only be used in a procedure defined as LANGUAGE SQL or LANGUAGE C.

110. Connection management statements are not allowed in any procedure execution contexts.

SQL statement data access classification

560 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 43. SQL data access classification of SQL statements (continued)

SQL Statement NO SQL CONTAINS
SQL

READS SQL
DATA

MODIFIES
SQL DATA

ROLLBACK TO
SAVEPOINT

Y

SAVEPOINT Y

SELECT INTO Y Y

SET CONNECTION110

SET PATH Y Y Y

SET transition-variable

SQL-control-statement Y Y Y

UPDATE Y

VALUES

VALUES INTO Y Y

WHENEVER Y108 Y Y Y

111. The statement specified for the EXECUTE statement must be a statement that is allowed in the context of the particular SQL
access level in effect. For example, if the SQL access level in effect is READS SQL DATA, the statement must not be an INSERT,
UPDATE, or DELETE.

SQL statement data access classification

Appendix B. Characteristics of SQL statements 561

Considerations for using distributed relational database
This section contains information that may be useful in developing applications
that use application servers which are not the same product as their application
requesters.

All DB2 Universal Database products support extensions to the SQL described in
this publication. Some of these extensions are product-specific, but many are
already supported by more than one product or support is planned but not yet
generally available.

For the most part, an application can use the statements and clauses that are
supported by the database manager of the current server, even though that
application might be running via the application requester of a database manager
that does not support some of those statements and clauses. Restrictions to this
general rule are identified by application requester:
v for DB2 UDB for z/OS and OS/390 application requester, see Table 44 on

page 563
v for DB2 UDB for iSeries application requester, seeTable 45 on page 564
v for DB2 UDB for LUW application requester, see Table 46 on page 565.

Note that an 'R' in the table indicates that this SQL function is not supported in the
specified environment. An 'R' in every column of the same row may mean that the
function is available only if server and requester are the same product or that the
statement is blocked by the application requester from being processed at the
application server.

DRDA considerations

562 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 44. DB2 UDB for z/OS and OS/390 application requester

SQL Statement or Function DB2 UDB for
z/OS and OS/390
Application
Server

DB2 UDB for
iSeries
Application
Server

DB2 UDB for
LUW
Application
Server

COMMIT HOLD R R R

DECLARE STATEMENT

DECLARE TABLE

DECLARE VARIABLE

DESCRIBE TABLE R

DESCRIBE with USING clause R

DISCONNECT R R R

Large Object (LOB) Data Types R

BIGINT Data Types R 113 113

ROWID Data Types R R

DATALINK Data Types R R R

Distinct Data Types 114

Host declarations not documented
in language specific appendices

112 112

PREPARE with USING clause R

ROLLBACK HOLD R R R

SET CURRENT PACKAGESET

SET host variable R R

SET TRANSACTION R R R

Scrollable Cursor statements R R R

UPDATE cursor - FOR UPDATE
OF clause not specified

112. The statement is supported if the application requester understands it.

113. The DB2 UDB for z/OS and OS/390 application requester will process a BIGINT data type at the application server using the
compatible DECIMAL(19,0) data type.

114. The DB2 UDB for LUW application server returns the source type of the distinct type but the distinct type name is not
returned.

DRDA considerations

Appendix B. Characteristics of SQL statements 563

Table 45. DB2 UDB for iSeries application requester

SQL Statement or Function DB2 UDB for
z/OS and OS/390
Application
Server

DB2 UDB for
iSeries
Application
Server

DB2 UDB for
LUW
Application
Server

COMMIT HOLD R R

DECLARE STATEMENT

DECLARE TABLE

DECLARE VARIABLE

DESCRIBE TABLE R

DESCRIBE with USING clause R

DISCONNECT

Large Object (LOB) Data Types R

BIGINT Data Types R

ROWID Data Types 115 R R

DATALINK Data Types R R

Distinct Data Types 114

Host declarations not documented
in language specific appendices

112 112

PREPARE with USING clause R

ROLLBACK HOLD R R

SET CURRENT PACKAGESET R R R

SET host variable R R

SET TRANSACTION R R

Scrollable Cursor statements R R

UPDATE cursor - FOR UPDATE
OF clause not specified

R

115. The DB2 UDB for iSeries application requester will process a ROWID data type at the application server using the compatible
VARCHAR(40) FOR BIT DATA data type.

DRDA considerations

564 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 46. DB2 UDB for LUW application requester

SQL Statement or Function DB2 UDB for
z/OS and OS/390
Application
Server

DB2 UDB for
iSeries
Application
Server

DB2 UDB for
LUW
Application
Server

COMMIT HOLD R R R

DECLARE STATEMENT R R R

DECLARE TABLE R R R

DECLARE VARIABLE R R R

DESCRIBE TABLE R R R

DESCRIBE with USING clause R R R

DISCONNECT

Large Object (LOB) Data Types

BIGINT Data Types R

ROWID Data Types 116 R R

DATALINK Data Types R R R

Distinct Data Types

Host declarations not documented
in language specific appendices

112 112

PREPARE with USING clause R R R

ROLLBACK HOLD R R R

SET CURRENT PACKAGESET

SET host variable R R R

SET TRANSACTION R R R

Scrollable Cursor statements R R R

UPDATE cursor - FOR UPDATE
OF clause not specified

R

116. The DB2 UDB for LUW application requester will process a ROWID data type at the application server using the compatible
VARCHAR(40) FOR BIT DATA data type.

DRDA considerations

Appendix B. Characteristics of SQL statements 565

566 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Appendix C. SQLCA (SQL communication area)

An SQLCA is a set of variables that is updated at the end of the execution of every
SQL statement. A program that contains executable SQL statements must provide
exactly one SQLCA (unless a stand-alone SQLSTATE or a stand-alone SQLCODE
variable is used instead), except in Java, where the SQLCA is not applicable.

The SQL INCLUDE statement can be used to provide the declaration of the
SQLCA in all host languages except Java and REXX. For information on the use of
the SQLCA in a REXX program, see Appendix K, “Coding SQL statements in REXX
applications”. For information on how to access the information regarding errors
and warnings in Java, see Appendix J, “Coding SQL statements in Java
applications”, on page 669.

In COBOL and C, the name of the storage area must be SQLCA. Every SQL
statement must be within the scope of its declaration.

If stand-alone SQLCODE or SQLSTATE is used, an SQLCA cannot be included. For
more information, see “SQL return codes” on page 279.

The stand-alone SQLCODE and stand-alone SQLSTATE must not be specified in
Java or REXX.

Field descriptions

Table 47. Field descriptions for an SQLCA

C Name117 COBOL Name Field Data Type Field Value

sqlcaid SQLCAID CHAR(8) Contains an ‘eye catcher’ for storage dumps, 'SQLCA'.

sqlcabc SQLCABC INTEGER Contains the length of the SQLCA, 136.

sqlcode SQLCODE INTEGER Contains an SQL return code:

0 Successful execution, although SQLWARN
indicators (see below) might have been set.

positive
Successful execution, but with a warning
condition.

negative
Error condition.

sqlerrml118 SQLERRML SMALLINT Contains the length for SQLERRMC, in the range 0
through 70. If the length is 0, the value of SQLERRMC
is not pertinent.

sqlerrmc118 SQLERRMC VARCHAR (70) Contains information that is substituted for variables in
the descriptions of error conditions. See the product
references for further information.

117. The field names shown are those present in an SQLCA that is obtained via an INCLUDE statement.

118. In C and COBOL, SQLERRM includes SQLERRML and SQLERRMC.

© Copyright IBM Corp. 1982, 2003 567

Table 47. Field descriptions for an SQLCA (continued)

C Name117 COBOL Name Field Data Type Field Value

sqlerrp SQLERRP CHAR(8) Begins with a three-letter identifier indicating the
product:

DSN for DB2 UDB for z/OS and OS/390

QSQ for DB2 UDB for iSeries

SQL for DB2 UDB for LUW

If the SQLCODE indicates an error condition, then this
field contains the name of the module that returned the
error. See “CONNECT (Type 1)” on page 311 for
additional information.

sqlerrd SQLERRD Array Contains six INTEGER variables that provide diagnostic
information.

The third SQLERRD variable shows the number of rows
affected after INSERT, UPDATE, and DELETE.

If a PREPARE statement is successful, the fourth
SQLERRD variable contains a relative cost estimate of
the resources required to process the prepared
statement.

The fifth SQLERRD variable shows the number of rows
affected by referential constraints as a result of a delete
operation.

In DB2 UDB for z/OS and OS/390, the use of
SQLERRD(5) is not supported.

sqlwarn SQLWARN Array Contains a set of warning indicators. Each indicator is
either blank or contains a value as indicated below.

SQLWARN0 SQLWARN0 CHAR(1) Contains 'W' if at least one other indicator contains 'W';
it is blank if all the other indicators do not indicate a
warning condition.

SQLWARN1 SQLWARN1 CHAR(1) Contains 'W' if the value of a string column was
truncated when assigned to a host variable.

SQLWARN2 SQLWARN2 CHAR(1) Contains 'W' if null values were eliminated from the
argument of a column function; not necessarily set to
'W' for the MIN function because its results are not
dependent on the elimination of null values.

SQLWARN3 SQLWARN3 CHAR(1) Contains 'W' if the number of columns is larger than the
number of host variables.

SQLWARN4 SQLWARN4 CHAR(1) Contains 'W' if a prepared UPDATE or DELETE
statement does not include a WHERE clause.

SQLWARN5 SQLWARN5 CHAR(1) Contents are product-specific.

SQLWARN6 SQLWARN6 CHAR(1) Contains ’W’ if date arithmetic results in an end of
month adjustment. For more information, see
“Incrementing and decrementing dates” on page 105.

SQLWARN7 SQLWARN7 CHAR(1) Contents are product-specific.

SQLWARN8 SQLWARN8 CHAR(1) Contains ’W’ if a character that could not be converted
was replaced with a substitution character.

SQLWARN9 SQLWARN9 CHAR(1) Contents are product-specific.

SQLWARNA SQLWARNA CHAR(1) Contents are product-specific.

SQLCA

568 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

GGGG

GGGG

GGGG

GGGG

Table 47. Field descriptions for an SQLCA (continued)

C Name117 COBOL Name Field Data Type Field Value

sqlstate SQLSTATE CHAR(5) A return code as described in Appendix E, “SQLSTATE
values—common return codes”, on page 581. that
indicates the outcome of the most recently executed SQL
statement.

INCLUDE SQLCA declarations

For C
In C, INCLUDE SQLCA declarations are equivalent (but not necessarily identical)
to the following:

For COBOL
In COBOL, INCLUDE SQLCA declarations are equivalent (but not necessarily
identical) to the following:

#ifndef SQLCODE
struct sqlca
{

unsigned char sqlcaid[8];
long sqlcabc;
long sqlcode;
short sqlerrml;
unsigned char sqlerrmc[70];
unsigned char sqlerrp[8];
long sqlerrd[6];
unsigned char sqlwarn[11];
unsigned char sqlstate[5];

};
#define SQLCODE sqlca.sqlcode
#define SQLWARN0 sqlca.sqlwarn[0]
#define SQLWARN1 sqlca.sqlwarn[1]
#define SQLWARN2 sqlca.sqlwarn[2]
#define SQLWARN3 sqlca.sqlwarn[3]
#define SQLWARN4 sqlca.sqlwarn[4]
#define SQLWARN5 sqlca.sqlwarn[5]
#define SQLWARN6 sqlca.sqlwarn[6]
#define SQLWARN7 sqlca.sqlwarn[7]
#define SQLWARN8 sqlca.sqlwarn[8]
#define SQLWARN9 sqlca.sqlwarn[9]
#define SQLWARNA sqlca.sqlwarn[10]
#define SQLSTATE sqlca.sqlstate
#endif
struct sqlca sqlca;

Figure 10. INCLUDE SQLCA declarations for C

SQLCA

Appendix C. SQLCA (SQL communication area) 569

01 SQLCA.
05 SQLCAID PIC X(8).
05 SQLCABC PIC S9(9) BINARY.
05 SQLCODE PIC S9(9) BINARY.
05 SQLERRM.

49 SQLERRML PIC S9(4) BINARY.
49 SQLERRMC PIC X(70).

05 SQLERRP PIC X(8).
05 SQLERRD OCCURS 6 TIMES

PIC S9(9) BINARY.
05 SQLWARN.

10 SQLWARN0 PIC X(1).
10 SQLWARN1 PIC X(1).
10 SQLWARN2 PIC X(1).
10 SQLWARN3 PIC X(1).
10 SQLWARN4 PIC X(1).
10 SQLWARN5 PIC X(1).
10 SQLWARN6 PIC X(1).
10 SQLWARN7 PIC X(1).
10 SQLWARN8 PIC X(1).
10 SQLWARN9 PIC X(1).
10 SQLWARNA PIC X(1).

05 SQLSTATE PIC X(5).

Figure 11. INCLUDE SQLCA declarations for COBOL

570 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Appendix D. SQLDA (SQL descriptor area)

An SQLDA is a set of variables that is required for execution of the SQL
DESCRIBE statement, and it may optionally be used by the PREPARE, OPEN,
FETCH, CALL, and EXECUTE statements. An SQLDA can be used in a DESCRIBE
or PREPARE statement, altered with the addresses of storage areas119, and then
reused in a FETCH statement. It can also be used in OPEN, EXECUTE or CALL
statements to provide input values or output variables.

SQLDAs are supported, with predefined declarations, for C, COBOL and REXX. In
REXX, the SQLDA is somewhat different than in the other languages; for
information on the use of SQLDAs in REXX, see “Defining SQL descriptor areas in
REXX” on page 688.

The meaning of the information in an SQLDA depends on its use.
v When an SQLDA is used in a DESCRIBE or PREPARE statement, an SQLDA

provides information to an application program about a prepared select-statement.
Each column of the result table is described in an SQLVAR occurrence or set of
related SQLVAR occurrences.

v In OPEN, EXECUTE, CALL, and FETCH, an SQLDA provides information to the
database manager about storage areas for input or output data. Each storage
area is described in the SQLVARs.
– For OPEN and EXECUTE, each SQLVAR occurrence or set of related SQLVAR

occurrences describes a storage area that is used to contain an input value
which is substituted for a parameter marker in the associated SQL statement
that was previously prepared.

– For FETCH, each SQLVAR occurrence or set of related SQLVAR occurrences
describes a storage area that is used to contain an output value from a row of
the result table.

– For CALL, each SQLVAR occurrence or set of related SQLVAR occurrences
describes a storage area that is used to contain an input or output value (or
both) that corresponds to an argument in the argument list for the procedure.

An SQLDA consists of four variables in a header followed by an arbitrary number
of occurrences of a base SQLVAR. When the SQLDA desribes either LOBs or distinct
types the base SQLVARs are followed by the same number of occurrences of an
extended SQLVAR.

Base SQLVAR
The base SQLVAR entry is always present in an SQLDA. The fields of the
base SQLVAR entry contain information about the column or storage area
including data type, length attribute (except for LOBs), column name,
CCSID, storage area address for data, and storage area address for an
indicator.

Extended SQLVAR
The extended SQLVAR entry is used (for each column or variable) if the
SQLDA includes any LOBs or distinct types. Each extended SQLVAR entry
provides extended information for the corresponding base SQLVAR entry.

119. A storage area could be the storage for a variable defined in the program (that may also be a host variable) or an area of
storage explicitly allocated by the application.

© Copyright IBM Corp. 1982, 2003 571

For distinct types, the extended SQLVAR contains the distinct type name.
For LOBs, the extended SQLVAR contains the length attribute of the
storage area and a pointer to the storage area that contains the actual
length. If locators are used to represent LOBs, an extended SQLVAR is not
necessary. If the corresponding base SQLVAR represents neither a LOB or
distinct type, the extended SQLVAR includes no additional information.

Field descriptions in an SQLDA header
Table 48. Field descriptions for an SQLDA header

C Name120, 121

COBOL Name
Field Data Type Usage in DESCRIBE or PREPARE

(set by the database manager except
for SQLN)

Usage in FETCH, OPEN, CALL, or
EXECUTE (set by the application
prior to executing the statement)

sqldaid
SQLDAID

CHAR(8) An 'eye catcher' for storage dumps,
containing 'SQLDA '.

The 7th byte of the SQLDAID can be
used to determine whether more
than one SQLVAR entry is needed for
each column. For details, see
“Determining how many occurrences
of SQLVAR entries are needed” on
page 573.

A ’2’ in the 7th byte indicates that
two SQLVAR entries were allocated
for each column.

If the SQLNAME field contains an
overriding CCSID, the 6th byte must
be set to a ’+’ character.

sqldabc
SQLDABC

INTEGER Number of bytes of storage for the
SQLDA.

Number of bytes of storage allocated
for the SQLDA. Enough storage must
be allocated to contain SQLN
occurrences. SQLDABC must be set
to a value greater than or equal to
16+SQLN*(N), where N is the length
of an SQLVAR occurrence.122

sqln
SQLN

SMALLINT Before invoking DESCRIBE or
PREPARE, set to the total number of
occurrences of SQLVAR entries
allocated for the SQLDA. The value
is not changed by the database
manager during DESCRIBE or
PREPARE.

Total number of occurrences of
SQLVAR entries allocated in the
SQLDA. SQLN must be set to a value
greater than or equal to SQLD. If
LOBs types are included, extended
SQLVARs are required. SQLN must
be set to two times the number of
parameter markers in the statement.

sqld
SQLD

SMALLINT The number of columns in the result
table of the select-statement. Zero if
the statement being described is not
a select-statement.

Number of occurrences of SQLVAR
entries in the SQLDA that are used
when executing the statement. SQLD
must be set to a value greater than or
equal to zero and less than or equal
to SQLN.

120. The field names shown are those present in an SQLDA that is obtained via an INCLUDE statement.

121. In this column, the lowercase name is the “C Name.” The uppercase name is the “COBOL Name.”

122. The value of N varies depending on the environment. For portability, the value should be calculated using an appropriate
language sizing function. For example, in C use the sizeof() function to determine the size of the SQLVAR.

SQLDA

572 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Determining how many occurrences of SQLVAR entries are
needed

The number of SQLVAR occurrences needed depends on the statement that the
SQLDA was provided for and the data types of the columns or parameters being
described. See Table 49 for more information.

If more than 1 set of SQLVARs is needed, the 7th byte of SQLDAID is set to the
number of sets of SQLVARs necessary.

If SQLD is not set to a sufficient number of SQLVAR occurrences:
v SQLD is set to the total number of SQLVAR occurrences needed for all sets.
v A warning (SQLSTATE 01594) is returned if at least enough SQLVARs were

specified for the base SQLVAR entries. The base SQLVAR entries are returned,
but no extended SQLVARs are returned.

v A warning (SQLSTATE 01005) is returned if enough SQLVARs were not specified
for even the base SQLVAR entries. No SQLVAR entries are returned.

Table 49 shows how to map the base and extended SQLVAR entries. For an
SQLDA that contains both base and extended SQLVAR entries, the base SQLVAR
entries are in the first block, followed by a block of extended SQLVAR entries. In
each block, the number of occurrences of the SQLVAR entry is equal to the value
in SQLD even though many of the extended SQLVAR entries might be unused.

Table 49. Contents of SQLVAR arrays

LOBs
DISTINCT
types

7th byte of
SQLDAID

SQLN
Minimum First Set (Base) Second Set (Extended)

No No Blank n Data type information Not used

Yes No 2 2n Data type information with
no length for LOB entries

LOB length for LOB entries

No Yes 2 2n Data type information
except source data type
information for distinct
type entries

distinct type name

Yes Yes 2 2n Data type information with
no length for LOB entries
and source data type for
distinct type entries

LOBs length for LOB
entries and distinct type
name for distinct type
entries

SQLDA

Appendix D. SQLDA (SQL descriptor area) 573

Field descriptions in an occurrence of SQLVAR

Fields in an occurrence of a base SQLVAR
Table 50. Field descriptions for a base SQLVAR

C Name120, 121

COBOL Name
Field Data Type Usage in DESCRIBE or PREPARE

(set by the database manager)
Usage in FETCH, OPEN, CALL, or
EXECUTE (set by the user prior to
executing the statement)

sqltype
SQLTYPE

SMALLINT The data type of the column and
whether it can contain nulls. For a
description of the type codes, see
Table 52 on page 576.

For a distinct type, the data type on
which the distinct type is based is
placed in this field. The base
SQLVAR contains no indication that
this is part of the description of a
distinct type.

The data type of the host variable
and whether an indicator variable is
provided. For a description of the
type codes, see Table 52 on page 576.

sqllen
SQLLEN

SMALLINT The length attribute of the column.
For datetime columns, the length of
the string representation of the
values. See Table 52 on page 576.

For a LOB, the value is 0 regardless
of the length attribute of the LOB.
Field SQLLONGLEN in the extended
SQLVAR entry contains the length
attribute of the LOB.

The length attribute of the host
variable. See Table 52 on page 576.

For a LOB, the value is 0 regardless
of the length attribute of the LOB.
Field SQLLONGLEN in the extended
SQLVAR entry contains the length
attribute of the LOB.

sqldata
SQLDATA

pointer123 For string columns, the CCSID of the
column. For datetime columns,
SQLDATA can contain the CCSID of
the string representation of the
datetime value. See Table 53 on
page 577 for the format of the field.

The address of the host variable.

For LOB host variables, if the
SQLDATALEN field in the extended
SQLVAR is null, this points to the
four-byte LOB length, followed
immediately by the LOB data. If the
SQLDATALEN field in the extended
SQLVAR is not null, this points to the
LOB data and the SQLDATALEN
field points to the four-byte LOB
length.

sqlind
SQLIND

pointer Reserved Contains the address of the indicator
variable. Not used if there is no
indicator variable (as indicated by an
even value of SQLTYPE).

sqlname
SQLNAME

VARCHAR (30) The unqualified name of the column.
If the column does not have a name,
the contents are product-specific.

The name is case sensitive and does
not contain surrounding delimiters.

For SQLVARs representing string
types, the CCSID of the string. See
Table 53 on page 577 for the format of
the field.

Fields in an occurrence of a secondary SQLVAR

123. There may be additional reserved bytes preceding this field to properly align the pointer. See each product’s SQLDA include
file for details.

SQLDA

574 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
GG
G
G

G
G

G
G
G
G

Table 51. Field descriptions for an extended SQLVAR

C Name120, 121

COBOL Name
Field Data Type Usage in DESCRIBE or PREPARE

(set by the database manager)
Usage in FETCH, OPEN, CALL, or
EXECUTE (set by the user prior to
executing the statement)

len.sqllonglen
SQLLONGLEN

INTEGER The length attribute of a LOB
column.

The length attribute of a LOB host
variable. The length attribute
indicates the number of bytes for a
BLOB or CLOB, and the number of
double-byte characters for a
DBCLOB. The database manager
ignores the SQLLEN field in the base
SQLVAR for these data types.

sqldatalen
SQLDATALEN

pointer124 Not used. Used only for LOB host variables.

If the value of this field is not null,
this field points to a four-byte long
buffer that contains the actual length
of the LOB in bytes (even for
DBCLOBs). The SQLDATA field in
the matching base SQLVAR then
points to the LOB data.

If the value of this field is null, the
actual length of the LOB is stored in
the first four bytes pointed to by the
SQLDATA field in the matching base
SQLVAR, and the LOB data
immediately follows the four-byte
length. The actual length indicates
the number of bytes for a BLOB or
CLOB and the number of
double-byte characters for a
DBCLOB.

Regardless of whether this field is
used, field SQLLONGLEN must be
set.

sqldatatype_name
SQLDATATYPE-NAME

VARCHAR (30) The fully qualified distinct type name
for a distinct type column.

Not used.

SQLTYPE and SQLLEN
The following table shows the values that may appear in the SQLTYPE and
SQLLEN fields of the SQLDA. In an SQLDA used in DESCRIBE or PREPARE
statements, an even value of SQLTYPE means the column does not allow nulls,
and an odd value means the column does allow nulls.

Note: In an SQLDA used in DESCRIBE or PREPARE statements, an odd value is
returned for an expression if one operand is nullable or if the expression
may result in a -2 null value.

In an SQLDA used in FETCH, OPEN, or EXECUTE statements, an even value of
SQLTYPE means no indicator variable is provided, and an odd value means that
SQLIND contains the address of an indicator variable.

124. There are additional reserved bytes preceding this field to properly align the pointer and make the structure the same size as
the base SQLVAR. See each product’s SQLDA include file for details.

SQLDA

Appendix D. SQLDA (SQL descriptor area) 575

Table 52. SQLTYPE and SQLLEN values

For DESCRIBE and PREPARE For FETCH, OPEN, CALL, and EXECUTE

SQLTYPE Column Data Type SQLLEN Host Variable Data Type SQLLEN

384/385 date 10 fixed-length character-string
representation of a date

length attribute of
the host variable

388/389 time 8 fixed-length character-string
representation of a time

length attribute of
the host variable

392/393 timestamp 26 fixed-length character
string representation of a
timestamp

length attribute of
the host variable

400/401 Not Applicable Not Applicable NUL-terminated graphic
string

length attribute of
the host variable

404/405 BLOB 0 125 BLOB Not used. 125

408/409 CLOB 0 125 CLOB Not used. 125

412/413 DBCLOB 0 125 DBCLOB Not used. 125

448/449 varying-length character
string

length attribute of
the column

varying-length character
string

length attribute of
the host variable

452/453 fixed-length character
string

length attribute of
the column

fixed-length character
string

length attribute of
the host variable

456/457 long varying-length
character string

length attribute of
the column

long varying-length
character string

length attribute of
the host variable

460/461 Not Applicable Not Applicable NUL-terminated character
string

length attribute of
the host variable

464/465 varying-length graphic
string

length attribute of
the column

varying-length graphic
string

length attribute of
the host variable

468/469 fixed-length graphic string length attribute of
the column

fixed-length graphic string length attribute of
the host variable

472/473 long varying-length graphic
string

length attribute of
the column

long graphic string length attribute of
the host variable

480/481 floating point 4 for single
precision 8 for
double precision

floating point 4 for single
precision 8 for
double precision

484/485 packed decimal precision in byte
1; scale in byte 2

packed decimal precision in byte
1; scale in byte 2

488/489 zoned decimal 126 precision in byte
1; scale in byte 2

zoned decimal 126 precision in byte
1; scale in byte 2

496/497 large integer 4 large integer 4

500/501 small integer 2 small integer 2

504/505 Not Applicable Not Applicable DISPLAY SIGN LEADING
SEPARATE 127

precision in byte
1; scale in byte 2

960/961 Not Applicable Not Applicable BLOB locator 4

964/965 Not Applicable Not Applicable CLOB locator 4

968/969 Not Applicable Not Applicable DBCLOB locator 4

125. Field SQLLONGLEN in the extended SQLVAR contains the length attribute of the column.

126. In DB2 UDB for z/OS and OS/390, and DB2 UDB for LUW, zoned decimal is not supported for local operations.

127. In DB2 UDB for LUW, DISPLAY SIGN LEADING SEPARATE is not supported.

SQLDA

576 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

CCSID values in SQLDATA and SQLNAME
In the OPEN, FETCH, CALL, and EXECUTE statements, the SQLNAME field of
the SQLVAR element can be used to specify a CCSID for string host variables. If
the SQLNAME field is used to specify a CCSID the following must be true:
v the sixth byte of the SQLDAID in the SQLDA header is set to ’+’
v the SQLNAME length is set to 8
v the first 4 bytes of SQLNAME are set as described in the Table 53.

In the DESCRIBE and PREPARE statements, the SQLDATA field of the SQLVAR
element contains the CCSID of the column of the result table if that column is a
string column. If the column is a datetime column, the SQLDATA field of the
SQLVAR can contain the CCSID of the string representation of the datetime value.
The CCSID is located in bytes 3 and 4 as described in Table 53.

Table 53. CCSID values for SQLDATA1 or SQLNAME

Data Type Subtype Bytes 1 & 2 Bytes 3 & 4

Character SBCS data X'0000' ccsid

Character Mixed data X'0000' ccsid

Character Bit data X'0000' X'FFFF'2

Graphic Not Applicable X'0000' ccsid

Datetime Not Applicable X'0000' ccsid

Any other data type Not Applicable Not Applicable Not Applicable

Notes:

1. In DB2 UDB for LUW, the value for SQLDATA does not follow this format on a 64-bit
systems or systems using little endian integer formats. In these cases, the CCSID value
can be returned by casting the value as an integer.

2. In DB2 UDB for LUW, X'0000' is returned instead of X'FFFF' for bit data.

SQLDA

Appendix D. SQLDA (SQL descriptor area) 577

G
G
G

G

INCLUDE SQLDA declarations

For C
In C, INCLUDE SQLDA declarations are equivalent (but not necessarily identical)
to the following:

#ifndef SQLDASIZE
struct sqlda
{

unsigned char sqldaid[8];
long sqldabc;
short sqln;
short sqld;
struct sqlvar
{

short sqltype;
short sqllen;
unsigned char *sqldata;
short *sqlind;
struct sqlname
{

short length;
unsigned char data[30];

} sqlname;
} sqlvar[1];

};
struct sqlvar2

{ struct
{ long sqllonglen;

char reserve1[SQLVAR2_PAD];
} len;
char *sqldatalen;
struct sqldistinct_type

{ short length;
unsigned char data[30];

} sqldatatype_name;
};

#define SQLDASIZE(n) (sizeof(struct sqlda)+(n-1) * sizeof(struct sqlvar))
#endif

Figure 12. INCLUDE SQLDA declarations for C (Part 1 of 3)

SQLDA

578 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

/***/
/* Macros for using the sqlvar2 fields. */
/***/

/***/
/* ’2’ in the 7th byte of sqldaid indicates a doubled number of */
/* sqlvar entries. */
/***/
#define SQLDOUBLED ’2’
#define SQLSINGLED ’ ’

/***/
/* GETSQLDOUBLED(daptr) returns 1 if the SQLDA pointed to by */
/* daptr has been doubled, or 0 if it has not been doubled. */
/***/
#define GETSQLDOUBLED(daptr) (((daptr)->sqldaid[6]== \
(char) SQLDOUBLED) ? \

(1) : \
(0))

/***/
/* SETSQLDOUBLED(daptr, SQLDOUBLED) sets the 7th byte of sqldaid */
/* to ’2’. */
/* SETSQLDOUBLED(daptr, SQLSINGLED) sets the 7th byte of sqldaid */
/* to be a ’ ’. */
/***/
#define SETSQLDOUBLED(daptr, newvalue) \

(((daptr)->sqldaid[6] =(newvalue)))

/***/
/* GETSQLDALONGLEN(daptr,n) returns the data length of the nth */
/* entry in the sqlda pointed to by daptr. Use this only if the */
/* sqlda was doubled or tripled and the nth SQLVAR entry has a */
/* LOB datatype. */
/***/
#define GETSQLDALONGLEN(daptr,n) ((long) (((struct sqlvar2 *) \
&((daptr)->sqlvar[(n) +((daptr)->sqld)])) ->len.sqllonglen))

/***/
/* SETSQLDALONGLEN(daptr,n,len) sets the sqllonglen field of the */
/* sqlda pointed to by daptr to len for the nth entry. Use this only */
/* if the sqlda was doubled or tripled and the nth SQLVAR entry has */
/* a LOB datatype. */
/***/
#define SETSQLDALONGLEN(daptr,n,length) { \
struct sqlvar2 *var2ptr; \
var2ptr = (struct sqlvar2 *) &((daptr)->sqlvar[(n)+ \

((daptr)->sqld)]); \
var2ptr->len.sqllonglen = (long) (length); \
}

/***/
/* SETSQLDALENPTR(daptr,n,ptr) sets a pointer to the data length for */
/* the nth entry in the sqlda pointed to by daptr. */
/* Use this only if the sqlda has been doubled or tripled. */
/***/
#define SETSQLDALENPTR(daptr,n,ptr) { \
struct sqlvar2 *var2ptr; \
var2ptr = (struct sqlvar2 *) &((daptr)->sqlvar[(n)+ \

((daptr)->sqld)]); \
var2ptr->sqldatalen = (char *) ptr; \
}

Figure 12. INCLUDE SQLDA declarations for C (Part 2 of 3)

SQLDA

Appendix D. SQLDA (SQL descriptor area) 579

For COBOL
In COBOL, INCLUDE SQLDA declarations are equivalent128 (but not necessarily
identical) to the following:

128. The line starting with SQLVAR OCCURS has a different value in the include for each platform with 409 repsenting the lowest
value. If this value is too low, a portable application should code the SQLDA definition directly, specifying the value required
by the application.

/***/
/* GETSQLDALENPTR(daptr,n) returns a pointer to the data length for */
/* the nth entry in the sqlda pointed to by daptr. Unlike the inline */
/* value (union sql8bytelen len), which is 8 bytes, the sqldatalen */
/* pointer field returns a pointer to a long (4 byte) integer. */
/* If the SQLDATALEN pointer is zero, a NULL pointer is be returned. */
/* */
/* NOTE: Use this only if the sqlda has been doubled or tripled. */
/***/
#define GETSQLDALENPTR(daptr,n) (\

(((struct sqlvar2 *) &(daptr)->sqlvar[(n) + \
(daptr)->sqld])->sqldatalen == NULL) ? \
((long *) NULL) : ((long *) ((struct sqlvar2 *) \
&(daptr)->sqlvar[(n) + (daptr) ->sqld])->sqldatalen))

Figure 12. INCLUDE SQLDA declarations for C (Part 3 of 3)

1 SQLDA.
05 SQLDAID PIC X(8).
05 SQLDABC PIC S9(9) BINARY.
05 SQLN PIC S9(4) BINARY.
05 SQLD PIC S9(4) BINARY.
05 SQLVAR OCCURS 0 TO 409 TIMES DEPENDING ON SQLD.

10 SQLVAR1.
15 SQLTYPE PIC S9(4) BINARY.
15 SQLLEN PIC S9(4) BINARY.
15 FILLER REDEFINES SQLLEN.

20 SQLPRECISION PIC X.
20 SQLSCALE PIC X.

15 SQLRES PIC X(12).
15 SQLDATA POINTER.
15 SQLIND POINTER.
15 SQLNAME.

49 SQLNAMEL PIC S9(4) BINARY.
49 SQLNAMEC PIC X(30).

10 SQLVAR2 REDEFINES SQLVAR1.
15 SQLVAR2-RESERVED-1 PIC S9(9) BINARY.
15 SQLLONGLEN REDEFINES SQLVAR2-RESERVED-1

PIC S9(9) BINARY.
15 SQLVAR2-RESERVED-2 PIC X(28).
15 SQLDATALEN POINTER.
15 SQLDATATYPE-NAME.

49 SQLDATATYPE-NAMEL PIC S9(4) BINARY.
49 SQLDATATYPE-NAMEC PIC X(30).

Figure 13. INCLUDE SQLDA declarations for COBOL

SQLDA

580 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Appendix E. SQLSTATE values—common return codes

This appendix contains a summary of return codes called SQLSTATE values that
are defined for the DB2 UDB SQL relational database products. SQLSTATE values
are produced when an SQL statement is executed. The SQLSTATE values provide
application programs with common return codes for common error conditions.
Return codes from other database operations (such as commands) are not included.

This summary includes SQLSTATE values that cover existing conditions from all of
the IBM DB2 UDB relational database products. Many of these conditions are
product-specific. These values have been included for the convenience of
application developers concerned with a distributed database environment where
any of these values could be returned.

The SQLSTATE values are consistent with the SQLSTATE specifications contained
in SQL 1999 Core standard.

Using SQLSTATE values
An SQLSTATE value is a return code that indicates the outcome of the most
recently executed SQL statement. The mechanism used to access SQLSTATE values
depends on where the SQL statement is executed:
v In embedded applications other than Java, SQLSTATE values are returned in the

last five bytes of the SQLCA or in a stand-alone SQLSTATE variable. For more
information see, “SQL return codes” on page 279.

v In Java, SQLSTATE values are returned by using getSQLState() method. For
more information see, Appendix J, “Coding SQL statements in Java applications”
, on page 669.

SQLSTATE values are designed so that application programs can test for specific
conditions or classes of conditions.

SQLSTATE values are comprised of a two-character class code value, followed by a
three-character subclass code value. Class code values represent classes of
successful and unsuccessful execution conditions. Programmers who want to use
SQLSTATE as the basis of their applications’ return codes can define their own
SQLSTATE classes or subclasses:
v SQLSTATE classes that begin with the characters '7' through '9' or 'I' through 'Z'

may be defined. Within these classes, any subclass may be defined.
v SQLSTATE classes that begin with the characters '0' through '6' or 'A' through 'H'

are reserved for the database manager. Within these classes, subclasses that
begin with the characters '0' through 'H' are reserved for the database manager.
Subclasses that begin with the characters 'I' through 'Z' may be defined.

The class code of an SQLSTATE value indicates whether the SQL statement was
executed successfully (class codes 00 and 01) or unsuccessfully (all other class
codes).

Table 1 identifies the SQLSTATE class codes used by DB2 UDB SQL and the SQL
1999 Core standard.

Table 1. SQLSTATE Class Codes

© Copyright IBM Corp. 1982, 2003 581

G
G

Class Code Meaning Subclass Code Table

00 Unqualified Successful Completion Table 2

01 Warning Table 3

02 No Data Table 4

03 SQL Statement Not Yet Complete Table 5

07 Dynamic SQL Error Table 6

08 Connection Exception Table 7

09 Triggered Action Exception Table 8

0A Feature Not Supported Table 9

0D Invalid Target Type Specification Table 10

0E Invalid Schema Name List Specification Table 11

0F Invalid Token Table 12

0K Resignal When Handler Not Active Table 13

0W Prohibited Statement Encountered During Trigger Table 14

20 Case Not Found for Case Statement Table 15

21 Cardinality Violation Table 16

22 Data Exception Table 17

23 Constraint Violation Table 18

24 Invalid Cursor State Table 19

25 Invalid Transaction State Table 20

26 Invalid SQL Statement Identifier Table 21

27 Triggered Data Change Violation Table 22

28 Invalid Authorization Specification Table 23

2D Invalid Transaction Termination Table 24

2E Invalid Connection Name Table 25

2F SQL Function Exception Table 26

34 Invalid Cursor Name Table 27

36 Cursor Sensitivity Exception Table 28

38 External Function Exception Table 29

39 External Function Call Exception Table 30

3B Savepoint Exception Table 31

3C Ambiguous Cursor Name Table 32

40 Transaction Rollback Table 33

42 Syntax Error or Access Rule Violation Table 34

44 WITH CHECK OPTION Violation Table 35

46 Java Errors Table 36

51 Invalid Application State Table 37

53 Invalid Operand or Inconsistent Specification Table 38

54 SQL or Product Limit Exceeded Table 39

55 Object Not in Prerequisite State Table 40

56 Miscellaneous SQL or Product Error Table 41

57 Resource Not Available or Operator Intervention Table 42

SQLSTATE values

582 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Class Code Meaning Subclass Code Table

58 System Error Table 43

Table 2. Class Code 00: Unqualified Successful Completion

SQLSTATE Meaning

00000 Execution of the SQL statement was successful and did not result in any type of warning or
exception condition.

Table 3. Class Code 01: Warning

SQLSTATE
Value

Meaning

01002 A DISCONNECT error occurred.

01003 Null values were eliminated from the argument of a column function.

01004 The value of a string was truncated when assigned to a host variable.

01005 Insufficient number of entries in an SQLDA.

01006 A privilege was not revoked.

01007 A privilege was not granted.

0100A The query expression of the view is too long for the information schema.

0100C One or more ad hoc result sets were returned from the procedure.

0100D The cursor that was closed has been re-opened on the next result set within the chain.

0100E The procedure returned too many result sets.

01503 The number of result columns is larger than the number of host variables provided.

01504 The UPDATE or DELETE statement does not include a WHERE clause.

01505 The statement was not executed because it is unacceptable in this environment.

01506 An adjustment was made to a DATE or TIMESTAMP value to correct an invalid date resulting
from an arithmetic operation.

01507 One or more non-zero digits were eliminated from the fractional part of a number used as the
operand of a multiply or divide operation.

01508 The statement was disqualified for blocking for reasons other than storage.

01509 Blocking was cancelled for a cursor because there is insufficient storage in the user virtual machine.

01510 Blocking was cancelled for a cursor because a blocking factor of at least two rows could not be
maintained.

01511 Performance may not be optimum because of the number of predicates specified in the WHERE
clause.

01512 The REVOKE operation has no effect on CONNECT privileges.

01513 A subsequent commit operation will revoke all EXECUTE privileges on the package except for that
of the owner.

01514 The tablespace has been placed in the check-pending state.

01515 The null value has been assigned to a host variable, because the non-null value of the column is
not within the range of the host variable.

01516 An inapplicable WITH GRANT OPTION has been ignored.

01517 A character that could not be converted was replaced with a substitute character.

01518 The definition of the table has been changed to incomplete.

SQLSTATE values

Appendix E. SQLSTATE values—common return codes 583

01519 The null value has been assigned to a host variable, because a numeric value is out of range.

01520 The null value has been assigned to a host variable, because the characters cannot be converted.

01521 A specified server-name is undefined but is not needed until the statement is executed or the alias
is used.

01522 The local table or view name used in the CREATE ALIAS statement is undefined.

01523 ALL was interpreted to exclude ALTER, INDEX, REFERENCES, and TRIGGER, because these
privileges cannot be granted to a remote user.

01524 The result of a column function does not include the null values that were caused by evaluating
the arithmetic expression implied by the column of the view.

01525 The number of INSERT values is not the same as the number of columns.

01526 Isolation level has been escalated.

01527 A SET statement references a special register that does not exist at the AS.

01528 WHERE NOT NULL is ignored, because the index key cannot contain null values.

01529 As a result of the DROP INDEX, the UNIQUE constraint is no longer enforced.

01530 Definition change may require a corresponding change on the read-only systems.

01532 An undefined object name was detected.

01533 An undefined column name was detected.

01534 The string representation of a datetime value is invalid.

01535 An arithmetic operation on a date or timestamp has a result that is not within the valid range of
dates.

01536 During remote bind where existence checking is deferred, the server-name specified does not
match the current server.

01537 An SQL statement cannot be EXPLAINed, because it references a remote object.

01538 The table cannot be subsequently defined as a dependent, because it has the maximum number of
columns.

01539 Connection is successful but only SBCS characters should be used.

01540 A limit key has been truncated to 40 bytes.

01541 Operator command processing has completed successfully.

01542 Authorization ID does not have the privilege to perform the operation as specified.

01543 A duplicate constraint has been ignored.

01544 The null value has been assigned to a host variable, because a substring error occurred; for
example, an argument of SUBSTR is out of range.

01545 An unqualified column name has been interpreted as a correlated reference.

01546 A column of the explanation table is improperly defined.

01547 A mixed data value is improperly formed.

01548 The authorization ID does not have the privilege to perform the specified operation on the
identified object.

01550 The index was not created, because an index with the specified description already exists.

01551 A table in a partitioned tablespace is not available, because its partitioned index has not been
created.

01552 An ambiguous qualified column name was resolved to the first of the duplicate names in the
FROM clause.

01553 Isolation level RR conflicts with a tablespace locksize of page.

01554 Decimal multiplication may cause overflow.

01555 Mixed data is invalid and has been truncated according to SBCS rules.

SQLSTATE values

584 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

01557 Too many host variables have been specified on SELECT INTO or FETCH.

01558 A distribution protocol has been violated.

01560 A redundant GRANT has been ignored.

01561 An update to a data capture table was not signaled to the originating subsystem.

01562 The new path to the log (newlogpath) in the database configuration file is invalid.

01563 The current path to the log file (logpath) is invalid. The log file path is reset to the default.

01564 The null value has been assigned to a host variable, because division by zero occurred.

01565 The null value has been assigned to a host variable, because a miscellaneous data exception
occurred; for example, the character value for the CAST, DECIMAL, FLOAT, or INTEGER scalar
function is invalid; a floating-point NAN (not a number) or invalid data in a packed decimal field
was detected.

01566 The index has been placed in a pending state.

01567 The table was created but not journaled.

01568 The dynamic SQL statement ends with a semicolon.

01569 Statement has been successfully executed, but there may be some character conversion
inconsistencies.

01570 The bind process detected a character string in an INSERT or UPDATE statement that is too large
for the target column.

01571 The bind process detected a numeric value that is out of range.

01572 The bind process detected an invalid datetime format, such as an invalid string representation or
an invalid value.

01573 The bind process detected a null insert or update value that is null for a column that cannot
contain null values.

01574 The bind process detected an INSERT, UPDATE, or DELETE that is not permitted on this object.

01575 The bind process detected a non-updatable column in an INSERT or UPDATE statement.

01576 The bind process detected a CREATE INDEX statement for a view.

01577 The bind process detected a CREATE VIEW statement that includes an operator or operand that is
not valid for views.

01578 The bind process detected operands of an operator that are not compatible.

01579 The bind process detected a numeric constant that is either too long or has a value that is not
within the range of its data type.

01580 The bind process detected an update or insert value that is not compatible with the column.

01581 The bind process detected incompatible operands of a UNION operator.

01582 The bind process detected a string that is too long.

01583 The bind process detected a decimal divide operation that is invalid, because the result would have
a negative scale.

01584 The bind process detected an insert or update value of a long string column that is neither a host
variable nor NULL.

01585 The bind process detected a table that cannot be accessed, because it is inactive.

01586 Processing the statement resulted in one or more tables being automatically placed into a check
pending state.

01587 The unit of work was committed or rolled back, but the outcome is not fully known at all sites.

01588 The LIKE predicate has an invalid escape character.

01589 A statement contains redundant specifications.

01590 Type 2 indexes do not have subpages.

SQLSTATE values

Appendix E. SQLSTATE values—common return codes 585

01591 The result of the positioned UPDATE or DELETE may depend on the order of the rows.

01593 An ALTER TABLE may cause data truncation.

01594 Insufficient number of entries in an SQLDA for ALL information (i.e. not enough descriptors to
return the distinct name).

01595 The view has replaced an existing, invalidated view.

01596 Comparison functions were not created for a distinct type based on a long string data type.

01597 Specific and non-specific volume IDs are not allowed in a storage group.

01598 An attempt has been made to activate an active event monitor or deactivate an inactive event
monitor.

01599 Bind options were ignored on REBIND.

01600 SUBPAGES ignored on alter of catalog index.

01602 The optimization level has been reduced.

01603 CHECK DATA processing found constraint violations and moved them to exception tables.

01604 The SQL statement was explained and not executed.

01605 A recursive common table expression may contain an infinite loop.

01606 The node or system database directory is empty.

01607 The difference between the times on nodes in a read-only transactions exceed the defined
threshold.

01608 An unsupported value has been replaced.

01611 The cursor that was closed has been re-opened on the next result set within the chain.

01612 The part clause of a LOCK TABLE statement is not valid.

01614 There are fewer locators than the number of result sets.

01616 The estimated CPU cost exceeds the resource limit.

01618 The ALTER NODEGROUP operation is not complete for all or some of the specified nodes.

01620 Some base tables of UNION ALL may be the same table.

01621 The retrieved LOB value may have been changed.

01622 Statement completed successfully but a system error occurred after the statement completed.″

01623 The value of DEGREE is ignored.

01624 The GBPCACHE specification is ignored because the bufferpool does not allow caching.

01625 The schema name appears more than once in the CURRENT PATH.

01626 The database has only one bufferpool.

01627 The DATALINK value may not be valid because the table is in reconcile pending or reconcile is not
a possible state.

01628 The user-specified access path hints are invalid. The access path hints are ignored.

01629 User-specified access path hints were used during access path selection.

01630 Virtual storage or database resource is not available.

01631 The external program could not be updated with the associated procedure or function attributes.

01632 The number of concurrent connections has exceeded the defined entitlement for the product.

01633 The materialized query table may not be used to optimize the processing of queries.

01634 The distinct data type name is too long and cannot be returned in the SQLDA. The short name is
returned instead. of queries.

01635 Statements in the same program have duplicate QUERYNOs.

01636 Integrity of non-incremental data remains unverified by the database manager.

SQLSTATE values

586 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

01637 Debugging is not enabled.

01638 SUBPAGES greater than one are not supported for Type 1 indexes in a data sharing environment.

01639 The federated object may require the invoker to have necessary privileges on data source objects.

01640 ROLLBACK TO SAVEPOINT occurred when there were uncommitted INSERTs or DELETEs that
cannot be rolled back.

01642 Column not long enough for the largest possible USER default value.

01643 Assignment to SQLCODE or SQLSTATE variable does not signal a warning or error.

01644 DEFINE NO is not applicable for a lob space or data sets using the VCAT option.

01645 The executable for the SQL procedure is not saved in the catalog.

01646 A result sets could not be returned because the cursor was closed.

01647 A DB2SQL BEFORE trigger changed to DB2ROW.

01648 COMPRESS column attribute ignored because VALUE COMPRESSION has not been activated for
the table.

01649 The bufferpool configuration has been completed but will not take effect until the next database
restart.

01650 Index and table statistics are inconsistent.

01651 The event monitor was activated successfully, however some monitoring information may be lost.

01652 The isolation clause was ignored because of the statement context.

01653 The authorizations were granted to the user, but groups were not considered since the
authorization name is more than 8 bytes.

01654 The buffer pool is not started.

01655 The event monitor was created successfully but at least one event monitor target table already
exists.

01656 ROLLBACK TO savepoint caused a NOT LOGGED table space to be placed in the LPL.

01657 The buffer pool configuration will not take effect until the next database restart, due to insufficient
memory.

01Hxx Valid warning SQLSTATEs returned by a user-defined function or external procedure CALL.

01H51 An MQSeries Application Messaging Interface message was truncated.

Table 4. Class Code 02: No Data

SQLSTATE Meaning

02000 One of the following exceptions occurred:

v The result of the SELECT INTO statement or the subselect of the INSERT statement was an
empty table.

v The number of rows identified in the searched UPDATE or DELETE statement was zero.

v The position of the cursor referenced in the FETCH statement was after the last row of the result
table.

v The fetch orientation is invalid.

02001 No additional result sets returned.

02502 Delete or update hole detected.

Table 5. Class Code 03: SQL Statement Not Yet Complete

SQLSTATE Meaning

03000 Asynchronous execution is not yet completed.

SQLSTATE values

Appendix E. SQLSTATE values—common return codes 587

Table 6. Class Code 07: Dynamic SQL Error

SQLSTATE Meaning

07001 The number of host variables is not the same as the number of parameter markers.

07002 The call parameter list or control block is invalid.

07003 The statement identified in the EXECUTE statement is a select-statement, or is not in a prepared
state.

07004 The USING clause is required for dynamic parameters.

07005 The statement name of the cursor identifies a prepared statement that cannot be associated with a
cursor.

07006 An input host variable, transition variable, or parameter marker cannot be used, because of its data
type.

07007 The dynamic statement requires a result area and none was specified.

Table 7. Class Code 08: Connection Exception

SQLSTATE Meaning

08001 The application requester is unable to establish the connection.

08002 The connection already exists.

08003 The connection does not exist.

08004 The application server rejected establishment of the connection.

08007 Transaction resolution unknown.

08501 A DISCONNECT is not allowed when the connection uses an LU6.2 protected conversation.

08502 The CONNECT statement issued by an application process running with a SYNCPOINT of
TWOPHASE has failed, because no transaction manager is available.

08504 An error was encountered while processing the path rename configuration file.

Table 8. Class Code 09: Triggered Action Exception

SQLSTATE Meaning

09000 A triggered SQL statement failed.

Table 9. Class Code 0A: Feature Not Supported

SQLSTATE Meaning

0A001 The CONNECT statement is invalid, because the process is not in the connectable state.

0A502 The action or operation is not enabled for this database instance.

0A503 Federated insert, update, or delete operation cannot be compiled because of potential data
inconsistency.

Table 10. Class Code 0D: Invalid Target Type Specification

SQLSTATE Meaning

0D000 The target structured data type specification is a proper subtype of the source structured data type.

SQLSTATE values

588 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 11. Class Code 0E: Invalid Schema Name List Specification

SQLSTATE Meaning

0E000 The schema name list in a SET PATH statement is not valid.

Table 12. Class Code 0F: Invalid Token

SQLSTATE Meaning

0F001 The locator value does not currently represent any value.

Table 13. Class Code 0K: Resignal When Handler Not Active

SQLSTATE Meaning

0K000 A RESIGNAL was issued but a handler is not active.

Table 14. Class Code 0W: Prohibited Statement Encountered During Trigger

SQLSTATE Meaning

0W000 The statement is not allowed in a trigger.

Table 15. Class Code 20: Case Not Found for Case Statement

SQLSTATE Meaning

20000 The case was not found for the CASE statement.

Table 16. Class Code 21: Cardinality Violation

SQLSTATE Meaning

21000 The result of a SELECT INTO, scalar fullselect, or subquery of a basic predicate is more than one
value.

21501 A multiple-row INSERT into a self-referencing table is invalid.

21502 A multiple-row UPDATE of a primary key is invalid.

21504 A multiple-row DELETE from a self-referencing table with a delete rule of RESTRICT or SET NULL
is invalid.

21505 A row function must return not more than one row.

Table 17. Class Code 22: Data Exception

SQLSTATE Meaning

22001 Character data, right truncation occurred; for example, an update or insert value is a string that is
too long for the column, or a datetime value cannot be assigned to a host variable, because it is too
small.

22002 A null value, or the absence of an indicator parameter was detected; for example, the null value
cannot be assigned to a host variable, because no indicator variable is specified.

22003 A numeric value is out of range.

22004 A null value cannot returned from a procedure that is defined as PARAMETER STYLE GENERAL
or a type-preserving method that is invoked with a non-null argument.

SQLSTATE values

Appendix E. SQLSTATE values—common return codes 589

SQLSTATE Meaning

22006 The fetch orientation is invalid.

22007 An invalid datetime format was detected; that is, an invalid string representation or value was
specified.

22008 Datetime field overflow occurred; for example, an arithmetic operation on a date or timestamp has
a result that is not within the valid range of dates.

2200G The most specific type does not match.

22011 A substring error occurred; for example, an argument of SUBSTR is out of range.

22012 Division by zero is invalid.

22018 The character value for the CAST, DECIMAL, FLOAT, or INTEGER scalar function is invalid.

22019 The LIKE predicate has an invalid escape character.

22021 A character is not in the coded character set.

22023 A parameter or host variable value is invalid.

22024 A NUL-terminated input host variable or parameter did not contain a NUL.

22025 The LIKE predicate string pattern contains an invalid occurrence of an escape character.

2202D A null instance was used with a mutator method.

22501 The length control field of a variable length string is negative or greater than the maximum.

22503 The string representation of a name is invalid.

22504 A mixed data value is invalid.

22505 The local date or time length has been increased, but the executing program relies on the old
length.

22506 A reference to a datetime special register is invalid, because the clock is malfunctioning or the
operating system timezone parameter is out of range.

22508 CURRENT PACKAGESET is blank.

22511 ADT length exceeds maximum column length. The value for a ROWID or reference column is not
valid.

22512 A host variable in a predicate is invalid, because its indicator variable is negative.

22519 The primary or foreign key cannot be activated.

22521 The foreign key cannot be defined, because the primary key of the parent table is inactive.

22522 A CCSID value is not valid at all, not valid for the data type or subtype, or not valid for the
encoding scheme.

22524 Character conversion resulted in truncation

22525 Partitioning key value is not valid.

22526 A key transform function generated no rows or duplicate rows.

22527 Invalid input data detected for a multiple row insert.

Table 18. Class Code 23: Constraint Violation

SQLSTATE Meaning

23001 The update or delete of a parent key is prevented by a RESTRICT update or delete rule.

23502 An insert or update value is null, but the column cannot contain null values.

23503 The insert or update value of a foreign key is invalid.

23504 The update or delete of a parent key is prevented by a NO ACTION update or delete rule.

23505 A violation of the constraint imposed by a unique index or a unique constraint occurred.

SQLSTATE values

590 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SQLSTATE Meaning

23506 A violation of a constraint imposed by an edit or validation procedure occurred.

23507 A violation of a constraint imposed by a field procedure occurred.

23508 A violation of a constraint imposed by the DDL Registration Facility occurred.

23509 The owner of the package has constrained its use to environments which do not include that of the
application process.

23510 A violation of a constraint on the use of the command imposed by the RLST table occurred.

23511 A parent row cannot be deleted, because the check constraint restricts the deletion.

23512 The check constraint cannot be added, because the table contains rows that do not satisfy the
constraint definition.

23513 The resulting row of the INSERT or UPDATE does not conform to the check constraint definition.

23514 Check data processing has found constraint violations.

23515 The unique index could not be created or unique constraint added, because the table contains
duplicate values of the specified key.

23520 The foreign key cannot be defined, because all of its values are not equal to a parent key of the
parent table.

23521 The update of a catalog table violates an internal constraint.

23522 The range of values for the identity column or sequence is exhausted.

Table 19. Class Code 24: Invalid Cursor State

SQLSTATE Meaning

24501 The identified cursor is not open.

24502 The cursor identified in an OPEN statement is already open.

24503 The cursor identified in the PUT statement is a select cursor, or the cursor identified in the FETCH
statement is an insert cursor.

24504 The cursor identified in the UPDATE, DELETE, SET, or GET statement is not positioned on a row.

24505 COMMIT is invalid, because blocking is in effect and an insert cursor is open.

24506 The statement identified in the PREPARE is the statement of an open cursor.

24507 FETCH CURRENT was specified, but the current row is deleted, or a value of an ORDER BY
column of the current row has changed.

24510 An UPDATE or DELETE operation was attempted against a delete or update hole

24513 FETCH NEXT, PRIOR, CURRENT, or RELATIVE is not allowed, because the cursor position is not
known.

24514 A previous error has disabled this cursor.

24516 A cursor has already been assigned to a result set.

24517 A cursor was left open by an external function or method.

24518 A cursor is not defined to handle row sets, but a rowset was requested.

24519 A hole was detected on a multiple row FETCH statement, but indicator variables were not
provided.

24520 The cursor identified in the UPDATE or DELETE statement is not positioned on a rowset.

24521 A positioned DELETE or UPDATE statement specified a row of a rowset, but the row is not
contained within the current rowset.

24522 The fetch orientation is inconsistent with the definition of the cursor and whether rowsets are
supported for the cursor.

SQLSTATE values

Appendix E. SQLSTATE values—common return codes 591

SQLSTATE Meaning

24523 The width of a rowset cursor has not yet been set.

Table 20. Class Code 25: Invalid Transaction State

SQLSTATE Meaning

25000 An update operation is invalid for the application execution environment.

25006 An update operation is not valid because the transaction is read only.

25501 The statement is only allowed as the first statement in a unit of work.

Table 21. Class Code 26: Invalid SQL Statement Identifier

SQLSTATE Meaning

26501 The statement identified does not exist.

26505 An extended EXECUTE, DECLARE CURSOR, or DESCRIBE has been issued against an empty
section.

26507 An extended EXECUTE with an OUTPUT DESCRIPTOR has been issued against a section that is
not a Single Row SELECT.

26508 The statement identified in an extended PREPARE Single Row is not a select-statement.

26510 The statement name specified in a DECLARE CURSOR already has a cursor allocated to it.

Table 22. Class Code 27: Triggered Data Change Violation

SQLSTATE Meaning

27000 An attempt was made to change the same row in the same table more than once in the same SQL
statement.

Table 23. Class Code 28: Invalid Authorization Specification

SQLSTATE Meaning

28000 Authorization name is invalid.

Table 24. Class Code 2D: Invalid Transaction Termination

SQLSTATE Meaning

2D521 SQL COMMIT or ROLLBACK are invalid in the current operating environment.

2D522 COMMIT and ROLLBACK are not allowed in an ATOMIC Compound statement.

2D528 Dynamic COMMIT or COMMIT ON RETURN procedure is invalid for the application execution
environment

2D529 Dynamic ROLLBACK is invalid for the application execution environment.

Table 25. Class Code 2E: Invalid Connection Name

SQLSTATE Meaning

2E000 Connection name is invalid.

SQLSTATE values

592 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 26. Class Code 2F: SQL Function Exception

SQLSTATE Meaning

2F002 The SQL function attempted to modify data, but the function was not defined as MODIFIES SQL
DATA.

2F003 The statement is not allowed in a function or procedure.

2F004 The SQL function attempted to read data, but the function was not defined as READS SQL DATA.

2F005 The function did not execute a RETURN statement.

Table 27. Class Code 34: Invalid Cursor Name

SQLSTATE Meaning

34000 Cursor name is invalid.

Table 28. Class Code 36: Cursor Sensitivity Exception

SQLSTATE Meaning

36001 A SENSITIVE cursor cannot be defined for the specified select-statement.

Table 29. Class Code 38: External Function Exception

SQLSTATE Meaning

38xxx Valid error SQLSTATEs returned by an external routine or trigger.

38001 The external routine is not allowed to execute SQL statements.

38002 The external routine attempted to modify data, but the routine was not defined as MODIFIES SQL
DATA.

38003 The statement is not allowed in a routine.

38004 The external routine attempted to read data, but the routine was not defined as READS SQL
DATA.

38501 Error occurred while calling a user-defined function, external procedure, or trigger (using the
SIMPLE CALL or SIMPLE CALL WITH NULLS calling convention).

38502 The external function is not allowed to execute SQL statements.

38503 A user-defined function or procedure has abnormally terminated (abend).

38504 A user-defined function has been interrupted by the user to stop a probable looping condition.

38505 An SQL statement is not allowed in a routine on a FINAL CALL.

38506 Function failed with error from OLE DB provider.

38552 A function in the SYSFUN schema has terminated with an error.

38553 A function in a system schema has terminated with an error.

38H01 An MQSeries function failed to initialize.

38H02 MQSeries Application Messaging Interface failed to terminate the session.

38H03 MQSeries Application Messaging Interface failed to properly process a message.

38H04 MQSeries Application Messaging Interface failed in sending a message.

38H05 MQSeries Application Messaging Interface failed to read/receive a message.

38H06 An MQSeries Application Messaging Interface message was truncated.

SQLSTATE values

Appendix E. SQLSTATE values—common return codes 593

Table 30. Class Code 39: External Function Call Exception

SQLSTATE Meaning

39001 A user-defined function has returned an invalid SQLSTATE.

39004 A null value is not allowed for an IN or INOUT argument when using PARAMETER STYLE
GENERAL.

39501 An output argument value returned from a function or a procedure was too long.

39502 An output SQLDA from a procedure was incorrectly modified.

Table 31. Class Code 3B: Savepoint Exception

SQLSTATE Meaning

3B001 The savepoint is not valid.

3B002 The maximum number of savepoints has been reached.

3B501 A duplicate savepoint name was detected.

3B502 A RELEASE or ROLLBACK TO SAVEPOINT was specified, but a savepoint does not exist.

3B503 A SAVEPOINT, RELEASE SAVEPOINT, or ROLLBACK TO SAVEPOINT is not allowed in a trigger,
function, or global transaction.

3B504 A SAVEPOINT is not allowed because a resource is registered that does not support savepoints.

Table 32. Class Code 3C: Ambiguous Cursor Name

SQLSTATE Meaning

3C000 The cursor name is ambiguous.

Table 33. Class Code 40: Transaction Rollback

SQLSTATE Meaning

40001 Deadlock or timeout with automatic rollback occurred.

40003 The statement completion is unknown.

40503 A private dbspace is in use by another application process.

40504 A system error has caused the unit of work to be rolled back.

40506 The current transaction was rolled back because of an SQL error.

40507 The current transaction was rolled backed as a result of a failure creating an index.

Table 34. Class Code 42: Syntax Error or Access Rule Violation

SQLSTATE Meaning

42501 The authorization ID does not have the privilege to perform the specified operation on the
identified object.

42502 The authorization ID does not have the privilege to perform the operation as specified.

42503 The authorization ID specified in SET CURRENT SQLID is not one of the authorization IDs of the
application process.

42504 A specified privilege cannot be revoked from a specified authorization-name.

42505 Connection authorization failure occurred.

42506 Owner authorization failure occurred.

SQLSTATE values

594 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SQLSTATE Meaning

42508 The specified database privileges cannot be granted to PUBLIC.

42509 SQL statement is not authorized, because of the DYNAMICRULES option.

42510 The authorization ID does not have the privilege to create functions or procedures in the WLM
environment.

42511 The authorization ID does not have the privilege to retrieve the DATALINK value.

42601 A character, token, or clause is invalid or missing.

42602 A character that is invalid in a name has been detected.

42603 An unterminated string constant has been detected.

42604 An invalid numeric or string constant has been detected.

42605 The number of arguments specified for a scalar function is invalid.

42606 An invalid hexadecimal constant has been detected.

42607 An operand of a column function or CONCAT operator is invalid.

42608 The use of NULL or DEFAULT in VALUES is invalid.

42609 All operands of an operator or predicate are parameter markers.

42610 A parameter marker is not allowed.

42611 The column or argument definition is invalid.

42612 The statement string is an SQL statement that is not acceptable in the context in which it is
presented.

42613 Clauses are mutually exclusive.

42614 A duplicate keyword is invalid.

42615 An invalid alternative was detected.

42616 Invalid options are specified.

42617 The statement string is blank or empty.

42618 A host variable is not allowed.

42620 Read-only SCROLL was specified with the UPDATE clause.

42621 The check constraint or generated column expression is invalid.

42622 A name or label is too long.

42623 A DEFAULT clause cannot be specified.

42625 A CASE expression is invalid.

42626 A column specification is not allowed for a CREATE INDEX that is built on an auxiliary table.

42627 RETURNS clause must be specified prior to predicate specification using the EXPRESSION AS
clause.

42628 A TO SQL or FROM SQL transform function is defined more than once in a transform definition.

42629 Parameter names must be specified for SQL routines.

42630 An SQLSTATE or SQLCODE variable is not valid in this context.

42631 An expression must be specified on a RETURN statement in an SQL function.

42632 There must be a RETURN statement in an SQL function or method.

42701 A duplicate column name in an INSERT or UPDATE operation or the SET transition-variable was
detected.

42702 A column reference is ambiguous, because of duplicate names.

42703 An undefined column or parameter name was detected.

42704 An undefined object or constraint name was detected.

SQLSTATE values

Appendix E. SQLSTATE values—common return codes 595

SQLSTATE Meaning

42705 An undefined server-name was detected.

42706 Column names in ORDER BY are invalid, because all columns of the result table are unnamed.

42707 A column name in ORDER BY does not identify a column of the result table.

42708 The locale specified in a SET LOCALE or locale sensitive function was not found.

42709 A duplicate column name in a PRIMARY, UNIQUE, or FOREIGN KEY clause was detected.

42710 A duplicate object or constraint name was detected.

42711 A duplicate column name was detected in the object definition or ALTER TABLE statement.

42712 A duplicate table designator was detected in the FROM clause or REFERENCING clause of a
CREATE TRIGGER statement.

42713 A duplicate object was detected in a list of objects.

42714 A host variable can be defined only once.

42716 Any function called within the body of an inline function must already be defined.

42718 The local server name is not defined.

42720 The nodename for the remote database was not found in the node directory.

42721 The special register name is unknown at the server.

42723 A function with the same signature already exists in the schema.

42724 Unable to access an external program used for a user-defined function or a procedure.

42725 A routine or method was referenced directly (not by either signature or by specific instance name),
but there is more than one specific instance of that routine or method.

42726 Duplicate names for common table expressions were detected.

42727 No default primary tablespace exists for the new table.

42728 A duplicate node was detected in the nodegroup definition.

42729 The node is not defined.

42730 The container name is already used by another tablespace.

42731 The container name is already used by this tablespace.

42732 A duplicate schema name in the SET CURRENT PATH statement was detected.

42733 A procedure with the specified name cannot be added to the schema because the procedure
overloading is not allowed in this database and there is already a procedure with the same name in
the schema.

42734 A duplicate parameter-name, SQL variable name, label, or condition-name was detected.

42735 The nodegroup for the table space is not defined for the buffer pool.

42736 The label specified on the GOTO, ITERATE, or LEAVE statement is not found or not valid.

42737 The condition specified is not defined.

42738 A duplicate column name or unnamed column was specified in a DECLARE CURSOR statement of
a FOR statement.

42739 A duplicate transform was detected.

42740 No transforms were found for the specified type. No transforms were dropped.

42741 A transform group is not defined for a data type.

42742 A subtable or subview of the same type already exists in the typed table or typed view hierarchy.

42743 The search method is not found in the index extension.

42744 A TO SQL or FROM SQL transform function is not defined in a transform group.

42745 The routine would define a overriding relationship with an existing method.

SQLSTATE values

596 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SQLSTATE Meaning

42746 A method name cannot be the same as a structured type name within the same type hierarchy.

42801 Isolation level UR is invalid, because the result table is not read-only.

42802 The number of insert or update values is not the same as the number of columns.

42803 A column reference in the SELECT or HAVING clause is invalid, because it is not a grouping
column; or a column reference in the GROUP BY clause is invalid.

42804 The result expressions in a CASE expression are not compatible.

42805 An integer in the ORDER BY clause does not identify a column of the result table.

42806 A value cannot be assigned to a host variable, because the data types are not compatible.

42807 The INSERT, UPDATE, or DELETE is not permitted on this object.

42808 A column identified in the INSERT or UPDATE operation is not updatable.

42809 The identified object is not the type of object to which the statement applies.

42810 A view is identified in a FOREIGN KEY clause.

42811 The number of columns specified is not the same as the number of columns in the SELECT clause.

42812 A library name is required in CREATE TABLE in the system naming mode.

42813 WITH CHECK OPTION cannot be used for the specified view.

42814 The column cannot be dropped, because it is the only column in the table.

42815 The data type, length, scale, value, or CCSID is invalid.

42816 A datetime value or duration in an expression is invalid.

42817 The column cannot be dropped, because RESTRICT was specified and a view or constraint is
dependent on the column.

42818 The operands of an operator or function are not compatible.

42819 An operand of an arithmetic operation or an operand of a function that requires a number is not a
number.

42820 A numeric constant is too long, or it has a value that is not within the range of its data type.

42821 A data type for an assignment to a column or variable is not compatible with the data type.

42822 An expression in the ORDER BY clause or GROUP BY clause is not valid.

42823 Multiple columns are returned from a subquery that only allows one column.

42824 An operand of LIKE is not a string, or the first operand is not a column.

42825 The rows of UNION, INTERSECT, EXCEPT, or VALUES do not have compatible columns.

42826 The rows of UNION, INTERSECT, EXCEPT, or VALUES do not have the same number of columns.

42827 The table identified in the UPDATE or DELETE is not the same table designated by the cursor.

42828 The table designated by the cursor of the UPDATE or DELETE statement cannot be modified, or
the cursor is read-only.

42829 FOR UPDATE OF is invalid, because the result table designated by the cursor cannot be modified.

42830 The foreign key does not conform to the description of the parent key.

42831 A column of a primary key, unique key, or ROWID does not allow null values.

42832 The operation is not allowed on system objects.

42833 The qualified object name is inconsistent with the naming option.

42834 SET NULL cannot be specified, because the foreign key does not allow null values.

42835 Cyclic references cannot be specified between named derived tables.

42836 The specification of a recursive, named derived table is invalid.

SQLSTATE values

Appendix E. SQLSTATE values—common return codes 597

SQLSTATE Meaning

42837 The column cannot be altered, because its attributes are not compatible with the current column
attributes.

42838 An invalid use of a tablespace was detected.

42839 Indexes and long columns cannot be in separate tablespaces from the table.

42841 A parameter marker can not be a user-defined type or reference type.

42842 A column or parameter definition is invalid, because a specified option is inconsistent with the
column description.

42844 A function in a select list item has produced a BOOLEAN result.

42845 An invalid use of a NOT DETERMINISTIC or EXTERNAL ACTION function was detected.

42846 Cast from source type to target type is not supported.

42847 An OVRDBF command was issued for one of the referenced files, but one of the parameters is not
valid for SQL.

42848 Isolation level CS WITH KEEP LOCKS is not allowed.

42849 The specified option is not supported for external routines.

42850 A logical file is invalid in CREATE VIEW.

42851 A referenced file is not a table, view, or physical file.

42852 The privileges specified in GRANT or REVOKE are invalid or inconsistent. (For example, GRANT
ALTER on a view.)

42853 Both alternatives of an option were specified, or the same option was specified more than once.

42854 A result column data type in the select list is not compatible with the defined type in a typed view
or materialized query table definition.

42855 The assignment of the LOB to this host variable is not allowed. The target host variable for all
fetches of this LOB value for This cursor must be a locator or LOB variable.

42856 The alter of a CCSID to the specified CCSID is not valid.

42857 A referenced file has more than one format.

42858 Operation cannot be applied to the specified object.

42860 The constraint cannot be dropped because it is enforcing a primary key or ROWID.

42862 An extended dynamic statement cannot be executed against a non-extended dynamic package.

42863 An undefined host variable in REXX has been detected.

42866 The data type in either the RETURNS clause or the CAST FROM clause in the CREATE
FUNCTION statement is not appropriate for the data type returned from the sourced function or
RETURN statement in the function body.

42872 FETCH statement clauses are incompatible with the cursor definition.

42873 An invalid number of rows was specified in a multiple-row FETCH or multiple-row INSERT.

42874 ALWCPYDTA(*NO) was specified, but a copy is necessary to implement the select-statement.

42875 The schema-name portion of a qualified name must be the same name as the schema name.

42876 Different CCSIDs for keys in CREATE INDEX are only allowed with a *HEX sort sequence.

42877 The column name cannot be qualified.

42878 An invalid function or procedure name was used with the EXTERNAL keyword.

42879 The data type of one or more input parameters in the CREATE FUNCTION statement is not
appropriate for the corresponding data type in the source function.

42880 The CAST TO and CAST FROM data types are incompatible, or would always result in truncation
of a fixed string.

42881 Invalid use of a function.

SQLSTATE values

598 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SQLSTATE Meaning

42882 The specific instance name qualifier is not equal to the function name qualifier.

42883 No function or method was found with a matching signature.

42884 No routine was found with the specified name and compatible arguments.

42885 The number of input parameters specified on a CREATE FUNCTION statement does not match the
number provided by the function named in the SOURCE clause.

42886 The IN, OUT, or INOUT parameter attributes do not match.

42887 The function is not valid in the context where it occurs.

42888 The table does not have a primary key.

42889 The table already has a primary key.

42890 A column list was specified in the references clause, but the identified parent table does not have a
unique constraint with the specified column names.

42891 A duplicate UNIQUE constraint already exists.

42892 The referential constraint and trigger are not allowed, because the DELETE rule and trigger event
are not compatible.

42893 The object or constraint cannot be dropped or authorities cannot be revoked from the object,
because other objects are dependent on it.

42894 The value of a column or sequence attribute is invalid.

42895 For static SQL, an input host variable cannot be used, because its data type is not compatible with
the parameter of a procedure or user-defined function.

42896 The ASP number is invalid.

42898 An invalid correlated reference or transition table was detected in a trigger.

42899 Correlated references and column names are not allowed for triggered actions with the FOR EACH
STATEMENT clause.

428A0 An error occurred with the sourced function on which the user-defined function is based.

428A1 Unable to access a file referenced by a file reference variable.

428A2 A table cannot be assigned to a multi-node node group, because it does not have a partition key.

428A3 An invalid path has been specified for an event monitor.

428A4 An invalid value has been specified for an event monitor option.

428A5 An exception table named in a SET INTEGRITY statement either does not have the proper
structure, or it has been defined with generated columns, constraints or triggers.

428A6 An exception table named in a SET CONSTRAINTS statement cannot be the same as one of the
tables being checked.

428A7 There is a mismatch in the number of tables being checked and in the number of exception tables
specified in the SET CONSTRAINTS statement.

428A8 Cannot reset the check-pending state using the SET CONSTRAINTS statement on a descendent
table while a parent table is in the check-pending state.

428A9 The node range is invalid.

428AA The column name is not a valid column for an event monitor table.

428B0 Nesting not valid in ROLLUP, CUBE, or GROUPING SETs.

428B1 Incorrect number of table space container specifications that are not designated for specific nodes.

428B2 The path name for the container is not valid.

428B3 An invalid SQLSTATE was specified.

428B4 The part clause of a LOCK TABLE statement is not valid.

428B7 A number specified in an SQL statement is out of the valid range.

SQLSTATE values

Appendix E. SQLSTATE values—common return codes 599

SQLSTATE Meaning

428B8 The name specified on a rename is not valid.

428C0 The node cannot be dropped, because it is the only node in the nodegroup.

428C1 Only one ROWID or IDENTITY column can be specified for a table.

428C2 Examination of the function body indicates that the given clause should have been specified on the
CREATE FUNCTION statement.

428C3 The language specified for a subtype must be the same as that of its supertype.

428C4 The number of elements on each side of the predicate operator is not the same.

428C5 No data type mapping was found for a data type from the data source.

428C6 The item references in a SET statement must all be transition variables or none of the item
references must be transition variables.

428C7 A ROWID or reference column specification is not valid.

428C8 The expression cannot be cast to a ROWID or reference type.

428C9 A ROWID or IDENTITY column cannot be specified as the target column of an INSERT or
UPDATE.

428CA A table in append mode cannot have a clustered index.

428CB The pagesize for a table space must match the page size of the associated bufferpool.

428D1 Unable to access a file referenced by a DATALINK value.

428D2 AS LOCATOR cannot be specified for a non-LOB parameter.

428D3 GENERATED was specified with a data type that is not a ROWID or a distinct type based on a
ROWID.

428D4 A cursor specified in a FOR statement cannot be referenced in an OPEN, CLOSE, or FETCH
statement.

428D5 The ending label does not match the beginning label.

428D6 UNDO is not allowed for NOT ATOMIC compound statements.

428D7 The condition value is not allowed.

428D8 The sqlcode or sqlstate variable declaration is not valid.

428D9 The table specified in the host variable in the LIKE clause is not compatible with the table specified
in the LIKE clause.

428DB An object is not valid as a supertype, supertable, or superview.

428DC The function or method is not valid as the transform for this type.

428DE The PAGESIZE value is not supported.

428DF The data types specified in CREATE CAST are not valid.

428DG The function specified in CREATE CAST is not valid.

428DH The operation is not valid for typed tables.

428DJ The options associated with an inherited column cannot be changed.

428DK The scope for the reference column is already defined.

428DL The parameter of an external or sourced function has a scope defined.

428DM The scope table or view is not valid for the reference type.

428DN SCOPE is not specified in the RETURNS clause of an external function or is specified in the
RETURNS clause of a sourced function.

428DP The type is not a structured type.

428DQ A subtable or subview cannot have a different schema name than its supertable or superview.

428DR Operation cannot be applied to a subtable.

SQLSTATE values

600 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SQLSTATE Meaning

428DS An index on the specified columns cannot be defined on the subtable.

428DT The operand of an expression is not a valid scoped reference type.

428DU A type is not included in the required type hierarchy.

428DV The left operand of a dereference operator is not valid.

428DW Object identifier column cannot be referenced using the dereference operator.

428DX Object identifier column is required to define the root table or root view of a typed table or typed
view hierarchy.

428DY Table statistics cannot be updated for a subtable.

428DZ An object identifier column cannot be updated.

428E0 The definition of the index does not match the definition of the index extension.

428E1 The result of the range-producing table function is inconsistent with that of the key transformation
table function for the index extension.

428E2 The number or the type of key-target parameters does not match the number or type of key
transform function for the index extension.

428E3 The argument for the function in an index extension is not valid.

428E4 The function is not supported in an CREATE INDEX EXTENSION statement.

428E5 SELECTIVITY clause can only be specified with a user-defined predicate.

428E6 The argument of the search method in the user-defined predicate does not match the one in the
corresponding search method of the index extension.

428E7 The type of the operand following the comparison operator in the user-defined predicate does not
match the RETURNS data type.

428E8 A search target or search argument parameter does not match a parameter name of the function
being created.

428E9 An argument parameter name cannot appear as both a search target and search argument in the
same exploitation rule.

428EA A fullselect in a typed view is not valid.

428EB A column in a subview cannot be read only when the corresponding column in the superview is
updatable.

428EC The fullselect specified for the materialized query table is not valid.

428ED Structured types with Datalink or Reference type attributes cannot be constructed.

428EE Option not valid for remote data source.

428EF Value for the option is not valid remote data source.

428EG Missing required option for remote data source.

428EH Option is already defined for remote data source.

428EJ Option is not defined so cannot be set for remote data source.

428EK The qualifier for a declared global temporary table name or an index on a declared global
temporary table must be SESSION.

428EL A transform function not valid for use with a function or method.

428EM The TRANSFORM GROUP clause is required.

428EN A transform group is specified that is not used.

428EP A structured type cannot depend on itself either directly or indirectly.

428EQ The returns type of the routine is not the same as the subject type.

428ER A method specification cannot be dropped before the method body is dropped.

SQLSTATE values

Appendix E. SQLSTATE values—common return codes 601

SQLSTATE Meaning

428ES A method body does not correspond to the language type of the method specification.

428ET INLINE LENGTH value is not valid.

428EU TYPE or VERSION is not specified in the server definition.

428EV Pass-through facility is not supported for the type of data source.

428EW The table cannot be converted to or from a materialized query table.

428EX Routine cannot be used as a transform function because it is either a built-in function or a method.

428EY The data type of the search target in a user-defined predicate does not match the data type of the
source key of the specified index extension.

428EZ A window specification for an OLAP function is not valid.

428F0 A ROW function must include at least two columns.

428F1 An SQL TABLE function must return a table result.

428F2 An integer expression must be specified on a RETURN statement in an SQL procedure.

428F4 The SENSITIVITY specified on FETCH is not allowed for the cursor.

428F5 The invocation of a function is ambiguous.

428F6 Cursor is scrollable, but the result table involves output from a table function.

428F7 The operation was attempted on an external routine, but the operation is only allowed on an SQL
routine.

428F9 A sequence expression cannot be specified in this context.

428FA The scale of the decimal number must be zero.

428FC The length of the encryption password is not valid.

428FD The password used for decryption does not match the password used to encrypt the data.

428FE The data is not a result of the ENCRYPT function.

428FF The buffer pool specification is not valid.

428FG The table used to define a staging table is not valid.

428FH The materialized query table option is not valid.

428FI The ORDER OF clause was specified, but the referenced table designator is not ordered.

428FJ ORDER BY is not allowed in the outer fullselect of a view or materialized query table.

428FM An INSERT statement within a SELECT specified a view which is not a symmetric view.

428FN ALLOW FULL REFRESH must be specified for altering this view.

428FO The ALTER VIEW failed because the fullselect is invalid.

428FP Only one INSTEAD OF trigger is allowed for each kind of operation on a view.

428FQ An INSTEAD OF trigger must not specify a view that is defined using WITH CHECK OPTION or
a view that is defined on another view that is defined WITH CHECK OPTION.

428FR A column cannot be altered as specified.

428FS A column cannot be added to an index.

428FT Partitioning clauses cannot be specified on a non-partitioned table or materialized query table.

428FU Built-in type returned from the FROM SQL transform function or method does not match the
corresponding built-in type for the TO SQL transform function or method.

428FV The method cannot be defined as an overriding method.

42901 A column function does not include a column name.

42902 The object of the INSERT, UPDATE, or DELETE is also identified (possibly implicitly through a
view) in a FROM clause.

SQLSTATE values

602 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SQLSTATE Meaning

42903 A WHERE, VALUES, GROUP BY, HAVING, or SET clause includes an invalid reference, such as a
column or OLAP function.

42904 The SQL procedure was not created because of a compile error.

42905 DISTINCT is specified more than once in a subselect.

42906 A column function in a subquery of a HAVING clause includes an expression that applies an
operator to a correlated reference.

42907 The string is too long.

42908 The statement does not include a required column list.

42909 CREATE VIEW includes an operator or operand that is not valid for views. For example, UNION
or UNION ALL.

42910 The statement is not allowed in a Compound statement.

42911 A decimal divide operation is invalid, because the result would have a negative scale.

42912 A column cannot be updated, because it is not identified in the UPDATE clause of the
select-statement of the cursor.

42913 An UPDATE or DELETE WHERE CURRENT OF that is invalid has been detected.

42914 The DELETE is invalid, because a table referenced in a subquery can be affected by the operation.

42915 An invalid referential constraint has been detected.

42916 The alias cannot be created, because it would result in a repetitive chain of aliases.

42917 The object cannot be explicitly dropped or altered.

42918 A user-defined data type cannot be created with a system-defined data type name (for example,
INTEGER).

42919 Nested compound statements are not allowed.

42920 A GROUP BY or HAVING clause is implicitly or explicitly specified in a SELECT INTO or a
subquery of a basic predicate.

42921 Containers cannot be added to the tablespace.

42922 DROP SCHEMA cannot be executed under commitment control.

42923 Program or package must be recreated to reference an alias-name.

42924 An alias resolved to another alias rather than a table or view at the remote location.

42925 Recursive named derived tables cannot specify SELECT DISTINCT and must specify UNION ALL.

42926 Locators are not allowed with COMMIT(*NONE).

42927 The function cannot be altered to NOT DETERMINISTIC or EXTERNAL ACTION because it is
referenced by one or more existing views.

42928 WITH EMPTY TABLE cannot be specified.

42930 The same column was identified in FOR UPDATE OF and ORDER BY.

42932 The program preparation assumptions are incorrect.

42937 The parameter must not have a subtype of mixed.

42939 The name cannot be used, because the specified identifier is reserved for system use.

42943 An empty non-modifiable package cannot be committed.

42944 The authorization ID cannot be both an owner and primary group owner.

42945 ALTER CCSID is not allowed on a tablespace or database that contains a view.

42961 The server name specified does not match the current server.

42962 A long column, LOB column, structured type column or datalink column cannot be used in an
index, a key, or a constraint.

SQLSTATE values

Appendix E. SQLSTATE values—common return codes 603

SQLSTATE Meaning

42968 The connection failed, because there is no current software license.

42969 The package was not created and the current unit of work was rolled back, because of internal
limitations or an invalid section number.

42970 COMMIT HOLD or ROLLBACK HOLD is not allowed to a non-application server.

42971 SQL statements cannot be executed under commitment control, because commitment control is
already active to another relational database.

42972 An expression in a join-condition references columns in more than one of the operand tables.

42977 The authorization ID cannot be changed when connecting to the local server.

42978 An indicator variable is not a small integer.

42981 CREATE SCHEMA is not allowed if changes are pending in the unit of work.

42984 The privilege cannot be granted to the view, because *OBJOPR or *OBJMGT authority exists on a
dependent view or table, and the grantee does not have *ALLOBJ or the specified privilege on the
dependent table or view.

42985 The statement is not allowed in a routine.

42986 The source table in a RENAME TABLE statement is referenced in a view, materialized query table,
trigger, or constraint.

42987 The statement is not allowed in a trigger.

42988 The operation is not allowed with mixed ASCII data.

42989 A GENERATED column that is based on an expression and cannot used in a BEFORE trigger.

42990 A unique index or unique constraint is not allowed because the key columns are not a superset of
the partitioned key columns.

42991 The BOOLEAN data type is currently only supported internally.

42993 The column, as defined, is too large to be logged.

42994 Raw device containers are not currently supported on this system.

42995 The requested function does not apply to global temporary tables.

42996 The partition key cannot be a datetime or floating-point column.

42997 Capability is not supported by this version of DB2.

42998 A referential constraint is not allowed because the foreign key columns are not a superset of the
partitioned key columns or the node group is not the same as the parent table.

429A0 A foreign key cannot reference a parent table defined as ″not logged initially″.

429A1 The nodegroup is not valid for the table space.

429A2 The row type within a row reference must be the same as the row type of the target table.

429A3 Row type cannot be directly used as the type of a column. Only references to row types are
allowed.

429A5 A row type can not be added to a table that already has a row type.

429A6 The table identified in a row reference operation does not have a row type.

429A7 Function with the READS SQL DATA property cannot be used in the specified context.

429A8 Distinct types cannot be based on either REF types or ADTs.

429A9 SQL statement cannot be processed by DataJoiner.

429AA The ″not logged initially″ attribute cannot be activated.

429B1 A stored procedure specifying COMMIT ON RETURN cannot be the target of a nested CALL
statement.

429B2 The specified inline length value for the structured type or column is too small.

SQLSTATE values

604 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SQLSTATE Meaning

429B3 The object may not be defined on a subtable.

429B4 The data filter function cannot be a LANGUAGE SQL function.

429B5 The data type of the instance parameter in the index extension is not valid in the same exploitation
rule.

429B6 Rows from a distributed table cannot be redistributed because the table contains a datalink column
with FILE LINK CONTROL.

429B7 A referential constraint with a delete rule of CASCADE is not allowed on a table with a DataLink
column with FILE LINK CONTROL.

429B8 A routine defined with PARAMETER STYLE JAVA cannot have a structured type as a parameter or
returns type.

429B9 DEFAULT or NULL cannot be used in an attribute assignment.

429BA The FEDERATED keyword must be used with a reference to a federated database object.

429BB Data type of parameter or SQL variable is not supported in SQL routine.

429BC There are multiple conflicting container operations in the ALTER TABLESPACE statement.

429BD RETURN must be the last SQL statement of the atomic compound statement within an SQL row or
table function.

429BE The primary key or a unique key is a subset of the columns in the dimensions clause.

Table 35. Class Code 44: WITH CHECK OPTION Violation

SQLSTATE Meaning

44000 The INSERT or UPDATE is not allowed, because a resulting row does not satisfy the view
definition.

Table 36. Class Code 46: Java Errors

SQLSTATE Meaning

46001 The URL specified on an install or replace of a jar procedure did not identify a valid jar file.

46002 The jar name specified on the install, replace, or remove of a Java procedure is not valid.

46003 The jar file cannot be removed, a class is in use by a procedure.

46007 A Java function has a Java method with an invalid signature.

46008 A Java function could not map to a single Java method.

46103 A Java routine encountered a ClassNotFound exception.

46501 The install or remove jar procedure for ″<jar-id>″ specified the use of a deployment descriptor.

46502 A user-defined procedure has returned a DYNAMIC RESULT SET of an invalid class. The
parameter is not a DB2 result set.

Table 37. Class Code 51: Invalid Application State

SQLSTATE Meaning

51002 The package corresponding to an SQL statement execution request was not found.

51003 Consistency tokens do not match.

51004 An address in the SQLDA is invalid.

51005 The previous system error has disabled this function.

SQLSTATE values

Appendix E. SQLSTATE values—common return codes 605

SQLSTATE Meaning

51006 A valid connection has not been established.

51008 The release number of the precompiled program is not valid.

51009 COMMIT or ROLLBACK is not allowed, because commitment control has not been started.

51010 The programmable interface for operator commands is not valid when within a unit of work.

51012 The index has been marked invalid.

51013 An attempt has been made to use an index that has been marked invalid.

51015 An attempt was made to execute a section that was found to be in error at bind time.

51016 A package or view cannot be rebound, because the character set under which it was originally
prepared is different than the character set under which the database manager is running.

51017 The user is not logged on.

51021 SQL statements cannot be executed until the application process executes a rollback operation.

51022 A CONNECT that specifies an authorization name is invalid when a connection (either current or
dormant) already exists to the server named in that CONNECT statement.

51023 The database is already in use by another instance of the database manager.

51024 A view cannot be used, because it has been marked inoperative.

51025 An application in the XA transaction processing environment is not bound with SYNCPOINT
TWOPHASE.

51026 An event monitor cannot be turned on, because its target path is already in use by another event
monitor.

51027 The IMMEDIATE CHECKED option of the SET CONSTRAINTS statement is not valid since a table
is not in the check-pending state.

51028 A package cannot be used, because it is marked inoperative.

51030 The procedure referenced in a DESCRIBE PROCEDURE, ASSOCIATE LOCATOR, or an
ALLOCATE CURSOR statement has not yet been called within the application process.

51032 A valid CCSID has not yet been specified for this DB2 UDB for OS/390 and z/OS subsystem.

51033 The operation is not allowed because it operates on a result set that was not created by the current
server.

51034 The routine defined with MODIFIES SQL DATA is not valid in the context in which it is invoked.

51036 An implicit connect to a remote server is not allowed because a savepoint is outstanding.

51037 The operation is not allowed because a trigger has been marked inoperative.

51038 SQL Statements may no longer be issued by the routine.

51039 The ENCRYPTION PASSWORD value is not set.

Table 38. Class Code 53: Invalid Operand or Inconsistent Specification

SQLSTATE Meaning

53001 A clause is invalid, because the tablespace is a workfile.

53004 DSNDB07 is the implicit workfile database.

53014 The specified OBID is invalid.

53022 Host variable or parameter is not allowed.

53035 Key limits must be specified in the CREATE or ALTER INDEX statement.

53036 The number of PART specifications is not the same as the number of partitions.

53037 A partitioned index cannot be created on a table in a non-partitioned tablespace.

SQLSTATE values

606 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SQLSTATE Meaning

53038 The number of key limit values is zero or greater than the number of columns in the key.

53039 The PART clause of the ALTER statement is omitted or invalid.

53040 The bufferpool cannot be changed as specified.

53041 Only 4K buffer pools can be used for an index.

53043 Columns with different field procedures cannot be compared.

53044 The columns have a field procedure, but the field types are not compatible.

53045 The data type of the key limit constant is not the same as the data type of the column.

53060 Public dbspaces must be acquired from a recoverable storage pool.

53088 LOCKMAX is inconsistent with the specified LOCKSIZE.

53089 The number of host variable parameters for a stored procedure is not equal to the number of
expected host variable parameters.

53090 Data encoded with different encoding schemes cannot be referenced in the same SQL statement.

53091 The encoding scheme specified is not the same as the encoding scheme currently in use for the
containing tablespace.

53092 Type 1 index cannot be created for a table using the ASCII encoding scheme.

53093 The CCSID ASCII or UNICODE clause is not supported for this database or tablespace.

53094 The PLAN_TABLE cannot be created with the FOR ASCII clause.

53095 CREATE or ALTER statement cannot define an object with the specified encoding scheme.

53096 The PART clause was specified on CREATE AUXILIARY TABLE, but the base table is not
partitioned.

53097 LOBs cannot be specified as parameters when the NO WLM ENVIRONMENT is specified.

53098 The auxiliary table cannot be created because a column was specified that is not a LOB column.

53099 A WLM ENVIRONMENT name must be specified on the CREATE FUNCTION statement.

530A0 An ALTER TABLE statement specified a precision and scale that is not as large as the existing
precision and scale.

530A1 An ALTER TABLE statement specified FLOAT as the new data type for a column, but there is an
existing index or constraint that restricts the use of FLOAT.

530A2 The VALUES clause is not allowed on the specified index.

Table 39. Class Code 54: SQL or Product Limit Exceeded

SQLSTATE Meaning

54001 The statement is too long or too complex.

54002 A string constant is too long.

54004 The statement has too many table names or too many items in a SELECT or INSERT list.

54005 The sort key is too long, or has too many columns.

54006 The result of concatenation is too long.

54008 The key is too long, a column of the key is too long, or the key many columns.

54009 Too many users were specified in GRANT or REVOKE.

54010 The record length of the table is too long.

54011 Too many columns were specified for a table, view, or table function.

54012 The FIELDPROC literal list is too long.

54013 The statement has too many host variables.

SQLSTATE values

Appendix E. SQLSTATE values—common return codes 607

SQLSTATE Meaning

54014 Too many cursors are open in a unit of work.

54015 A section was not created as a result of executing the null form of an extended dynamic PREPARE,
or preprocessing a PREPARE statement.

54016 No more tables can be created in this dbspace.

54017 The maximum number of active packages for a unit of work has been exceeded.

54018 The row is too long.

54019 The maximum number of late descriptors has been exceeded, probably because too many different
CCSIDs were used.

54020 No more indexes can be created for this table.

54021 Too many constraints, or the size of the constraint is too large.

54023 The limit for the number of parameters or arguments for a function or a procedure has been
exceeded.

54024 The check constraint is too long.

54025 The table description exceeds the maximum size of the object descriptor.

54027 The catalog has the maximum number of user-defined indexes.

54028 The maximum number of concurrent LOB handles has been reached.

54029 The maximum number of open directory scans has been reached.

54030 The maximum number of event monitors are already active.

54031 The maximum number of files have already been assigned the event monitor.

54032 The maximum size of a table has been reached.

54033 The maximum number of partitioning maps has been reached.

54034 The combined length of all container names for the tablespace is too long.

54035 An internal object limit exceeded.

54036 The path name for the container is too long.

54037 The container map for the tablespace is too complicated.

54038 Maximum depth of nested routines or triggers was exceeded.

54039 The container size is too small or too large.

54040 Too many references to transition variables and transition tab columns or the row length for these
references is too long.

54041 Only 32767 OBIDs are allowed.

54042 Only one index is allowed on an auxiliary table.

54044 A multiple-byte (UCS-2) sort sequence table cannot be supported in DRDA because it is too large.

54045 The maximum level of a type hierarchy has been reached.

54046 The maximum allowable parameters is exceeded in an index extension.

54047 The maximum size of a table space is exceeded.

54048 A temporary table space with sufficient page size does not exist.

54049 Length of an instance of a structured type exceeds the system limit.

54050 The maximum allowable attributes is exceeded in a structured type.

54051 Value specified on FETCH ABSOLUTE or RELATIVE is invalid.

54052 The number of block pages for a buffer pool is too large for the buffer pool.

54053 The value specified for BLOCKSIZE is not in the valid range.

SQLSTATE values

608 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SQLSTATE Meaning

54054 The combination of the number of table space partitions and the corresponding length of the
partitioning limit key it too large.

54055 The maximum number of versions has been reached for a table or index. The maximum number of
versions has been reached for a table or index.

Table 40. Class Code 55: Object Not in Prerequisite State

SQLSTATE Meaning

55001 The database must be migrated.

55002 The explanation table is not defined properly.

55003 The DDL registration table is not defined properly.

55004 The database cannot be accessed, because it is no longer a shared database.

55005 Recursion is not supported to a non- application server.

55006 The object cannot be dropped, because it is currently in use by the same application process.

55007 The object cannot be altered, because it is currently in use by the same application process.

55009 The system attempted to write to a read-only file or a write-protected diskette.

55011 The operation is disallowed, because the workfile database is not in the stopped state.

55012 A clustering index already exists on the table.

55014 The table does not have an index to enforce the uniqueness of the primary key.

55015 The ALTER statement cannot be executed, because the pageset is not in the stopped state.

55016 The ALTER statement is invalid, because the pageset has user-managed data sets.

55017 The table cannot be created in the tablespace, because it already contains a table.

55018 The schema cannot be dropped, because it is in the library list.

55019 The table is in an invalid state for the operation.

55020 A work file database is already defined for the member.

55021 Change of data type or length of host variable is invalid, because blocking is in effect.

55022 The file server is not registered with this database.

55023 An error occurred calling a procedure.

55024 The tablespace cannot be dropped, because data related to a table is also in another tablespace.

55025 The database must be restarted.

55026 A temporary tablespace cannot be dropped.

55027 The current unit of work is only prepared to process a COMMIT or ROLLBACK statement.

55028 Parameter in the LASTING GLOBALV file is either missing or incorrect.

55029 Local program attempted to connect to a remote database.

55030 A package specified in a remote BIND REPLACE operation must not have a system list.

55031 The format of the error mapping file is incorrect.

55032 The CONNECT statement is invalid, because the database manager was stopped after this
application was started.

55033 An event monitor cannot be activated in the same unit of work in which it is created or modified.

55034 The event monitor is in an invalid state for the operation.

55035 The table cannot be dropped, because it is protected.

55036 The node cannot be dropped, because it has not been removed from the partitioning map.

SQLSTATE values

Appendix E. SQLSTATE values—common return codes 609

SQLSTATE Meaning

55037 The partitioning key cannot be dropped, because the table is in a multi-node nodegroup.

55038 The nodegroup cannot be used, because it is being rebalanced.

55039 The access or state transition is not allowed, because the tablespace is not in an appropriate state.

55040 The database’s split image is in the suspended state.

55041 Containers cannot be added to a tablespace while a rebalance is in progress.

55042 The alias is not allowed because it identifies a single member of a multiple member file.

55043 The attributes of a structured type cannot be altered when a typed table of typed view based on
the type exists.

55044 The PROCEDURE must have a status of STOP-REJ, or the PSERVER must be stopped with
IMPL=N, before it can be altered or dropped.

55045 The SQL Archive (SAR) file for the routine cannot be created because a necessary component is not
available at the server.

55046 The specified SQL archive (SAR) does not match the target environment.

55047 A routine declared as NOT FEDERATED attempted to access a federated object.

55048 Encrypted data cannot be encrypted.

55049 The event monitor table is not properly defined.

55050 An object cannot be created into a protected schema.

55051 The ALTER BUFFERPOOL statement is currently in progress.

55052 A TABLE or TABLESPACE cannot be altered to NOT LOGGED when there are uncommitted
changes that have been made to the table or tablespace.

55053 A CREATE or ALTER statement specified a NOT LOGGED INITIALLY clause, but the table space
contains other tables.

55054 A method cannot be called recursively.

Table 41. Class Code 56: Miscellaneous SQL or Product Error

SQLSTATE Meaning

56004 The statement failed, because the Invalid Entities table is full.

56010 The subtype of a string variable is not the same as the subtype at bind time, and the difference
cannot be resolved by character conversion.

56016 The partitioning keys are not specified in ascending or descending order.

56018 A column cannot be added to the table, because it has an edit procedure.

56023 An invalid reference to a remote object has been detected.

56025 An invalid use of AT ALL LOCATIONS in GRANT or REVOKE has been detected.

56027 A nullable column of a foreign key with a delete rule of SET NULL cannot be part of the key of a
partitioned index.

56031 The clause or scalar function is invalid, because mixed and DBCS data are not supported on this
system.

56033 The insert or update value of a long string column must be a host variable or NULL.

56034 ALLUSERS can only be used in GRANT CONNECT without a password.

56035 Referential constraints cannot cross dbspaces resident in different types of storage pools.

56036 Specific and non-specific volume IDs are not allowed in a storage group.

56038 The requested feature is not supported in this environment.

56040 CURRENT SQLID cannot be used in a statement that references remote objects.

SQLSTATE values

610 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SQLSTATE Meaning

56041 An Extended PREPARE can only be executed using the DRDA protocol if it has an input SQLDA.

56042 Only one package can be created or modified in a unit of work, and, while that package is being
created or modified, all statements in that unit of work must be issued against that package. If the
package is non-modifiable, only Extended PREPARE statements can be issued.

56044 An attempt was made to execute a section that has been marked invalid in a modifiable package
that is undergoing modification.

56045 The application must issue a rollback operation to back out the change that was made at the
read-only application server.

56046 CREATE PACKAGE with the REPLACE option cannot be issued against a modifiable package.

56047 PREPARE Adding Empty Section was not preceded by a CREATE PACKAGE with the NOMODIFY
option.

56048 Three-part package names are not supported.

56049 An unexpected error occurred when attempting to rebind a view with a new version of the
database manager. The view must be dropped and recreated.

56052 The remote requester tried to bind, rebind, or free a trigger package.

56053 The parent of a table in a read-only shared database must also be a table in a read-only shared
database.

56054 User-defined datasets for objects in a shared database must be defined with SHAREOPTIONS(1,3).

56055 The database is defined as SHARE READ, but the tablespace or indexspace has not been defined
on the owning system.

56056 The description of an object in a SHARE READ database must be consistent with its description in
the OWNER system.

56057 A database cannot be altered from SHARE READ to SHARE OWNER.

56058 A COMMIT WORK statement or a ROLLBACK WORK statement cannot be dynamically prepared
or executed.

56059 An error occurred when binding a triggered SQL statement.

56060 An LE function failed.

56062 A distributed operation is invalid, because the unit of work was started before DDF.

56063 In Single User Mode only one CICS task can issue an SQL statement.

56064 The bind operation is disallowed, because the program depends on functions of a release from
which fallback has occurred.

56065 The bind operation is disallowed, because the DBRM has been modified or was created for a
different release.

56066 The rebind operation is disallowed, because the plan or package depends on functions of a release
from which fallback has occurred.

56067 The rebind operation is disallowed, because the value of SYSPACKAGE.IBMREQD is invalid.

56076 A DB2 Server for VSE & VM application requestor that uses DRDA-only protocols cannot be
connected to a DB2 Server for VSE & VM application server that uses SQLDS-only protocols.

56079 Neither protocol option AUTO nor DRDA can be specified, because the DRDA facility has not been
installed for the application requester.

56080 The data type is not allowed in DB2 private protocol processing.

56082 The statement cannot be executed, because it identifies a DB2 system that does not support
character conversion.

56084 An unsupported SQLTYPE was encountered in a select list or input list.

56088 ALTER FUNCTION failed because functions cannot modify data when they are processed in
parallel.

SQLSTATE values

Appendix E. SQLSTATE values—common return codes 611

SQLSTATE Meaning

56089 Specified option requires type 2 indexes.

56090 The type of the index cannot be changed.

56091 Multiple errors occurred as a result of executing a compound SQL statement.

56092 The type of authorization cannot be determined, because the authorization name is both a user id
and group id.

56093 A query includes a column with a data type not supported by the application requestor.

56095 A bind option is invalid.

56096 Bind options are incompatible.

56097 LONG VARCHAR and LONG VARGRAPHIC column are not permitted in tablespaces using
DEVICES.

56098 An error occurred during an implicit rebind or recompile.

56099 The REAL data type is not supported by the target database.

560A0 Action on a LOB value failed.

560A1 The tablespace name is not valid.

560A2 A LOB table and its associated base table space must be in the same database.

560A3 The table is not compatible with the database.

560A4 The operation is not allowed on an auxiliary table.

560A5 An auxiliary table already exists for the specified column or partition.

560A6 A table cannot have a LOB column unless it also has a ROWID column.

560A7 GBPCACHE NONE cannot be specified for a tablespace or index in GRECP.

560A8 An 8K or 16K bufferpool pagesize is invalid for a WORKFILE object.

560A9 An unsupported option was specified.

560AA The clause or scalar function is invalid, because UCS-2 is not supported on this system.

560AB The data type is not supported in an SQL routine.

560AC Wrapper definition cannot be used for the specified type or version of data source.

560AD A view name was specified after LIKE in addition to the INCLUDING IDENTITY COLUMN
ATTRIBUTES clause.

560AE A view was specified for LIKE, but it includes a ROWID column.

560AF Prepare statement is not supported when using gateway concentrator.

560B0 Invalid new size value for table space container resizing.

560B1 Procedure failed because a result set was scrollable but the cursor was not positioned before the
first row.

560B2 Open failed because the cursor is scrollable but the client does not support scrollable cursors.

560B3 Procedure failed because one or more result sets returned by the procedure are scrollable but the
client does not support scrollable cursors.

560B4 Procedure failed because one or more result sets returned by the procedure are scrollable but hop
sites are involved.

560B5 Local special register is not valid as used.

560B6 CALL is not allowed in an embedded ATOMIC compound statement.

560B7 For a multiple row INSERT, the usage of a sequence expression must be the same for each row.

560B8 The SQL statement cannot be executed because it was precompiled at a level that is incompatible
with the current value of the ENCODING bind option or special register.

560B9 Hexadecimal constant GX is not allowed.

SQLSTATE values

612 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SQLSTATE Meaning

560BA ACTIVATE NOT LOGGED INITIALLY not supported for the specified table.

560BB The same host variable must be used in both the USING and INTO clauses for an INOUT
parameter in a dynamically prepared CALL statement.

560BC An error has occurred when accessing the configuration file.

560BD Unexpected error code received from data source.

Table 42. Class Code 57: Resource Not Available or Operator Intervention

SQLSTATE Meaning

57001 The table is unavailable, because it does not have a primary index.

57002 GRANT and REVOKE are invalid, because authorization has been disabled.

57003 The specified bufferpool has not been activated.

57004 The table is unavailable, because it lacks a partitioned index.

57005 The statement cannot be executed, because a utility or a governor time limit was exceeded.

57006 The object cannot be created, because a DROP or CREATE is pending.

57007 The object cannot be used, because a DROP or ALTER is pending.

57008 The date or time local format exit has not been installed.

57009 Virtual storage or database resource is temporarily unavailable.

57010 A field procedure could not be loaded.

57011 Virtual storage or database resource is not available.

57012 A non-database resource is not available. This will not affect the successful execution of subsequent
statements.

57013 A non-database resource is not available. This will affect the successful execution of subsequent
statements.

57014 Processing was canceled as requested.

57015 Connection to the local DB2 not established.

57016 The table cannot be accessed, because it is inactive.

57017 Character conversion is not defined.

57018 A DDL registration table or its unique index does not exist.

57019 The statement was not successful, because of a problem with a resource.

57020 The drive containing the database is locked.

57021 The diskette drive door is open.

57022 The table could not be created, because the authorization ID of the statement does not own any
suitable dbspaces.

57023 The DDL statement cannot be executed, because a DROP is pending of a DDL registration table.

57024 No appropriate CMS message repository can be accessed.

57025 There is not enough room in the dbspace(s) allocated to hold packages.

57026 The system dbspace SYS002 does not exist. This dbspace is used to store packages.

57027 The connection to the application server has been severed by the operator.

57028 The unit of work has been rolled back due to an excessive number of system wide lock requests.

57029 The unit of work has been rolled back due to an excessive number of lock requests by the unit of
work.

57030 Connection to application server would exceed the installation-defined limit.

SQLSTATE values

Appendix E. SQLSTATE values—common return codes 613

SQLSTATE Meaning

57031 Connection to the application server is not possible, because the DB2 Server for VSE & VM virtual
machine does not have access to that application server.

57032 The maximum number of concurrent databases have already been started.

57033 Deadlock or timeout occurred without automatic rollback.

57036 The transaction log does not belong to the current database.

57037 The ACQUIRE DBSPACE statement failed, because all storage pools for available dbspaces are full.

57038 No space is available in the storage pool.

57039 The VSE Online Resource Manager has been shut down, either by the operator, or due to a serious
error.

57040 The communications directory was either not found, or it has the wrong file type.

57042 DDM recursion has occurred.

57043 A local SQL application program cannot be executed on an application server.

57044 The resource adapter cannot find an entry for the character set in the ASISSCR MACRO file.

57045 The resource adapter cannot find an entry for the character set in the SYSCHARSETS file.

57046 A new transaction cannot start because the database or instance is quiesced.

57047 An internal database file cannot be created, because the directory is not accessible.

57048 An error occurred while accessing a container for a tablespace.

57049 The operating system process limit has been reached.

57050 The file server is not currently available.

57051 The estimated CPU cost exceeds the resource limit.

57052 The node is unavailable, because it does not have containers for all temporary table spaces.

57053 A table is not available in a routine or trigger because of violated nested SQL statement rules.

57054 A table is not available until the auxiliary tables and indexes for its externally stored columns have
been created.

57055 A temporary table space with sufficient page size was not available.

57056 The package is not available because the database is in NO PACKAGE LOCK mode.

57057 The SQL statement cannot be executed due to a prior condition in a DRDA chain of SQL
statements.

57059 There is not enough space in the table space for the specified action.

Table 43. Class Code 58: System Error

SQLSTATE Meaning

58001 The database cannot be created, because the assigned DBID is a duplicate.

58002 An exit has returned an error or invalid data.

58003 An invalid section number was detected.

58004 A system error (that does not necessarily preclude the successful execution of subsequent SQL
statements) occurred.

58005 A system error (that prevents the successful execution of subsequent SQL statements) occurred.

58006 A system error occurred during connection.

58007 A system error occurred with datalink file management.

58008 Execution failed due to a distribution protocol error that will not affect the successful execution of
subsequent DDM commands or SQL statements.

SQLSTATE values

614 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SQLSTATE Meaning

58009 Execution failed due to a distribution protocol error that caused deallocation of the conversation.

58010 Execution failed due to a distribution protocol error that will affect the successful execution of
subsequent DDM commands or SQL statements.

58011 The DDM command is invalid while the bind process in progress.

58012 The bind process with the specified package name and consistency token is not active.

58013 The SQLCODE is inconsistent with the reply message.

58014 The DDM command is not supported.

58015 The DDM object is not supported.

58016 The DDM parameter is not supported.

58017 The DDM parameter value is not supported.

58018 The DDM reply message is not supported.

58021 A system error occurred while loading a program.

58023 A system error has caused the current program to be canceled.

58024 An error has occurred in the underlying operating system.

58025 A column in a catalog table has the wrong data type.

58026 The number of host variables in the statement is not equal to the number of host variables in
SQLSTTVRB.

58027 The package was not created and unit of work was rolled back due to an earlier system error.

58028 The commit operation failed, because a resource in the unit of work was not able to commit its
resources.

58029 An internal error has occurred while attempting to log user data.

58030 An I/O error has occurred.

58031 The connection was unsuccessful, because of a system error.

58032 Unable to use the process for a fenced mode user-defined function.

58033 An unexpected error occurred while attempting to access a client driver.

58034 An error was detected while attempting to find pages for an object in a DMS tablespace.

58035 An error was detected while attempting to free pages for an object in a DMS tablespace.

58036 The internal tablespace ID specified does not exist.

SQLSTATE values

Appendix E. SQLSTATE values—common return codes 615

SQLSTATE values

616 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Appendix F. CCSID values

The following tables describe the CCSIDs and conversions provided by the IBM
relational database products. For more information, see “Character conversion” on
page 20.

The following list defines the symbols used in the DB2 UDB product column in the
following tables:

X Indicates that the conversion tables exist to convert from or to that
CCSID. This also implies that this CCSID can be used to tag local
data.

C Indicates that conversion tables exist to convert from that CCSID to
another CCSID. This also implies that this CCSID cannot be used
to tag local data, because the CCSID is in a foreign encoding
scheme (for example, a PC-Data CCSID such as 850 cannot be used
to tag local data in DB2 UDB for iSeries).

blank Indicates that the specific product does not support the CCSID at
all. Such a CCSID must not be used unless interoperability with
the specific product is not necessary.

This information is current as of the publishing date of this book for the CCSIDs
listed. Additional CCSIDs may have been added since the publishing date and are
not in the lists below.

© Copyright IBM Corp. 1982, 2003 617

Table 54. Universal Character Set (UTF-8, UTF-16, and UCS-2)

CCSID Description z/OS
OS/390

iSeries AIX HP Sun NT SCO SGI Linux

1200 UTF-16 X C X X X X X X X

1208 UTF-8 Level 3 X C X X X X X X X

13488 UCS-2 Level 1 C X C * C * C * C * C * C * C *

Note: * In DB2 UDB for LUW, 13488 is only used to tag the GRAPHIC column of eucJP and eucTW databases.

CCSID values

618 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 55. CCSIDs for EBCDIC Group 1 (Latin-1) Countries

CCSID Description z/OS
OS/390

iSeries AIX HP Sun NT SCO SGI Linux

37 USA, Canada, Netherlands,
Portugal, Brazil, Australia,
New Zealand

X X C C C C C C C

256 Word Processing,
Netherlands

X X

273 Austria, Germany X X C C C C C C C

274 Belgium X C C C C C C C

277 Denmark, Norway X X C C C C C C C

278 Finland, Sweden X X C C C C C C C

280 Italy X X C C C C C C C

284 Spain, Latin America
(Spanish)

X X C C C C C C C

285 United Kingdom X X C C C C C C C

297 France X X C C C C C C C

500 Belgium, Canada,
Switzerland, International
Latin-1

X X C C C C C C C

871 Iceland X X C C C C C C C

924 Latin-0 X X

1047 Latin-0 (with Euro) X

1140 USA, Canada, Netherlands,
Portugal, Brazil, Australia,
New Zealand

X X C C C C C C C

1141 Austria, Germany X X C C C C C C C

1142 Denmark, Norway X X C C C C C C C

1143 Finland, Sweden X X C C C C C C C

1144 Italy X X C C C C C C C

1145 Spain, Latin America
(Spanish)

X X C C C C C C C

1146 United Kingdom X X C C C C C C C

1147 France X X C C C C C C C

1148 Belgium, Canada,
Switzerland, International
Latin-1

X X C C C C C C C

1149 Iceland X X C C C C C C C

CCSID values

Appendix F. CCSID values 619

Table 56. CCSIDs for PC-Data and ISO Group 1 (Latin-1) Countries

CCSID Description z/OS
OS/390

iSeries AIX HP Sun NT SCO SGI Linux

437 USA X C C C C C C C C

819 Latin-1 countries (ISO
8859-1)

X C X X X C X X X

850 Latin Alphabet Number 1;
Latin-1 countries

X C X C C C C C C

858 Latin Alphabet Number 1;
Latin-1 countries (with Euro)

X C

860 Portugal (850 subset) X C C C C C C C C

861 Iceland X C

863 Canada (850 subset) X C C C C C C C C

865 Denmark, Norway, Finland,
Sweden

X C

923 Latin-0 X C X X X C C C X

1009 IRV 7-bit X C

1010 France 7-bit X C

1011 Germany 7-bit X C

1012 Italy 7-bit X C

1013 United Kingdom 7-bit X C

1014 Spain 7-bit X C

1015 Portugal 7-bit X C

1016 Norway 7-bit X C

1017 Denmark 7-bit X C

1018 Finland and Sweden 7-bit X C

1019 Belgium and Netherlands
7-bit

X C

1051 HP Emulation X C C X C C C C C

1252 Windows** Latin-1 X C C C C X C C C

1275 Macintosh** Latin-1 X C

5348 Windows Latin-1(with Euro) X

CCSID values

620 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 57. CCSIDs for EBCDIC Group 1a (Non-Latin-1 SBCS) Countries

CCSID Description z/OS
OS/390

iSeries AIX HP Sun NT SCO SGI Linux

420 Arabic (Type 4)Visual LTR X X C C C C C C C

423 Greek X X C C C C C C C

424 Hebrew(Type 4) X X C C C C C C C

425 Arabic (Type 5) C C C C C C C

870 Latin-2 Multilingual X X C C C C C C C

875 Greek X X C C C C C C C

880 Cyrillic Multilingual X X

905 Turkey Latin-3 Multilingual X X

918 Urdu X X

1025 Cyrillic Multilingual X X C C C C C C C

1026 Turkey Latin-5 X X C C C C C C C

1097 Farsi X X

1112 Baltic Multilingual X X C C C C C C C

1122 Estonia X X C C C C C C C

1123 Ukraine X X C C C C C C C

1137 Devanagari X X C C C C C C C

1153 Latin-2 (with Euro) X X C C C C C C C

1154 Cyrillic (with Euro) X X C C C C C C C

1155 Turkey Latin-5 (with Euro) X X C C C C C C C

1156 Balitic (with Euro) X X C C C C C C C

1157 Estonia (with Euro) X X C C C C C C C

1158 Ukraine (with Euro) X X C C C C C C C

4971 Greek (with Euro) X X

8612 Arabic (Type 5) X X

8616 Hebrew (Type 6) X

12708 Arabic (Type 7) X

62211 Hebrew (Type 5) X C C C C C C C

62224 Arabic (Type 6) X C C C C C C C

62229 Hebrew (Type 8) C C C C C C C

62233 Arabic (Type 8) C C C C C C C

62234 Arabic (Type 9) C C C C C C C

62235 Hebrew (Type 6) X C C C C C C C

62240 Hebrew (Type 11) C C C C C C C

62245 Hebrew (Type 10) X C C C C C C C

62250 Arabic (Type 12) C C C C C C C

62251 Arabic (Type 6) C C C C C C C

CCSID values

Appendix F. CCSID values 621

Table 57. CCSIDs for EBCDIC Group 1a (Non-Latin-1 SBCS) Countries (continued)

CCSID Description z/OS
OS/390

iSeries AIX HP Sun NT SCO SGI Linux

String types:

4 Visual / Left-to-Right / Shaped / Symmetrical Swapping Off

5 Implicit / Left-to-Right / Unshaped / Symmetrical Swapping On

6 Implicit / Right-to-Left / Unshaped / Symmetrical Swapping On

7 Visual / Contextual / Unshaped / Symmetrical Swapping Off

8 Visual / Right-to-Left / Shaped / Symmetrical Swapping Off

9 Visual / Right-to-Left / Shaped / Symmetrical Swapping On

10 Implicit / Contextual-Left / Unshaped / Symmetrical Swapping On

11 Implicit / Contextual-Right / Unshaped / Symmetrical Swapping On

12 Implicit / Right-to-Left / Shaped / Symmetrical Swapping On

CCSID values

622 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 58. CCSIDs for PC-Data and ISO Group 1a (Non-Latin-1 SBCS) Countries

CCSID Description z/OS
OS/390

iSeries AIX HP Sun NT SCO SGI Linux

720 Arabic (MS-Dos) X C

737 Greek (MS-Dos) X C C C C X C C C

775 Baltic (MS-Dos) X C

808 Cyrillic (with Euro) X

813 Greek/Latin (ISO 8859-7) X C X X C C X C X

848 Ukraine (with Euro) X

849 Belarus (with Euro) X

851 Greek X C

852 Latin-2 Multilingual X C C C C C C C C

855 Cyrillic Multilingual X C C C C C C C C

856 Arabic (Type 5) X C X C C C C C C

857 Turkey Latin-5 X C C C C C C C C

862 Hebrew (Type 4) X C C C C C C C C

864 Arabic (Type 5) X C C C C C C C C

866 Cyrillic X C C C C C C C C

867 Hebrew (with Euro)(Type 10) X

868 Urdu X C

869 Greek X C C C C C C C C

872 Cyrillic Multilingual (with
Euro)

X

878 Russian Internet X C

901 Baltic 8-bit (with Euro) X

902 Estonia 8-bit (with Euro) X

912 Latin-2 (ISO 8859-2) X C X X C C X C X

914 Latin-4 (ISO 8859-4) X C

915 Cyrillic Multilingual (ISO
8859-5)

X C X X C C X C X

916 Hebrew/Latin (ISO 8859-8)
(Type 5)

X C X C C C C C X

920 Turkey Latin-5 (ISO 8859-9) X C X X C C X C X

921 Baltic 8-bit (ISO 8859-13) X C X C C C C C C

922 Estonia 8-bit X C X C C C C C C

1008 Arabic 8-bit ISO X C

1046 Arabic (Type 5) X C X C C C C C C

1089 Arabic (ISO 8859-6) (Type 5) X C X X C C C C C

1098 Farsi X C

1124 Ukraine 8-bit ISO X C X C C C C C C

1125 Ukraine X C C C C C C C C

1131 Belarus X C C C C C C C C

CCSID values

Appendix F. CCSID values 623

Table 58. CCSIDs for PC-Data and ISO Group 1a (Non-Latin-1 SBCS) Countries (continued)

CCSID Description z/OS
OS/390

iSeries AIX HP Sun NT SCO SGI Linux

1250 Windows Latin-2 X C C C C X C C C

1251 Windows Cyrillic X C C C C X C C C

1253 Windows Greek X C C C C X C C C

1254 Windows Turkey X C C C C X C C C

1255 Windows Hebrew (Type 5) X C C C C X C C C

1256 Windows Arabic (Type 5) X C C C C X C C C

1257 Windows Baltic X C C C C X C C C

1280 Macintosh** Greek X C

1281 Macintosh** Turkish X C

1282 Macintosh** Latin-2 X C

1283 Macintosh** Cyrillic X C

4909 ISO 8859-7 Greek/Latin
(with Euro)

X

4948 Latin-2 Multilingual X C

4951 Cyrillic Multilingual X C

4952 Hebrew X C

4953 Turkey Latin-5 X C

4960 Arabic X C

4965 Greek C

5346 Windows Latin-2 (with Euro) X C

5347 Windows Cyrillic (with Euro) X C

5349 Windows Greek (with Euro) X C

5350 Windows Turkey (with Euro) X C

5351 Windows Hebrew (with
Euro)

X C

5352 Windows Arabic (with Euro) X C

5353 Windows Baltic Rim (with
Euro)

X C

9056 Arabic (Storage Interchange) X C

62208 Hebrew (Type 4) X X X X X X X

62209 Hebrew (Type 10) C C C C C C C C

62210 Hebrew/Latin (ISO 8859-8)
(Type 4)

C X X C C C C C

62213 Hebrew (Type 5) C C C C C C C C

62215 Windows Hebrew (Type 4) C C C C X C C C

62218 Arabic (Type 4) C C C C C C C C

62220 Hebrew (Type 6) X X X X X C C

62221 Hebrew (Type 6) C C C C C C C C

62222 Hebrew/Latin (ISO 8859-8)
(Type 6)

C X X C C C C C

CCSID values

624 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 58. CCSIDs for PC-Data and ISO Group 1a (Non-Latin-1 SBCS) Countries (continued)

CCSID Description z/OS
OS/390

iSeries AIX HP Sun NT SCO SGI Linux

62223 Windows Hebrew (Type 6) C C C C X C C C

62225 Arabic (Type 6) C C C C C C C

62226 Arabic (Type 6) X C C C C C C

62227 Arabic (ISO 8859-6) (Type 6) X X C C C C C

62228 Windows Arabic (Type 6) C C C C X C C C

62230 Hebrew (Type 8) X X X X X C C

62231 Hebrew (Type 8) C C C C C C C

62232 Hebrew/Latin (ISO 8859-8)
(Type 8)

X X C C C C C

62236 Hebrew (Type 10) X X X X X X X

62237 Hebrew (Type 8)

62238 ISO 8859-8 Hebrew/Latin
(Type 10)

C C C C X C C C

62239 Windows Hebrew (Type 10) C C C C X C C C

62241 Hebrew (Type 11) X X X X X X X

62242 Hebrew (Type 11) C C C C C C C

62243 Hebrew/Latin (ISO 8859-8)
(Type 11)

X X C C C C C

62244 Windows Hebrew (Type 11) C C C X C C C

String types:

4 Visual / Left-to-Right / Shaped / Symmetrical Swapping Off

5 Implicit / Left-to-Right / Unshaped / Symmetrical Swapping On

6 Implicit / Right-to-Left / Unshaped / Symmetrical Swapping On

7 Visual / Contextual / Unshaped / Symmetrical Swapping Off

8 Visual / Right-to-Left / Shaped / Symmetrical Swapping Off

9 Visual / Right-to-Left / Shaped / Symmetrical Swapping On

10 Implicit / Contextual-Left / Unshaped / Symmetrical Swapping On

11 Implicit / Contextual-Right / Unshaped / Symmetrical Swapping On

12 Implicit / Right-to-Left / Shaped / Symmetrical Swapping On

CCSID values

Appendix F. CCSID values 625

Table 59. SBCS CCSIDs for EBCDIC Group 2 (DBCS) Countries

CCSID Description z/OS
OS/390

iSeries AIX HP Sun NT SCO SGI Linux

290 Japan Katakana (extended) X X C C C C C C C

833 Korea (extended) X X C C C C C C C

836 Simplified Chinese
(extended)

X X C C C C C C C

838 Thailand (extended) X X C C C C C C C

1027 Japan English (extended) X X C C C C C C C

1130 Vietnam X X C C C C C C C

1132 Lao X X

1159 Traditional Chinese
(extended with Euro)

C C C C C C C

1160 Thai (with Euro) X X C C C C C C C

1164 Vietnam (with Euro) X X C C C C C C C

5123 Japan (with Euro) X X

8482 Japan Katakana (extended
with Euro)

X C C C C C C C

9030 Thailand (extended) X X

13121 Korea Windows X X

13124 Traditional Chinese X X

28709 Traditional Chinese
(extended)

X X C C C C C C C

CCSID values

626 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 60. SBCS CCSIDs for PC-Data Group 2 (DBCS) Countries

CCSID Description z/OS
OS/390

iSeries AIX HP Sun NT SCO SGI Linux

367 Korea and Simplified
Chinese EUC

X C X C

874 Thailand (extended) X C X X X

891 Korea (non-extended) C C

895 Japan EUC - JISX201 Roman
Set

C

896 Japan EUC - JISX201
Katakana Set

C

897 Japan (non-extended) C C

903 Simplified Chinese
(non-extended)

C C

904 Traditional Chinese
(non-extended)

X C

1040 Korea (extended) C C

1041 Japan (extended) X C

1042 Simplified Chinese
(extended)

C C

1043 Traditional Chinese
(extended)

X C

1088 Korea (KS Code 5601-89) X C

1114 Traditional Chinese (Big-5) X C

1115 Simplified Chinese GB-Code X C

1126 Korea Windows X C

1129 Vietnam X C X

1133 Lao ISO X C

1162 Thailand (extended) (180
char) (with Euro)

X

1163 ISO Vietnam (with Euro) X

1258 Vietnam X C X

4970 Thailand (extended) X C

5210 Traditional Chinese X C

9066 Thailand (extended) X C

CCSID values

Appendix F. CCSID values 627

Table 61. DBCS CCSIDs for EBCDIC Group 2 (DBCS) Countries

CCSID Description z/OS
OS/390

iSeries AIX HP Sun NT SCO SGI Linux

300 Japan - including 4370
user-defined characters
(UDC)

X X C C C C C C C

834 Korea - including 1880 UDC X X C C C C C C C

835 Traditional Chinese -
including 6204 UDC

X X C C C C C C C

837 Simplified Chinese -
including 1880 UDC

X X C C C C C C C

4396 Japan - including 1880 UDC X X C C C C C C C

4930 Korea Windows X X C C C C C C C

4933 Simplified Chinese X X C C C C C C C

9027 Traditional Chinese (with
Euro) - including 6204 UDC

C C C C C C C C

16684 Japan (with Euro) X X C C C C C C C

CCSID values

628 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 62. DBCS CCSIDs for PC-Data Group 2 (DBCS) Countries

CCSID Description z/OS
OS/390

iSeries AIX HP Sun NT SCO SGI Linux

301 Japan - including 1880 UDC X C X C C C C C C

926 Korea - including 1880 UDC C C

927 Traditional Chinese -
including 6204 UDC

X C C C C C C C C

928 Simplified Chinese -
including 1880 UDC

C C

941 Japan Windows X C C C C X C C C

947 Traditional Chinese (Big-5) X C X C C X C C C

951 Korea (KS Code 5601-89) -
including 1880 UDC

X C C C C X C C C

952 Japan (EUC) X208-1990 set C

953 Japan (EUC) X212-1990 set C

971 Korea (EUC) - including 188
UDC

X C X X X C C C C

1351 Japan HP-UX (J15) X C C X C C C C C

1362 Korea Windows X C C C C X C C C

1380 Simplified Chinese
(GB-Code) - including 1880
UDC

X C C C C X X C C

1382 Simplified Chinese (EUC) -
including 1360 UDC

X C X X X C X C C

1385 Traditional Chinese X C C C C X C C C

CCSID values

Appendix F. CCSID values 629

Table 63. Mixed CCSIDs for EBCDIC Group 2 (DBCS) Countries

CCSID Description z/OS
OS/390

iSeries AIX HP Sun NT SCO SGI Linux

930 Japan Katakana/Kanji
(extended) - including 4370
UDC

X X C C C C C C C

933 Korea (extended) - including
1880 UDC

X X C C C C C C C

935 Simplified Chinese
(extended) - including 1880
UDC

X X C C C C C C C

937 Traditional Chinese
(extended) - including 4370
UDC

X X C C C C C C C

939 Japan English/Kanji
(extended) - including 4370
UDC

X X C C C C C C C

1364 Korea (extended) X X C C C C C C C

1371 Traditional Chinese
(extended with Euro) -
including 4370 UDC

C C C C C C C

1388 Simplified Chinese X X C C C C C C C

1390 Japan Katakana/Kanji
(extended with Euro) -
including 4370 UDC

X C C C C C C C

1399 Japan (with Euro) X X C C

5026 Japan Katakana/Kanji
(extended) - including 1880
UDC)

X X C C C C C C C

5035 Japan English/Kanji
(extended) - including 1880
UDC

X X C C C C C C C

CCSID values

630 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 64. Mixed CCSIDs for PC-Data Group 2 (DBCS) Countries

CCSID Description z/OS
OS/390

iSeries AIX HP Sun NT SCO SGI Linux

932 Japan (non-extended) -
including 1880 UDC

X C X C C C C C C

934 Korea (non-extended)
including 1880 UDC

C

936 Simplified Chinese
(non-extended) - including
1880 UDC

C

938 Traditional Chinese
(non-extended) - including
6204 UDC)

X C C C C C C C C

942 Japan (extended) - including
1880 UDC

X C C C C C C C C

943 Japan NT X C C C X X C C C

944 Korea (extended) - including
1880 UDC

C

946 Simplified Chinese
(extended) - including 1880
UDC

C

948 Traditional Chinese
(extended) - including 6204
UDC

X C C C C C C C C

949 Korea (KS Code 5601-89) -
including 1880 UDC

X C C C C C C C C

950 Traditional Chinese (Big-5) X C X X X X C C X

954 Japan (EUC) C X X X C X C X

956 Japan 2022 TCP C

957 Japan 2022 TCP C

958 Japan 2022 TCP C

959 Japan 2022 TCP C

964 Traditional Chinese (EUC) C X X X C C C C

965 Traditional Chinese 2022 TCP C

970 Korea EUC X C X X X C C X X

1363 Korea Windows X C C C C X C C C

1381 Simplified Chinese GB-Code X C C C C X C C C

1383 Simplified Chinese EUC X C X X X C X C X

1386 Simplified Chinese X C X C C X C C C

1392 Simplified Chinese GB18030 C

5039 Japan HP-UX (J15) X C X C C C C C

5050 Japan (EUC) C

5052 Japan 2022 TCP C

5053 Japan 2022 TCP C

5054 Japan 2022 TCP C

CCSID values

Appendix F. CCSID values 631

Table 64. Mixed CCSIDs for PC-Data Group 2 (DBCS) Countries (continued)

CCSID Description z/OS
OS/390

iSeries AIX HP Sun NT SCO SGI Linux

5055 Japan 2022 TCP C

17354 Korea 2022 TCP C

25546 Korea 2022 TCP C

33722 Japan EUC C

CCSID values

632 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Appendix G. CONNECT (Type 1) and CONNECT (Type 2)
differences

There are two types of CONNECT statements. They have the same syntax, but
they have different semantics:
v CONNECT (Type 1) is used for remote unit of work. See “CONNECT (Type 1)”

on page 311
v CONNECT (Type 2) is used for distributed unit of work. See “CONNECT (Type

2)” on page 315

The following table summarizes the differences between CONNECT (Type 1) and
CONNECT (Type 2) rules:

Table 65. CONNECT (Type 1) and CONNECT (Type 2) differences

Type 1 Rules Type 2 Rules

CONNECT statements can only be executed
when the application process is in the
connectable state. No more than one
CONNECT statement can be executed within
the same unit of work.

More than one CONNECT statement can be
executed within the same unit of work. There
are no rules about the connectable state.

If the CONNECT statement fails because the
server name is not listed in the local
directory, the connection state of the
application process is product-specific.

If a CONNECT statement fails because the
application process is not in the connectable
state, the connection status of the application
process is unchanged.

If a CONNECT statement fails for any other
reason, the application process is placed in
the unconnected state.

If a CONNECT statement fails, the current
connection is unchanged and any subsequent
SQL statements are executed by the current
server.

CONNECT ends its only existing connection
of the application process. Accordingly,
CONNECT also closes any open cursors of
the application process. (The only cursors
that can possibly be open when CONNECT
is successfully executed are those defined
with the WITH HOLD option.)

CONNECT does not end connections and
does not close cursors.

A CONNECT to the current server is
executed like any other CONNECT (Type 1)
statement.

A CONNECT to the current server causes an
error.129

Determining the CONNECT rules that apply
A program preparation option is used to specify the type of CONNECT that will
be performed by a program. The program preparation option is product-specific.

129. In DB2 UDB for z/OS and OS/390, the SQLRULES(STD) bind option can be used to allow a CONNECT to the current server.

© Copyright IBM Corp. 1982, 2003 633

G
G
G
G

G

The CONNECT rules that apply to an application process are determined by the
first CONNECT statement that is executed (successfully or unsuccessfully) by that
application process:
v If it is a CONNECT (Type 1), then CONNECT (Type 1) rules apply and

CONNECT (Type 2) statements are invalid
v If it is a CONNECT (Type 2), then CONNECT (Type 2) rules apply and

CONNECT (Type 1) statements are invalid.

Programs containing CONNECT statements that are precompiled with different
CONNECT program preparation options cannot execute as part of the same
application process. An error will occur when an attempt is made to execute the
invalid CONNECT statement.

Connecting to application servers that only support remote unit of
work

CONNECT (Type 2) connections to application servers that only support remote
unit of work might result in connections that are read-only.

If a CONNECT (Type 2) is performed to an application server that only supports
remote unit of work:
v The connection allows read-only operations if, at the time of the connect, there

are any dormant connections that allow updates. In this case, the connection
does not allow updates.

v Otherwise, the connection allows updates.

If a CONNECT (Type 2) is performed to an application server that supports
distributed unit of work:
v The connection allows read-only operations when there are dormant connections

that allow updates to application servers that only support remote unit of work.
In this case, the connection allows updates as soon as the dormant connecton is
ended.

v Otherwise, the connection allows updates.

634 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Appendix H. Coding SQL statements in C applications

This section describes the programming techniques that are unique to coding SQL
statements within a C program. Throughout this book, C is used to represent either
C or C++, except where explicitly noted otherwise.

Defining the SQL communications area in C
A C program that contains SQL statements must include one or both of the
following:
v An SQLSTATE variable130 declared as char SQLSTATE[6]

v An SQLCODE variable130 declared as long SQLCODE

or,
v An SQLCA (which contains an SQLSTATE and SQLCODE variable).

The SQLSTATE and SQLCODE values are set by the database manager after each
SQL statement is executed. An application can check the SQLSTATE or SQLCODE
value to determine whether the last SQL statement was successful. See Appendix E,
“SQLSTATE values—common return codes”, on page 581 for more information.

The SQLCA can be coded in a C program either directly or by using the SQL
INCLUDE statement. Using the SQL INCLUDE statement requests the inclusion of
a standard declaration:

EXEC SQL INCLUDE SQLCA;

A standard declaration includes both a structure definition and a static data area
named 'sqlca'. The SQLCA must not be defined within an SQL declare section. See
Appendix C, “SQLCA (SQL communication area)”, on page 567 and “INCLUDE”
on page 459 for more information.

The SQLSTATE, SQLCODE, and SQLCA variables must appear before any
executable statements. The scope of the declaration must include the scope of all
SQL statements in the program.

Note: Many SQL error messages contain message data that is of varying length.
The lengths of these data fields are embedded in the value of the SQLCA
sqlerrmc field. Because of these lengths, printing the value of sqlerrmc from
a C program might give unpredictable results.

Defining SQL descriptor areas in C
The following statements require an SQLDA:

EXECUTE...USING DESCRIPTOR descriptor-name

FETCH...USING DESCRIPTOR descriptor-name

OPEN...USING DESCRIPTOR descriptor-name

DESCRIBE statement-name INTO descriptor-name

130. In DB2 UDB for z/OS and OS/390, the STDSQL(YES) option must be in effect to declare the SQLSTATE and SQLCODE
variables. In DB2 UDB for LUW, the LANGLEVEL SQL92E option must be used to declare the SQLSTATE and SQLCODE
variables.

© Copyright IBM Corp. 1982, 2003 635

PREPARE statement-name INTO descriptor-name

CALL...USING DESCRIPTOR descriptor-name

Unlike the SQLCA, there can be more than one SQLDA in a program, and an
SQLDA can have any valid name. An SQLDA can be coded in a C program either
directly or by using the SQL INCLUDE statement. Using the SQL INCLUDE
statement requests the inclusion of a standard declaration:

EXEC SQL INCLUDE SQLDA;

A standard declaration includes only a structure definition with the name 'sqlda'.
The SQLDA must not be defined within an SQL declare section. See Appendix D,
“SQLDA (SQL descriptor area)”, on page 571 and “INCLUDE” on page 459 for
more information.

One benefit from using the INCLUDE SQLDA SQL statement is the following
macro definition:

#define SQLDASIZE(n) (sizeof(struct sqlda) + (n-1)* sizeof(struc sqlvar))

This macro makes it easy to allocate storage for an SQLDA with a specified
number of SQLVAR elements. In the following example, the SQLDASIZE macro is
used to allocate storage for an SQLDA with 20 SQLVAR elements.

#include <stdlib.h>
EXEC SQL INCLUDE SQLDA;
struct sqlda *mydaptr;
short numvars = 20;

.

.
mydaptr = (struct sqlda *) malloc(SQLDASIZE(numvars));
mydaptr->sqln = 20;

Here are other macro definitions that are included with the INCLUDE SQLDA
statement:

GETSQLDOUBLED(daptr)
Returns 1 if the SQLDA pointed to by daptr has been doubled, or 0 if it
has not been doubled. The SQLDA is doubled if the seventh byte in the
SQLDAID field is set to ’2’.

SETSQLDOUBLED(daptr, newvalue)
Sets the seventh byte of SQLDAID to newvalue.

GETSQLDALONGLEN(daptr,n)
Returns the length attribute of the nth entry in the SQLDA to which daptr
points. Use this only if the SQLDA was doubled and the nth SQLVAR
entry has a LOB data type.

SETSQLDALONGLEN(daptr,n,len)
Sets the SQLLONGLEN field of the SQLDA to which daptr points to len
for the nth entry. Use this only if the SQLDA was doubled and the nth
SQLVAR entry has a LOB data type.

GETSQLDALENPTR(daptr,n)
Returns a pointer to the actual length of the data for the nth entry in the
SQLDA to which daptr points. The SQLDATALEN pointer field returns a
pointer to a long (4 byte) integer. If the SQLDATALEN pointer is zero, a
NULL pointer is returned. Use this only if the SQLDA has been doubled.

C Applications

636 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SETSQLDALENPTR(daptr,n,ptr)
Sets a pointer to the actual length of the data for the nth entry in the
SQLDA to which daptr points. Use this only if the SQLDA has been
doubled.

SQLDA declarations can appear wherever a structure definition is allowed. Normal
C scope rules apply.

Embedding SQL statements in C
SQL statements can be coded in a C program wherever executable statements can
appear.

Each SQL statement in a C program must begin with EXEC SQL and end with a
semicolon (;). 131 The EXEC SQL keywords must appear all on one line, but the
remainder of the statement can appear on the next and subsequent lines.

For example, an UPDATE statement coded in a C program might be coded as
follows:

EXEC SQL
UPDATE DEPARTMENT
SET MGRNO = :MGR_NUM
WHERE DEPTNO = :INT_DEPT ;

Comments
In addition to SQL comments (--), C comments (/* ... */) can be included within
embedded SQL statements wherever a blank is allowed, except between the
keywords EXEC and SQL. C Comments can span any number of lines but cannot
be nested. 132 Single-line comments (starting with //) can be used in a C++ source
program but are not permitted anywhere in a C source program.

Continuation for SQL statements
SQL statements can be contained on one or more lines. An SQL statement can be
split wherever a blank can appear. A character-string constant or delimited
identifier can be continued on the following line using the backslash (\). Identifiers
that are not delimited cannot be continued. For graphic-string constants in
EBCDIC, see product documentation.

Cursors
The DECLARE CURSOR statement must precede all statements that explicitly refer
to the cursor by name.

Including code
SQL statements or C statements can be included by embedding the following SQL
statement at the point in the source code where the statements are to be
embedded:

EXEC SQL INCLUDE name;

131. In DB2 UDB for z/OS and OS/390, if the HOST(C(FOLD)) option is specified, SQL keywords and SQL identifiers are folded to
uppercase. When the option is not specified, SQL keywords must be specified in uppercase. For either case, host variables are
never folded.

132. In DB2 UDB for z/OS and OS/390, the STDSQL(YES) option must be in effect to use SQL comments.

C Applications

Appendix H. Coding SQL statements in C applications 637

C #include statements cannot be used to include SQL statements or declarations of
C variables that are referenced in SQL statements.

Margins
SQL statements must be coded in columns 1 through 80. 133

Names
Any valid C variable name can be used for a host variable, as long as it:
v does not contain DBCS characters
v is less than or equal to 128 characters in length
v does not begin with ’DB2’, ’DSN’, ’RDI’, or ’SQL’ in any combination of

uppercase or lowercase letters (these names are reserved for the database
manager).

Access plan names must not start with ’DSN’. External entry names must not start
with ’DSN’, ’RDI’, or ’SQL’.

For information on the length of a host identifier, see Table 37 on page 551.

NULLs and NULs
C and SQL both use the word null, but for different meanings. The C language has
a null character (NUL), a null pointer (NULL), and a null statement (just a
semicolon). The C NUL is a single character which compares equal to 0. The C
NULL is a special reserved pointer value that does not point to any valid data
object. The SQL null value is a special value that is distinct from all nonnull values
and denotes the absence of a (nonnull) value.

Statement labels
Executable SQL statements can be preceded with a label, if desired.

Preprocessor considerations
The precompiler does not support C preprocessor directives.

Trigraphs
Some characters from the C character set are not available on all keyboards. These
characters can be entered into a C source program using a sequence of three
characters called a trigraph. Trigraphs are not supported within SQL statement,
however, the following trigraph sequences are supported within host variable
declarations:

??(left bracket ([)

??) right bracket (])

??< left brace ({)

??> right brace (})

??/ backslash (\)

133. In DB2 UDB for z/OS and OS/390, a program preparation option must be used to specify margins 1 and 80. If the program
preparation option is not specified, the margins will be 1 and 72.

C Applications

638 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Handling SQL errors and warnings in C
The SQL WHENEVER statement tests the result of every SQL statement within its
scope for an error or warning condition. The target for the GOTO clause in a
WHENEVER statement must be within the scope of any SQL statements affected
by the WHENEVER statement.

The stand-alone SQLSTATE and SQLCODE or information in the SQLCA can also
be used in the detection or further handling of error and warning conditions. See
Appendix C, “SQLCA (SQL communication area)”, on page 567 for more
information.

Using host variables in C
All host variables used in SQL statements must be explicitly declared. A host
variable used in an SQL statement must be declared prior to the first use of the
host variable in an SQL statement.

The C statements that are used to define the host variables must be preceded by a
BEGIN DECLARE SECTION statement and followed by an END DECLARE
SECTION statement.

All host variables within an SQL statement must be preceded by a colon (:).

The names of host variables must be unique within the program, even if the host
variables are in different blocks or procedures.

An SQL statement that uses a host variable must be within the scope of the
statement in which the variable was declared.

Host variables must not be unions, union elements, or pointers. However, a single
pointer can be used to reference an SQLDA. Host variables must not be arrays or
array elements unless they are used to represent indicator arrays or indicator
variables.

Declaring host variables in C
Only a subset of valid C declarations are recognized as valid host variable
declarations.

Numeric host variables
The following figure shows the syntax for valid numeric host variable declarations.

Numeric

��
auto
extern
static

const
volatile

float
double

int
short

(1)
sqlint32

int
long

�

C Applications

Appendix H. Coding SQL statements in C applications 639

� �

,

variable-name
= expression

; ��

Notes:

1 For maximum application portability, use sqlint32 for INTEGER
host variables. To use sqlint32, the header file sqlsystm.h must be included.

Character host variables (excluding CLOB)
There are three valid non-LOB forms for character host variables:

Single-character form
NUL-terminated character form
VARCHAR structured form

All character types are treated as unsigned.

Single-character form

��
auto
extern
static

const
volatile

unsigned
char �

� �

,

variable-name
= expression

; ��

NUL-terminated character form

��
auto
extern
static

const
volatile

unsigned
char �

� �

,
(1) (2)

variable-name [length]
= expression

; ��

Notes:

1 On input, the string contained by the variable must be NUL-terminated. On
output, the string will be NUL-terminated. 134

2 length must be an integer constant greater than 1 and no greater than the
maximum length of VARCHAR+1. See Table 39 on page 552 for more
information.

C Applications

640 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

VARCHAR structured form

��
(1)

auto
extern
static

const
volatile

(2)
struct

tag
{ �

�
int (3) (4)

short var-1 ; char var-2 [length] ; }
unsigned

�

� �

,

variable-name
= { expression , expression }

; ��

Notes:

1 Use the VARCHAR structured form for bit data that may contain the NULL
character. The VARCHAR structured form will not be ended using the
NUL-terminator.

2 The struct tag can be used to define other data areas, but these cannot be
used as host variables.

3 var-1 and var-2 must be simple variable references and cannot be used as
host variables.

4 length must be an integer constant that is greater than 0 and not greater than
the maximum length of VARCHAR. See Table 39 on page 552 for more
information.

Example:
EXEC SQL BEGIN DECLARE SECTION;

/* valid declaration of host variable vstring */
struct VARCHAR
{

short len;
char s[10];

} vstring;

/* invalid declaration of host variable wstring */
struct VARCHAR wstring;

Graphic host variables (excluding DBCLOB)
There are three valid non-LOB forms for graphic host variables:

Single-graphic form
NUL-terminated graphic form
VARGRAPHIC structured form

Single-graphic form

134. In DB2 UDB for iSeries and DB2 UDB for LUW, a program preparation option must be used if the string will be
NUL-terminated when the host variable is large enough to contain the result, but not large enough to contain the
NUL-terminator. The program preparation option must also be specified for the database manager to verify that
NUL-terminated input host variables contain a NUL.

C Applications

Appendix H. Coding SQL statements in C applications 641

��
auto
extern
static

const
volatile

wchar_t �

,

variable-name
= expression

�

� ; ��

NUL-terminated graphic form

��
auto
extern
static

const
volatile

wchar_t �

� �

,
(1) (2)

variable-name [length] ;
= expression

��

Notes:

1 On input, the string contained by the variable must be NUL-terminated. On
output, the string will be NUL-terminated.134

2 length must be an integer constant that is greater than 1 and not greater than
the maximum length of VARGRAPHIC+1. See Table 39 on page 552 for more
information.

VARGRAPHIC structured form

��
auto
extern
static

const
volatile

(1)
struct

tag
{ �

�
int

short var-1 ;
(2) (3)

wchar_t var-2 [length] ; } �

� �

,

variable-name ;
= { expression , expression }

��

Notes:

1 The struct tag can be used to define other data areas, but these cannot be
used as host variables.

2 var-1 and var-2 must be simple variable references and cannot be used as
host variables.

C Applications

642 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

3 length must be an integer constant that is greater than 0 and no greater than
the maximum length of VARGRAPHIC. See Table 39 on page 552 for more
information.

Example:
EXEC SQL BEGIN DECLARE SECTION;

/* valid declaration of host variable vstring */
struct VARGRAPH
{

short len;
wchar_t s[10];

} vstring;

/* invalid declaration of host variable wstring */
struct VARGRAPH wstring;

LOB host variables
C does not have variables that correspond to the SQL data types for LOBs (large
objects). To create host variables that can be used with these data types, use the
SQL TYPE IS clause. The SQL precompiler replaces this declaration with a C
language structure in the output source.

LOB host variable

��
auto
extern
static

const
volatile

(1)
SQL TYPE IS CLOB

DBCLOB
BLOB

�

�
(2) (3)

(length)
K
M
G

�

� �

,
(4)

variable-name
(5) (6)

= { init-len,″init-data″ }

; ��

Notes:

1 SQL TYPE IS, CLOB, DBCLOB, BLOB, K, M, G can be in mixed case.

2 length must be an integer constant that is greater than 0 and no greater than
the maximum length of CLOB. See Table 39 on page 552 for more
information. The maximum value for length is further restricted if K, M or G
is specified or if DBCLOB is specified.

3 K multiplies length by 1024. M multiplies length by 1 048 576. G multiplies
length by 1 073 741 824.

4 The precompiler generates a structure tag which can be used to cast to the
host variable’s type.

5 The initialization length, init-len, must be an integer constant (that is, it

C Applications

Appendix H. Coding SQL statements in C applications 643

cannot include K, M, or G) that is greater than 0 and not greater than the
maximum length of a character constant. See Table 39 on page 552 for more
information.

6 If the LOB is not initialized within the declaration, then no initialization will
be done within the precompiler generated code. If a DBCLOB is initialized, it
is the user’s responsibility to prefix the string with an ’L’ (indicating a
wide-character string).

Examples: Example 1: The following declaration:
SQL TYPE IS CLOB(128K) var1, var2 = {10, "data2data2"};

Results in the effective generation of the following structure:
struct var1_t
{

unsigned long length;
char data[131072];

} var1, var2 = {10, "data2data2"};

Example 2: The following declaration:
SQL TYPE IS DBCLOB(128K) my_dbclob;

Results in the effective generation of the following structure:
struct my_dbclob_t {

unsigned long length;
wchar_t data[131072];

} my_dbclob;

Example 3: The following declaration:
SQL TYPE IS BLOB(128K) my_blob;

Results in the effective generation of the following structure:
struct my_blob_t {

unsigned long length;
char data[131072];

} my_blob;

LOB locator
The following shows the syntax for declaring large object locator host variables in
C.

LOB locator

��
auto
extern
static

const
volatile

(1) (2)
SQL TYPE IS CLOB_LOCATOR

DBCLOB_LOCATOR
BLOB_LOCATOR

�

� variable-name
(3)

= init-value

; ��

Notes:

1 Pointers to LOB Locators can be declared, with the same rules
and restrictions as for pointers to other host variable types.

C Applications

644 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

2 SQL TYPE IS, CLOB_LOCATOR, DBCLOB_LOCATOR, BLOB_LOCATOR can
be in mixed case.

3 init-value permits the initialization of pointer locator variables. Other types of
initialization will have no meaning.

Example: The following declaration:
SQL TYPE IS CLOB_LOCATOR my_locator;

Results in the effective generation of the following:
unsigned long my_locator;

DBCLOB and BLOB locators have similar syntax.

Indicator variables in C
An indicator variable is a two-byte integer (short int). On retrieval, an indicator
variable is used to show whether its associated host variable has been assigned a
null value. On assignment to a column, a negative indicator variable is used to
assign a null value.

See “References to host variables” on page 87 for more information on the use of
indicator variables.

Indicator variables are declared in the same way as host variables, and the
declarations of the two can be mixed in any way that seems appropriate to the
programmer.

Example: Given the statement:
EXEC SQL FETCH CLS_CURSOR INTO :ClsCd,

:Day :DayInd,
:Bgn :BgnInd,
:End :EndInd;

Variables can be declared as follows:
EXEC SQL BEGIN DECLARE SECTION;
char ClsCd[8];
char Bgn[9];
char End[9];
short Day, DayInd, BgnInd, EndInd;
EXEC SQL END DECLARE SECTION;

Declaring host structures in C
Host structures can be defined in C programs. A host structure contains an ordered
group of elementary C variables. It can have a maximum of two levels, even
though the host structure might itself occur within a multilevel structure. The one
exception is the declaration of a varying-length string, which requires another
structure and hence one more level. When the host structure occurs within a
multilevel structure, it must be the deepest level of the nested structure. The
following is an example of a host structure.

struct
{

char c1[3];
struct
{

short len;

C Applications

Appendix H. Coding SQL statements in C applications 645

char data[5];
} c2;
char c3[2];

} target;

In this example, target is the name of a host structure consisting of the c1, c2, and
c3 fields. c1 and c3 are character arrays, and c2 is the host variable equivalent to
the VARCHAR structured form.

The following shows the syntax for valid host structures:

Host structures

��
auto
extern
static

const
volatile

(1)
_Packed

struct
tag

{ �

� � �

�

�

,
(2)

float var-1 ;
double

int
short

(3)
sqlint32

int
long

varchar-structure
vargraphic-structure
lob
lob-locator

,

char var-2 ;
unsigned [length]

,

wchar_t var-5 ;
[length]

} �

� �

,

variable-name
= expression

; ��

Notes:

1 _Packed must not be used in C++. Instead, specify #pragma pack(1) prior to
the declaration and #pragma pack() after the declaration.
#pragma pack(1)
struct
{

short myshort;

C Applications

646 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

long mylong;
char mychar[5];

} a_st;
#pragma pack()

2 For details on declaring numeric, character, and graphic host variables, see
the notes under numeric, character and graphic host variables.

3 To use sqlint32, the header file sqlsystm.h must be included.

varchar-structure

�� struct
tag

{
signed

short
int

var-3 ; �

� char var-4 [length] ; }
unsigned

��

vargraphic-structure

�� struct
tag

{ short
int

var-6 ; wchar_t var-7 [length] �

� ; } ��

lob

�� SQL TYPE IS CLOB
DBCLOB
BLOB

(length)
K
M
G

��

lob-locator

�� SQL TYPE IS CLOB_LOCATOR
DBCLOB_LOCATOR
BLOB_LOCATOR

��

Host structure indicator array
The following figure shows the valid syntax for host structure indicator array
declarations.

Host structure indicator array

��
auto
extern
static

const
volatile

signed
short

int
�

C Applications

Appendix H. Coding SQL statements in C applications 647

� �

,

variable-name [dimension] ;
= expression

��

Note: Dimension must be an integer constant between 1 and 32767.

Using pointer data types in C
A host variable declared in C using pointer notation must be used as a pointer to
an SQL descriptor area. A descriptor-name can be specified in the CALL, DESCRIBE,
EXECUTE, FETCH, and OPEN statements. For example, descriptor-name could be
declared as:

sqlda *outsqlda;

and used in a statement as follows:
EXEC SQL DESCRIBE STMT1 INTO DESCRIPTOR :*outsqlda;

Determining equivalent SQL and C data types
The base SQLTYPE and SQLLEN of host variables are determined according to the
following table. If a host variable appears with an indicator variable, the SQLTYPE
is the base SQLTYPE plus one.

Table 66. C declarations mapped to typical SQL data types

C Data Type SQLTYPE of Host
Variable

SQLLEN of Host
Variable

SQL Data Type

short int 500/501 2 SMALLINT

long int 496/497 4 INTEGER

float 480/481 4 REAL

double 480/481 8 DOUBLE PRECISION

single-character form 452/453 1 CHAR(1)

NUL-terminated character form 460/461 length VARCHAR (length -
1)

VARCHAR structured form 448/449, 456/457 length VARCHAR (length)

single-graphic form 468/469 1 GRAPHIC(1)

NUL-terminated graphic form (wchar_t) 400/401 length VARGRAPHIC (length
- 1)

VARGRAPHIC structured form 464/465, 472/473 length VARGRAPHIC
(length)

SQLTYPE IS CLOB 408/409 length CLOB (length)

SQLTYPE IS DBCLOB 412/413 length DBCLOB (length)

SQLTYPE IS BLOB 404/405 length BLOB (length)

SQLTYPE IS CLOB_LOCATOR 964/965 4 CLOB locator 135

SQLTYPE IS DBCLOB_LOCATOR 968/969 4 DBCLOB locator 135

SQLTYPE IS BLOB_LOCATOR 960/961 4 BLOB locator 135

135. Do not use this data type as a column type.

C Applications

648 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

The following table can be used to determine the C data type that is equivalent to
a given SQL data type.

Table 67. SQL data types mapped to typical C declarations

SQL Data Type C Data Type Notes

SMALLINT short int

INTEGER long int

DECIMAL(p,s) or NUMERIC(p,s) no exact equivalent Use double.

REAL float

DOUBLE PRECISION double

CHAR(1) single-character form

CHAR(n) no exact equivalent If n>1, use NUL-terminated character
form

VARCHAR(n) NUL-terminated character form Allow at least n + 1 to accommodate
the NUL-terminator. If data can
contain character NULs (\0), use
VARCHAR structured form.

n is a positive integer. The maximum
value of n is 32 672. See Table 39 on
page 552 for more information.

VARCHAR structured form n is a positive integer. The maximum
value of n is 32 672. See Table 39 on
page 552 for more information.

CLOB(n) SQL TYPE IS CLOB(n) n is a positive integer. The maximum
value of n is 2 147 483 647. See
Table 39 on page 552 for more
information.

GRAPHIC(1) single-graphic form

GRAPHIC(n) no exact equivalent If n>1, use NUL-terminated graphic
form

VARGRAPHIC(n) NUL-terminated graphic form Allow at least n + 1 to accommodate
the NUL-terminator. If data can
contain graphic NUL values (/0/0),
use VARGRAPHIC structured form.

n is a positive integer. The maximum
value of n is 16 336. See Table 39 on
page 552 for more information.

VARGRAPHIC structured from n is a positive integer. The maximum
value of n is 16 336. See Table 39 on
page 552 for more information.

DBCLOB(n) SQL TYPE IS DBCLOB(n) n is a positive integer. The maximum
value of n is 1 073 741 823. See
Table 39 on page 552 for more
information.

BLOB(n) SQL TYPE IS BLOB(n) n is a positive integer. The maximum
value of n is 2 147 483 647. See
Table 39 on page 552 for more
information.

C Applications

Appendix H. Coding SQL statements in C applications 649

Table 67. SQL data types mapped to typical C declarations (continued)

SQL Data Type C Data Type Notes

DATE NUL-terminated character form Allow at least 11 characters to
accommodate the NUL-terminator.

VARCHAR structured form Allow at least 10 characters.

TIME NUL-terminated character form Allow at least 7 characters (9 to
include seconds) to accommodate the
NUL-terminator.

VARCHAR structured form Allow at least 6 characters; 8 to
include seconds.

TIMESTAMP NUL-terminated character form Allow at least 20 characters (27 to
include microseconds at full
precision) to accommodate the
NUL-terminator.

VARCHAR structured form Allow at least 19 characters; 26 to
include microseconds at full precision.

C Applications

650 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Appendix I. Coding SQL statements in COBOL applications

This section describes the programming techniques that are unique to coding SQL
statements within a COBOL program.

Defining the SQL communications area in COBOL
A COBOL program that contains SQL statements must include one or both of the
following:
v An SQLCODE variable137 declared as PICTURE S9(9) BINARY, PICTURE S9(9)

COMP-4, or PICTURE S9(9) COMP 136

v An SQLSTATE variable137 declared as PICTURE X(5)

or,
v An SQLCA (which contains an SQLCODE and SQLSTATE variable).

The SQLCODE and SQLSTATE values are set by the database manager after each
SQL statement is executed. An application can check the SQLCODE or SQLSTATE
value to determine whether the last SQL statement was successful. See Appendix E,
“SQLSTATE values—common return codes”, on page 581 for more information.

The SQLCA can be coded in a COBOL program either directly or by using the SQL
INCLUDE statement. Using the SQL INCLUDE statement requests the inclusion of
a standard declaration:

EXEC SQL INCLUDE SQLCA END-EXEC.

The SQLCA must not be defined within an SQL declare section. See Appendix C,
“SQLCA (SQL communication area)”, on page 567 and “INCLUDE” on page 459 for
more information.

The SQLSTATE, SQLCODE, and SQLCA variables must appear in the
WORKING-STORAGE SECTION or LINKAGE SECTION of the program and can
be placed wherever a record description entry can be specified in those sections.

Defining SQL descriptor areas in COBOL
The following statements require an SQLDA:

EXECUTE...USING DESCRIPTOR descriptor-name

FETCH...USING DESCRIPTOR descriptor-name

OPEN...USING DESCRIPTOR descriptor-name

DESCRIBE statement-name INTO descriptor-name

PREPARE statement-name INTO descriptor-name

CALL...USING DESCRIPTOR descriptor-name

136. In DB2 UDB for LUW, the SQLCODE variable must be declared as COMP-5.

137. In DB2 UDB for z/OS and OS/390, the STDSQL(YES) option must be in effect to declare the SQLSTATE and SQLCODE
variables. In DB2 UDB for LUW, the LANGLEVEL SQL92E option must be used to declare the SQLSTATE and SQLCODE
variables.

© Copyright IBM Corp. 1982, 2003 651

Unlike the SQLCA, there can be more than one SQLDA in a program, and an
SQLDA can have any valid name.

The SQLDA can be coded in a COBOL program either directly or by using the SQL
INCLUDE statement. The SQLDA must not be defined within an SQL declare
section. See Appendix D, “SQLDA (SQL descriptor area)”, on page 571 and
“INCLUDE” on page 459 for more information. Using the SQL INCLUDE
statement requests the inclusion of a standard declaration:

EXEC SQL INCLUDE SQLDA END-EXEC.

SQLDA declarations must appear in the WORKING-STORAGE SECTION or
LINKAGE SECTION of the program and can be placed wherever a record
description entry can be specified in those sections.

Embedding SQL statements in COBOL
SQL statements can be coded in COBOL program sections as follows:

SQL Statement Program Section

BEGIN DECLARE SECTION
END DECLARE SECTION

WORKING-STORAGE SECTION or
LINKAGE SECTION

INCLUDE SQLCA
INCLUDE SQLDA

WORKING-STORAGE SECTION

DECLARE CURSOR
INCLUDE name

DATA DIVISION or PROCEDURE DIVISION

Other PROCEDURE DIVISION

SQL statements must not be coded in COBOL programs with more than one
PROCEDURE DIVISION.

Each SQL statement in a COBOL program must begin with EXEC SQL and end
with END-EXEC. If the SQL statement appears between two COBOL statements,
the period is optional and might not be appropriate. The EXEC SQL keywords
must appear all on one line, but the remainder of the statement can appear on the
next and subsequent lines.

For example, an UPDATE statement coded in a COBOL program might be coded
as follows:

EXEC SQL
UPDATE DEPARTMENT
SET MGRNO = :MGR-NUM
WHERE DEPTNO = :INT-DEPT

END-EXEC.

Comments
In addition to SQL comments (--), COBOL comment lines (* in column 7) can be
included within embedded SQL statements, except between the keywords EXEC
and SQL. 138

138. In DB2 UDB for z/OS and OS/390, the STDSQL(YES) option must be in effect to use SQL comments.

COBOL Applications

652 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Continuation for SQL statements
The line continuation rules for SQL statements are the same as those for other
COBOL statements, except that EXEC SQL must be specified within one line.

If a string constant is continued from one line to the next, the first nonblank
character in the next line must be either an apostrophe or a quotation mark. In
DB2 UDB for LUW this character must be an apostrophe. Identifiers that are not
delimited cannot be continued. If a delimited identifier is continued from one line
to the next, the first nonblank character in the next line must be either an
apostrophe or a quotation mark. In DB2 UDB for LUW this character must be a
quotation mark.

Cursors
The DECLARE CURSOR statement must precede all statements that explicitly refer
to the cursor by name.

Including code
SQL statements or COBOL host variable declaration statements can be included by
embedding the following SQL statement at the point in the source code where the
statements are to be embedded:

EXEC SQL INCLUDE name END-EXEC.

COBOL COPY statements cannot be used to include SQL statements or
declarations of COBOL variables that are referenced in SQL statements.

Margins
SQL statements must be coded in columns 12 through 72.

Names
Any valid COBOL variable name can be used for a host variable, as long as it:
v does not contain DBCS characters
v does not begin with 'DB2', 'DSN', 'RDI', or 'SQL' in any combination of

uppercase or lowercase letters (these names are reserved for the database
manager).

It is recommended that FILLER not be used as a variable name. Name all fields
within a COBOL structure to avoid unexpected results from using structures that
contain FILLER.

Access plan names must not start with ’DSN’. External entry names must not start
with ’DSN’, ’RDI’, or ’SQL’.

For information on the length of a host identifier, see Table 37 on page 551.

Statement labels
Executable SQL statements in the PROCEDURE DIVISION can be preceded with a
paragraph name.

COBOL Applications

Appendix I. Coding SQL statements in COBOL applications 653

G
G

G
G

Handling SQL errors and warnings in COBOL
The SQL WHENEVER statement tests the result of every SQL statement within its
scope for an error or warning condition. The target for the GOTO clause in an SQL
WHENEVER statement must be a section name or unqualified paragraph name in
the PROCEDURE DIVISION.

The stand-alone SQLSTATE and SQLCODE or information in the SQLCA can also
be used in the detection or further handling of error and warning conditions. See
Appendix C, “SQLCA (SQL communication area)”, on page 567 for more
information.

Using host variables in COBOL
A host variable used in an SQL statement must be explicitly declared prior to the
first use of the host variable in an SQL statement.

The COBOL statements that are used to define the host variables must be preceded
by a BEGIN DECLARE SECTION statement and followed by an END DECLARE
SECTION statement.

All host variables within an SQL statement must be preceded by a colon (:).

The names of host variables must be unique within the program, even if the host
variables are in different blocks or procedures.

Host variables must not be arrays or array elements unless they are used to
represent indicator arrays or indicator variables. Host variables must not be
records or elements.

Declaring host variables in COBOL
Only a subset of valid COBOL declarations are recognized as valid host variable
declarations.

Numeric host variables
The following figures show the syntax for valid integer host variable declarations.

INTEGER and SMALLINT

�� 01
77
level-2

variable-name PICTURE
PIC

IS
picture-string ��

��

IS
USAGE

BINARY
COMPUTATIONAL-4
COMP-4

�

COBOL Applications

654 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

�
IS

VALUE numeric-constant

. ��

Notes:

v BINARY, COMPUTATIONAL-4, COMP-4, are equivalent. COMPUTATIONAL-4
and COMP-4 are IBM extensions that are not supported in ISO/ANS COBOL.
The picture-string associated with these types must be either S9(4), S9999, S9(9) or
S999999999.
In DB2 UDB for LUW, these declarations are not supported;
COMPUTATIONAL-5 or COMP-5 must be used instead.

v level-2 indicates a COBOL level between 2 and 48.

The following figure shows the syntax for valid decimal host variable declarations.

DECIMAL

�� 01
77
level-2

variable-name PICTURE
PIC

IS
picture-string ��

��

IS
USAGE

PACKED-DECIMAL
COMPUTATIONAL-3
COMP-3

�

�
IS

VALUE numeric-constant

. ��

Notes:

v PACKED-DECIMAL, COMPUTATIONAL-3, and COMP-3 are equivalent.
COMPUTATIONAL-3 and COMP-3 are IBM extensions that are not supported in
ISO/ANS COBOL. The picture-string associated with these types must have the
form S9(i)V9(d) (or S9...9V9...9, with i and d instances of 9). ISO/ANSI COBOL
restricts i + d to be less than or equal to 18.

v level-2 indicates a COBOL level between 2 and 48.

The following figure shows the syntax for valid numeric host variable declarations.

NUMERIC

�� 01
77
level-2

variable-name PICTURE
PIC

IS
picture-string ��

COBOL Applications

Appendix I. Coding SQL statements in COBOL applications 655

G
G

��

IS
USAGE

DISPLAY SIGN LEADING SEPARATE �

�
IS

VALUE numeric-constant

. ��

Notes:

v The picture-string associated with SIGN LEADING SEPARATE must have the
form S9(i)V9(d) (or S9...9V9...9, with i and d instances of 9). ISO/ANSI COBOL
restricts i + d to be less than or equal to 18. In DB2 UDB for LUW, SIGN
LEADING SEPARATE is not supported.

v level-2 indicates a COBOL level between 2 and 48.

The following figure shows the syntax for valid floating-point host variable
declarations.

Floating point

�� 01
77
level-2

variable-name ��

��

IS
USAGE

COMPUTATIONAL-1
COMP-1
COMPUTATIONAL-2
COMP-2

�

�
IS

VALUE numeric-constant

. ��

Notes:

v COMPUTATIONAL-1 and COMP-1 are equivalent. COMPUTATIONAL-2 and
COMP-2 are equivalent.

v level-2 indicates a COBOL level between 2 and 48.

The following figure shows the syntax for other valid numeric host variable
declarations.

Other numeric

�� 01
77
level-2

variable-name PICTURE
PIC

IS
picture-string ��

COBOL Applications

656 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

��

IS
USAGE

COMPUTATIONAL
COMP IS

VALUE numeric-constant

�

� . ��

Notes:

v COMPUTATIONAL and COMP are equivalent. The picture strings associated
with these and the data types they represent are product-specific. Therefore, do
not use COMP and COMPUTATIONAL in a portable application.

v level-2 indicates a COBOL level between 2 and 48.

Character host variables (excluding CLOB)
There are two valid non-LOB forms of character host variables:
v Fixed-Length Strings
v Varying-Length Strings

Fixed-length character strings

�� 01
77
level-2

variable-name PICTURE
PIC

IS
picture-string ��

��
IS

USAGE
DISPLAY

IS
VALUE character-constant

. ��

Notes:

v The picture-string associated with this form must be X(m) (or XXX...X, with m
instances of X). m must be no greater than the maximum length of CHAR. See
Table 39 on page 552 for more information.

v level-2 indicates a COBOL level between 2 and 48.

Varying-length character strings

�� 01
level-2

variable-name . ��

�� 49 var-1 PICTURE
PIC

IS
S9(4)
S9999

��

COBOL Applications

Appendix I. Coding SQL statements in COBOL applications 657

G
G
G

��

IS
USAGE

BINARY
COMPUTATIONAL-4
COMP-4

�

�
IS

VALUE numeric-constant

. ��

�� 49 var-2 PICTURE
PIC

IS
picture-string ��

��
IS

USAGE
DISPLAY

IS
VALUE character-constant

. ��

Notes:

v The picture-string associated with this form must be X(m) (or XXX...X, with m
instances of X). m can be no greater than the maximum length of VARCHAR.
See Table 39 on page 552 for more information.
In DB2 UDB for LUW, COMP(5) must be used in place of COMP(4).
Note that the database manager will use the full size of the S9(4) variable even
though ISO/ANSI COBOL only recognizes values up to 9999. This can cause
data truncation errors when COBOL statements are being executed and may
effectively limit the maximum length of variable-length character strings to 9999.

v var-1 and var-2 cannot be used as host variables.
v level-2 indicates a COBOL level between 2 and 48.

Graphic host variables (excluding DBCLOB)
There are two valid non-LOB forms for graphic host variables:
v Fixed-Length Strings
v Varying-Length Strings

Fixed-length graphic strings

�� 01
77
level-2

variable-name PICTURE
PIC

IS
picture-string ��

��

IS
USAGE

DISPLAY-1
IS

VALUE graphic-constant

. ��

COBOL Applications

658 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G

Notes:

v The picture-string associated with this form must be G(m) (or GGG...G, with m
instances of G. m must be no greater than the maximum length of GRAPHIC.
See Table 39 on page 552 for more information.

v level-2 indicates a COBOL level between 2 and 48.

Varying-length graphic strings

�� 01
level-2

variable-name . ��

�� 49 var-1 PICTURE
PIC

IS
S9(4)
S9999

��

��

IS
USAGE

BINARY
COMPUTATIONAL-4
COMP-4

�

�
IS

VALUE numeric-constant

. ��

�� 49 var-2 PICTURE
PIC

IS
picture-string ��

��

IS
USAGE

DISPLAY-1 .
IS

VALUE graphic-constant

��

Notes:

v The picture-string associated with this form must be G(m) (or GGG...G, with m
instances of G). m must be no greater than the maximum length of
VARGRAPHIC. See Table 39 on page 552 for more information.
Note that the database manager will use the full size of the S9(4) variable even
though ISO/ANSI COBOL only recognizes values up to 9999. This can cause
data truncation errors when COBOL statements are being executed and may
effectively limit the maximum length of variable-length graphic strings to 9999.
In DB2 UDB for LUW, COMP-5 must be used in place of COMP-4.

v var-1 and var-2 cannot be used as host variables.
v level-2 indicates a COBOL level between 2 and 48.

COBOL Applications

Appendix I. Coding SQL statements in COBOL applications 659

G

LOB host variables
COBOL does not have variables that correspond to the SQL data types for LOBs
(large objects). To define host variables that can be used with these data types, use
the SQL TYPE IS clause. The SQL precompiler replaces this declaration with a
COBOL language structure in the output source.

LOB host variable

�� 01
(1)

level-1

variable-name

IS
USAGE

SQL TYPE IS �

�
(2)

CLOB (length)
DBCLOB K
BLOB (3)

M

��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 length must be an integer constant that is greater than 0 and no greater than
the maximum length of CLOB. See Table 39 on page 552 for more information.
The maximum value for length is further restricted if K or M or if DBCLOB is
specified.

3 K multiplies length by 1024. M multiplies length by 1 048 576.

Examples: Example 1: The following declaration:
01 MY-CLOB USAGE IS SQL TYPE IS CLOB(125M).

Results in the generation of the following structure:
01 MY-CLOB.

49 MY-CLOB-LENGTH PIC S9(9) COMP-5.
49 MY-CLOB-DATA PIC X(131072000).

Example 2: The following declaration:
01 MY-DBCLOB USAGE IS SQL TYPE IS DBCLOB(30000).

Results in the generation of the following structure:
01 MY-DBCLOB.

49 MY-DBCLOB-LENGTH PIC S9(9) COMP-5.
49 MY-DBCLOB-DATA PIC G(30000) DISPLAY-1.

Example 3: The following declaration:
01 MY-BLOB USAGE IS SQL TYPE IS BLOB(2M).

Results in the generation of the following structure:
01 MY-BLOB.

49 MY-BLOB-LENGTH PIC S9(9) COMP-5.
49 MY-BLOB-DATA PIC X(2097152).

COBOL Applications

660 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

LOB locators

LOB locator

�� 01
(1)

level-1

variable-name

IS
USAGE

SQL TYPE IS �

� BLOB-LOCATOR
CLOB-LOCATOR
DBCLOB-LOCATOR

��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

Example: The following declaration (other LOB locator types are similar):
01 MY-LOCATOR USAGE SQL TYPE IS BLOB-LOCATOR.

Results in the generation of the following declaration:
01 MY-LOCATOR PIC S9(9) COMP-5.

Indicator variables in COBOL
An indicator variable is a two-byte integer (PIC S9(4) USAGE BINARY). On
retrieval, an indicator variable is used to show whether its associated host variable
has been assigned a null value. On assignment to a column, a negative indicator
variable is used to assign a null value.

See “References to host variables” on page 87 for more information on the use of
indicator variables.

Indicator variables are declared in the same way as host variables, and the
declarations of the two can be mixed in any way that seems appropriate to the
programmer.

Example: Given the statement:
EXEC SQL FETCH CLS_CURSOR INTO

:DAY-VAR :DAY-IND,
:BGN-VAR :BGN-IND,
:END-VAR :END-IND

END-EXEC.

Variables can be declared as follows:
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
77 CLS-CD PIC X(7).
77 DAY-VAR PIC S9(4) BINARY.
77 BGN-VAR PIC X(8).
77 END-VAR PIC X(8).
77 DAY-IND PIC S9(4) BINARY.
77 BGN-IND PIC S9(4) BINARY.
77 END-IND PIC S9(4) BINARY.
EXEC SQL END DECLARE SECTION END-EXEC.

COBOL Applications

Appendix I. Coding SQL statements in COBOL applications 661

Declaring host structures in COBOL
A COBOL host structure is a named set of host variables that is defined in the
program’s WORKING-STORAGE SECTION or LINKAGE SECTION. COBOL host
structures have a maximum of two levels, even though the host structure might
occur within a multilevel structure. One exception is the declaration of a
varying-length character string, which must be level 49.

A host structure name can be a group name whose subordinate levels name
elementary data items. In the following example, B is the name of a host structure
consisting of the elementary items C1 and C2.
01 A

02 B
03 C1 PICTURE ...
03 C2 PICTURE ...

When writing an SQL statement using a qualified host variable name (for example,
to identify a field within a structure), use the name of the structure followed by a
period and the name of the field. For example, specify B.C1 rather than C1 OF B or
C1 IN B.

A host structure is considered complete if any of the following items are found:
v A COBOL item that must begin in area A
v Any SQL statement (except SQL INCLUDE).
v Any SQL statement within an included member.

Name all fields within a COBOL structure to avoid unexpected results that might
result from using structures that contain FILLER.

The following figure shows the syntax for valid host structures.

Host structures

�� level-2 variable-name . �

� �
IS

level-3 var-1 PICTURE picture-string usage clause .
PIC

floating-point .
. varchar-string .
. vargraphic-string .
lob .
lob-locator .

��

exact numeric:

COBOL Applications

662 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

��
IS

USAGE
BINARY
COMPUTATIONAL-4
COMP-4
PACKED-DECIMAL
COMPUTATIONAL-3
COMP-3

DISPLAY SIGN LEADING SEPARATE
COMPUTATIONAL
COMP

�

�
IS

VALUE constant

��

floating-point:

��
IS

USAGE
COMPUTATIONAL-1
COMP-1
COMPUTATIONAL-2
COMP-2

IS
VALUE constant

��

varchar-string

�� 49 var-2 PICTURE
PIC

IS
picture-string-1

IS
USAGE

�

� BINARY
COMPUTATIONAL-4
COMP-4

IS
VALUE numeric-constant

. �

�
IS

49 var-3 PICTURE picture-string-2
PIC

�

�
IS IS

USAGE VALUE constant
DISPLAY

. ��

vargraphic-string

�� 49 var-4 PICTURE
PIC

IS
picture-string-1

IS
USAGE

�

COBOL Applications

Appendix I. Coding SQL statements in COBOL applications 663

� BINARY
COMPUTATIONAL-4
COMP-4

IS
VALUE numeric-constant

. �

�
IS

49 var-5 PICTURE picture-string-2
PIC

�

�
IS IS

USAGE VALUE graphic-constant
DISPLAY-1

. ��

lob

�� SQL TYPE IS CLOB
DBCLOB
BLOB

(length)
K
M

��

lob-locator

�� SQL TYPE IS CLOB-LOCATOR
DBCLOB-LOCATOR
BLOB-LOCATOR

��

Notes:

v level-2 indicates a COBOL level between 1 and 47.
v level-3 indicates a COBOL level between 2 and 48.
v In DB2 UDB for LUW, COMP-5 must be used in place of COMP-4.

Host structure indicator array
The following figure shows the syntax for valid indicator array declarations.

Host structure indicator array

�� level-2 variable-name PICTURE
PIC

IS
picture-string �

�

IS
USAGE

BINARY
COMPUTATIONAL-4
COMP-4

OCCURS dimension
TIMES

�

COBOL Applications

664 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G

�
IS

VALUE constant

. ��

Notes:

1. Dimension must be an integer between 1 and 32767.
2. level-2 must be an integer between 2 and 48.
3. BINARY, COMPUTATIONAL-4, and COMP-4 are equivalent.

COMPUTATIONAL-4 and COMP-4 are IBM extensions that are not supported
in ISO/ANSI COBOL. The picture-string associated with these types must have
the form S9(i) (or S9...9, with i instances of 9). i must be less than or equal to 4.
In DB2 UDB for LUW, COMP-5 must be used in place of COMP-4.

Determining equivalent SQL and COBOL data types
The base SQLTYPE and SQLLEN of host variables are determined according to the
following table. If a host variable appears with an indicator variable, the SQLTYPE
is the base SQLTYPE plus one.

Table 68. COBOL declarations mapped to typical SQL data types

COBOL Data Type SQLTYPE of
Host Variable

SQLLEN of Host
Variable

SQL Data Type

COMP-1 480/ 481 4 REAL

COMP-2 480/ 481 8 DOUBLE
PRECISION

S9(i)V9(d) COMP-3 or
S9(i)V9(d) PACKED-DECIMAL

484/ 485 i+d in byte 1, d
in byte 2

DECIMAL(i+d,d)

S9(i)V9(d) DISPLAY SIGN
LEADING SEPARATE 140

504/ 505 i+d in byte 1, d
in byte 2

No exact
equivalent. Use
DECIMAL(i+d,d)
or NUMERIC
(i+d,d)

S9(4) COMP-4 139 or S9(4) BINARY 500/ 501 2 SMALLINT

S9(9) COMP-4 139 or S9(9) BINARY 496/ 497 4 INTEGER

Fixed-length character data 452/ 453 length CHAR(length)

Varying-length character data 448/ 449, 456/
457

length VARCHAR(length)

Fixed-length graphic data 468/ 469 length GRAPHIC(length)

Varying-length graphic data 464/ 465, 472/
473

length VARGRAPHIC(length)

USAGE IS SQL TYPE IS CLOB(n)
n < 2147483648

408/ 409 length CLOB(length)

USAGE IS SQL TYPE IS
DBCLOB(m) m < 1073741824

412/ 413 length DBCLOB(length)

USAGE IS SQL TYPE IS BLOB(n) n
< 2147483648

404/ 405 length BLOB(length)

SQL TYPE IS CLOB-LOCATOR 964/ 965 4 CLOB locator 141

SQL TYPE IS DBCLOB-LOCATOR 968/ 969 4 DBCLOB locator
141

COBOL Applications

Appendix I. Coding SQL statements in COBOL applications 665

G

Table 68. COBOL declarations mapped to typical SQL data types (continued)

COBOL Data Type SQLTYPE of
Host Variable

SQLLEN of Host
Variable

SQL Data Type

SQL TYPE IS BLOB-LOCATOR 960/ 961 4 BLOB locator 141

The following table can be used to determine the COBOL data type that is
equivalent to a given SQL data type:

Table 69. SQL data types mapped to typical COBOL declarations

SQL Data Type COBOL Data Type Notes

SMALLINT S9(4) COMP-4

INTEGER S9(9) COMP-4

DECIMAL(p,s) or
NUMERIC(p,s)

If p < 19:
S9(p-s)V9(s)

PACKED-DECIMAL
or

S9(p-s)V9(s) DISPLAY
SIGN LEADING
SEPARATE

If p > 18:
no exact equivalent

0<=s<=p<=18, where s is the
scale and p is the precision. If
s=0, use S9(p) or S9(p)V. If
s=p, use SV9(s).

Use COMP-2

REAL COMP-1

DOUBLE PRECISION COMP-2

CHAR(n) fixed-length character string n is a positive integer. The
maximum value of n is 254.
See Table 39 on page 552 for
more information.

VARCHAR(n) varying-length character
string

n is a positive integer. The
maximum value of n is
32 672. See Table 39 on
page 552 for more
information.

CLOB(n) USAGE IS SQL TYPE IS
CLOB(n)

n is a positive integer. The
maximum value of n is
1 073 741 823. See Table 39 on
page 552 for more
information.

GRAPHIC(n) fixed-length graphic string n is a positive integer. The
maximum value of n is 127.
See Table 39 on page 552 for
more information.

VARGRAPHIC(n) varying-length graphic string n is a positive integer. The
maximum value of n is
16 336. See Table 39 on
page 552 for more
information.

139. In DB2 UDB for LUW, COMP-5 must be used instead of COMP-4.

140. In DB2 UDB for LUW, DISPLAY SIGN LEADING SEPARATE is not supported.

141. Do not use this data type as a column type.

COBOL Applications

666 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 69. SQL data types mapped to typical COBOL declarations (continued)

SQL Data Type COBOL Data Type Notes

DBCLOB(m) USAGE IS SQL TYPE IS
DBCLOB(m)

n is a positive integer. The
maximum value of n is
1 073 741 823. See Table 39 on
page 552 for more
information.

BLOB(n) USAGE IS SQL TYPE IS
BLOB(n)

n is a positive integer. The
maximum value of n is
2 147 483 647.

DATE fixed-length character string Allow at least 10 characters.

TIME fixed-length character string Allow at least 6 characters; 8
to include seconds.

TIMESTAMP fixed-length character string Allow at least 19 characters;
26 to include microseconds at
full precision.

Notes on COBOL variable declaration and usage
Any level 77 data description entry can be followed by one or more REDEFINES
entries. However, the names in these entries cannot be used in SQL statements.

The COBOL declarations for SMALLINT and INTEGER data types are expressed
as a number of decimal digits. The database manager uses the full size of the
integers and can place larger values in the host variable than would be allowed in
the specified number of digits in the COBOL declaration. However, this can cause
data truncation or size errors when COBOL statements are being executed. The
size of numbers in the application must be within the declared number of digits.

COBOL Applications

Appendix I. Coding SQL statements in COBOL applications 667

668 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Appendix J. Coding SQL statements in Java applications

Support for embedded static SQL in Java applications is commonly referred to as
"SQLJ". This appendix also makes use of that term.

Defining the SQL communications area in Java
A Java program containing SQL statements does not use any Java class
corresponding to an SQLCA to inform an application of errors and warnings
resulting from the execution of its contained SQL statements. Instead, Java
programs are made aware of errors and warnings as described in “Handling SQL
errors and warnings in Java” on page 680.

Defining SQL descriptor areas in Java
A Java program containing SQL statements does not use any Java class
corresponding to an SQLDA to associate the application’s variables with the input
and output parameters of its contained SQL statements. Due to the absense of an
SQLDA, none of the SQL statements that include a USING DESCRIPTOR clause
are able to specify that clause. Instead, Java programs directly embed host
variables and expressions in the SQL statements as described in “Using host
variables and expressions in Java” on page 673

Embedding SQL statements in Java
In a Java program, static SQL statements used for database access are contained in
SQLJ clauses. SQLJ clauses containing SQL statements are called executable clauses.
SQLJ clauses that result in declarations of Java classes needed by the executable
clauses are called declaration clauses, and the classes that result are called generated
classes.

An executable clause may appear anywhere in a program that a Java statement is
permitted. An executable clause begins with the characters #sql, terminates with a
semicolon (;), and contains an SQL statement enclosed in braces, {}. The SQL
statement itself has no terminating character. An example executable clause is:
#sql {DELETE FROM EMPLOYEE};

A declaration clause may appear anywhere in a program that a Java class
declaration is permitted. A declaration clause begins with the characters #sql,
terminates with a semicolon (;), and contains information used in the generation of
either an SQLJ database connection context class or an SQLJ iterator class. An
example declaration clause is:

#sql public iterator DeptSummary (String, String, BigDecimal);

This clause results in the generation of a declaration of a public SQLJ iterator class
named DeptSummary that fulfills part of the role a cursor declaration does in
other application languages. In this example, an associated cursor would be one
involving two character strings and a decimal value in that order.

Before any embedded SQL statements can be executed in an application program,
code must be included to accomplish these tasks:

© Copyright IBM Corp. 1982, 2003 669

v Import the Java packages for SQLJ run-time support and the JDBC interfaces
used by SQLJ.142

v Load the platform-specific JDBC driver.
v Connect to a data source by creating a connection context.
v Optionally, create an execution context.

To import the Java packages for SQLJ and JDBC, these lines are included in the
application program:

import sqlj.runtime.*; // SQLJ runtime support
import java.sql.*; // JDBC interfaces

To load the JDBC driver and register it with the java.sql.DriverManager, invoke
method Class.forName with a java.lang.String argument identifying the
platform’s JDBC driver class:
v DB2 UDB for z/OS and OS/390: "COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver".
v DB2 UDB for LUW: "COM.ibm.db2.jdbc.app.DB2Driver" or

"COM.ibm.db2.jdbc.net.DB2Driver" ".app." is for applications and ".net." for
applets.

v DB2 UDB for iSeries: "com.ibm.db2.jdbc.app.DB2Driver".

For example:
try
{

Class.forName("COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver");
}
catch (ClassNotFoundException e)
{

e.printStackTrace();
}

A connection context specifies the data source each executable clause is to be
executed against. This allows an application to direct individual SQL statements to
distinct data sources. Connections contexts are described further in “Connecting to,
and using a data source” on page 671.

An execution context provides access to an executable clause’s warning information
and in the case of a CALL statement to a procedure’s returned result sets. It also
allows some attributes of a statement’s execution to be controlled, such the
maximum number or rows returned. The support provided for an execution
context to control a statement’s execution is platform specific. Further details
regarding an execution context’s use in returning warning information is provided
in “Handling SQL errors and warnings in Java” on page 680.

In executable clauses, either or both connection contexts and execution contexts are
explicitly specified by enclosing them in square brackets, [], following the #sql at
the beginning of the embedded SQL statement. If both are specified, the connection
context is listed first, followed by a comma, followed by the execution context.

Comments
To include comments in an SQLJ program, use either Java comments or SQL
comments.

142. SQLJ was designed to coexist with (and in many respects depend on) JDBC. A single application could create a JDBC
connection and use that connection to execute dynamic SQL statements through JDBC and embedded static SQL through SQLJ.

Java Applications

670 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

v Java comments are denoted by /* */ or //. Java comments can be used outside
of SQLJ clauses, wherever the Java language permits them. Within an executable
clause, Java comments can only be used in embedded host expressions.

v SQL comments (--) can be used in executable clauses, anywhere except in
embedded host expressions.

Connecting to, and using a data source
In an SQLJ application, a connection to a data source must be established before
SQL statements can be executed. A connection to a data source is referred to as a
connection context, each of which is an instance of a generated connection context
class and is declared with a connection declaration clause.

Declaring a connection context
A connection declaration clause may appear anywhere in a program that a Java
class declaration is permitted.

Syntax

��
(1)

#sql context Java-class-name
Java-modifiers

�

�

�

,

implements user-specified-interface-class

�

�
connection-attributes

; ��

Notes:

1 The Java programming language is case-sensitive and lower case is typically
used for keywords. For that reason, unlike other SQL keywords, the
keywords appearing in a connection context declaration clause are shown in
lower case and must appear in the statement in lower case.

connection-attributes:

�

,

with (Java-ID = Java-constant-expression)

Description

Java-modifiers
Any modifiers that are valid for Java class declarations, such as static, public,
private, or protected.

Java-class-name
Names the generated connection context. Java-class-name must be a valid Java
identifier.

Java Applications

Appendix J. Coding SQL statements in Java applications 671

implements
The clause specifies one or more user-defined Java interfaces that this
connection context implements. Each contained user-specified-interface-class must
identify a valid Java interface according to Java’s rules for use of interfaces.

with
Introduces a set of static attributes of the generated connection context class
and the initial value of each such static attribute.

Java-ID
Names a user-defined static attribute of a generated connection context
class. Java-ID must be a valid Java identifier. The value of
Java-constant-expression, which supplies that attribute’s initial value, is also
user-defined.

Initiating and using a connection
After a connection declaration clause has resulted in the generation of a connection
context class and the appropriate JDBC driver has been registered with the
DriverManager, to initiate a connection to a data source one of the following
methods is used:
v Connection method 1:

1. Invoke the constructor for the connection context class with the following
arguments:143

– a java.lang.String that specifies the location name associated with the
data source,

– a boolean that specifies whether autoCommit is on or off for the
connection.

For example, with DB2 UDB for z/OS and OS/390, to use the first method to set
up connection context myConn to access data associated with location
NEWYORK and to set autoCommit off, the following steps are taken. First,
specify a connection declaration clause to generate a connection context class:
#sql context Ctx;

Then register a JDBC driver and invoke the constructor for generated class Ctx
with arguments jdbc:db2os390sqlj:NEWYORK and false:

Class.forName("COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver");
Ctx myConn=new Ctx("jdbc:db2os390sqlj:NEWYORK",false);

v Connection method 2:
1. Invoke the JDBC java.sql.DriverManager.getConnection method.144 One

form of java.sql.DriverManager.getConnection takes a single
java.lang.String that specifies the location name associated with the data
source. The invocation returns an instance of class java.sql.Connection,
which represents a JDBC connection to that data source.

2. For environments other than the CICS environment the default state of
autoCommit for a JDBC connection is on. To disable autoCommit, invoke the
setAutoCommit method on the Connection object with an argument of false.

3. Invoke the constructor for the connection context class. For the argument of
the constructor, use the JDBC Connection returned from
java.sql.DriverManager.getConnection.

143. A connection context class has several different constructors. The following describes using only one of them. For further
information see applicable product documentation.

144. DriverManager.getConnection has several different signatures. The following describes using only one of them. For further
information see applicable product documentation.

Java Applications

672 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

For example, with DB2 UDB for z/OS and OS/390, to use the second method to
set up connection context myConn to access the data source associated with
location NEWYORK with autoCommit off, execute a connection declaration
clause to generate a connection context class:

#sql context Ctx;

Then register a JDBC driver, and invoke java.sql.Driver.getConnection with
the argument jdbc:db2os390sqlj:NEWYORK, set autoCommit off for the
connection, and invoke the constructor for class Ctx using the JDBC connection
as the argument:
Class.forName("COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver");
Connection jdbcConn=DriverManager.getConnection("jdbc:db2os390sqlj:NEWYORK");
jdbcConn.setAutoCommit(false);
Ctx myConn=new Ctx(jdbcConn);

Connection method 2 results in SQLJ and JDBC sharing the same connection, and is
one that may be taken by an application needing both static and dynamic access to
the same data source.

Once a connection context is established, to perform an SQL statement at a data
source use one of the following two methods:
v Use an explicit connection.

Specify a connection context, enclosed in square brackets, following the #sql. For
example, the following executes an UPDATE statement at the data source
associated with connection context myConn:

#sql [myConn] {UPDATE DEPARTMENT
SET MGRNO=:hvmgr WHERE DEPTNO=:hvdeptno};

v Use a default connection.

When an executable clause does not specify a connection context, a default
connection context is used. SQLJ’s default connection context is implemented by
the class sqlj.runtime.ref.DefaultContext. An application’s default connection can
be set to a specified data source using the
sqlj.runtime.ref.DefaultContext.setDefaultContext method, after which that
connection will be used as if it had been explicitly specified by any executable
clause that does not specify a connection context. Alternatively, if
setDefaultContext is not used to override it the default connection will be to the
default relational database.

Use of a default connection context is not recommended. The reasons are as
follows. First, the default context is not fully specified by the applicable standards,
for example its class name sqlj.runtime.ref.DefaultContext is not defined by
standard, and any reference to it could result in non-portable applications. Second,
the setDefaultContext method is implemented using a static variable which may
cause difficulties for reentrant or multi-threaded applications. Use of explicit
connections is considered safer.

Using host variables and expressions in Java
Use of a host variable or an expression in embedded SQL is similar to using those
variables or expressions in any Java statement, and all of the rules for a Java
variable being in scope and declared before it is used apply. There is no
requirement that a host variable appear in a declare section and SQLJ supports
neither the BEGIN DECLARE SECTION nor the END DECLARE SECTION
statements.

Java Applications

Appendix J. Coding SQL statements in Java applications 673

Syntax

��
(1)

: Java-identifier
IN (Java-expression)
OUT
INOUT

��

Notes:

1 The Java programming language is case-sensitive and lower case is typically
used for keywords. However, keywords used in embedding a host variable
or expression, and outside the expression’s embedded Java-expression, are
considered SQL keywords. These keywords are shown in upper case and able
to appear in the statement in any mix of upper or lower case.

In an executable clause a simple variable can be referenced by preceding it with a
colon (:). A Java expression can be used by enclosing it in parentheses, ‘()’, and
preceding the left parenthesis with a colon. For example to update the yearly
bonus of the employee identified by the host variable empID, based on an
expression involving the host variable yearsEmployed, one might use:

#sql {UPDATE EMPLOYEE
SET BONUS=:(((int) yearsEmployed/5)*500) WHERE EMPNO=:empID};

The expression ‘((int) yearsEmployed/5)*500’ is evaluated with Java’s rules for
rounding and truncation, and including any side effects that would occur had it
appeared outside of an executable clause (for example, had it been ‘((int)
yearsEmployed++/5)*500’, yearsEmployed would have been incremented
following its use), and the expression’s result is the value assigned to BONUS.
Note that use of an array is treated as use of an expression, and must be enclosed
in parentheses. In other words, if ’hArray’ is a Java array object then ‘:hArray[5]’ is
not properly formed and must instead be specified as ‘:(hArray[5])’

When invoking a procedure, it may be necessary to indicate whether a host
variable or expression represents an IN, OUT, or INOUT parameter, i.e., to specify
a parameter’s parameter mode. This is done by following the introductory colon
with the appropriate IN, OUT, or INOUT keyword. If not specified, the parameter
mode is assumed to be IN. Parameter modes must be correct for each parameter of
the procedure invoked or the necessary code will not be generated to, for example,
assign the value of an OUT parameter to its target host variable. Outside a CALL
statement, parameter mode has little meaning. If specified for an input value, then
IN may be specified. If parameter mode is specified in a situation where output is
involved, for example the INTO portion of a FETCH statement, then OUT may be
specified.

Using SQLJ iterators to retrieve rows from a result table
The SQLJ equivalent of a cursor is an SQLJ iterator. An SQLJ iterator is defined
using an iterator declaration clause. An SQLJ iterator is either a positioned iterator or a
named iterator. All iterator declaration clauses specify:
v information for its generated Java class declaration, such as whether the iterator

is public145 or static

145. Iterators must be public when an iterator-attributes clause is specified.

Java Applications

674 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

v a set of static attributes, in an iterator-attributes clause, such as whether the
iterator is holdable or whether columns of its underlying table or view can be
updated

v a list of Java data types, and in the case of a named iterator the names of the
accessor methods to be used to access the columns of the underlying cursor.

As explained in the next sections, whether the named or positioned type of SQLJ
iterator is chosen impacts both how an iterator is declared and how an iterator is
used.

Declaring iterators
An iterator declaration clause may appear anywhere in a program that a Java class
declaration is permitted.

Syntax

��
(1)

#sql iterator Java-class-name
Java-modifiers

�

�

�

,

implements sqlj.runtime.ForUpdate
user-specified-interface-class

�

�
iterator-attributes

(positioned-iterator) ;
named-iterator

��

Notes:

1 The Java programming language is case-sensitive and lower case is typically
used for keywords. For that reason, unlike other SQL keywords, the
keywords appearing in an iterator declaration clause are shown in lower case
and must appear in the statement in lower case.

iterator-attributes:

�

�

,

with (holdability = true)
false

,

updateColumns = ″ column-name ″
Java-ID = Java-constant-expression

positioned-iterator:

�

,

Java-data-type

Java Applications

Appendix J. Coding SQL statements in Java applications 675

named-iterator:

�

,

Java-data-type column-accessor

Description

Java-modifiers
Any modifiers that are valid for Java class declarations, such as static, public,
private, or protected.

Java-class-name
Names the generated iterator class. Java-class-name must be a valid Java
identifier.

implements
The implements clause specifies one or more user-defined Java interfaces, or
the SQLJ interface sqlj.runtime.ForUpdate, that this iterator supports.

Each contained user-specified-interface-class must identify a valid Java interface
according to Java’s rules for use of interfaces. The iterator must be declared to
implement at least the SQLJ interface sqlj.runtime.ForUpdate if it is to be
referenced in a positioned UPDATE or positioned DELETE operation.

with
Introduces a set of static attributes of the generated iterator class and the initial
value of each such static attribute.

holdability
Specifies a Java boolean value that indicates whether an iterator keeps its
position in a table after a COMMIT statement is executed.

updateColumns
Lists the column-names of the underlying table or view allowed to be
modified when the iterator is used in a positioned UPDATE statement. The
value for updateColumns is a Java String literal containing column names,
separated by commas.

If updateColumns is specified in a with element of an iterator declaration
clause, the iterator declaration clause must contain an implements clause
that includes sqlj.runtime.ForUpdate.

Java-ID
Names a user-defined static attribute of a generated iterator class. Java-ID
must be a valid Java identifier. The value of Java-constant-expression, which
supplies that attribute’s initial value, is also user-defined.

positioned-iterator
Specifies a list of one or more Java data types. These data types describe the
columns of the result table, in left-to-right order.

Java-data-type
The Java data type of a column of the result table of a positioned iterator.

named-iterator
Specifies a list of one or more Java data types and Java accessor method
identifiers.

Java-data-type
The Java data type of a column of the result table of the named iterator,
and the result data type of the accessor method for that column.

Java Applications

676 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

column-accessor
Names an accessor method for a column of the result table of the named
iterator class. column-accessor must be a valid Java identifier.

Using positioned iterators to retrieve rows from a result table
A positioned iterator is the type most like a cursor in non-Java applications. The
columns of a positioned iterator correspond to the columns of the result table, in
left-to-right order. If an iterator declaration clause contains two or more data type
declarations, the first corresponds to the first column in the result table, the second
to the second column in the result table, and so on.

When an iterator declaration clause for a positioned iterator is encountered, it is
replaced with a generated positioned iterator class with the name specified in the
iterator declaration clause. An object of the positioned iterator’s class can then be
used to fetch rows from a result table.

For example, suppose rows are to be retrieved from a result table containing the
values of the LASTNAME and HIREDATE columns of the table EMPLOYEE. A
positioned iterator class is first declared with two columns of the appropriate data
types, see “Determining equivalent SQL and Java data types” on page 682 for
additional information. The following declares the class ByPos, whose first column
is of class String, and second of JDBC-defined class java.sql.Date. It then declares
positer to be object of the ByPos class:

#sql iterator ByPos(String,java.sql.Date);
ByPos positer;

To use an iterator, an assignment clause assigns the result table from a SELECT
statement to an instance of an iterator class. Figure 14 shows how positer can be
used to retrieve the result table rows.

Notes to Figure 14:

�1� This executable clause performs the SELECT statement, constructs an iterator
object containing the result table for the SELECT, and assigns the iterator object to
variable positer. In the terminology of other language embeddings this statement
performs the functions of both the DECLARE CURSOR and the OPEN statements.

�2� The FETCH statement uses left-to-right positional mapping to assign columns of
positer’s result table to the corresponding variables in the INTO list.

Note that unlike other executable clauses the FETCH statement never needs the
iterator’s data source to be identified with an explicit connection context. Each
instance of an iterator remembers its associated data source.

String name = null;
Date hrdate;

�1� #sql positer = {SELECT LASTNAME, HIREDATE FROM EMPLOYEE};
�2� #sql {FETCH :positer INTO :name, :hrdate};

// Retrieve the first row
�3� while (!positer.endFetch())

{
System.out.println(name + " was hired on " + hrdate);
// Retrieve the rest of the rows
#sql {FETCH :positer INTO :name, :hrdate};

}
�4� positer.close();

Figure 14. Retrieving rows using a positioned iterator

Java Applications

Appendix J. Coding SQL statements in Java applications 677

�3� Method endFetch(), a method of the generated iterator class ByPos, returns a value
of true when all rows have been retrieved from the iterator, and false otherwise.
The first FETCH statement needs to be executed before endFetch() is called.

�4� Method close(), a method of the generated iterator class ByPos, should be called to
release resources associated with the iterator when that iterator is no longer
needed.

Using named iterators to retrieve rows from a result table
Using named iterators is an alternative way to select rows from a result table.
When a named iterator is declared, names are specified that match those of a result
table’s columns.

When an iterator declaration clause for a named iterator is encountered, it is
replaced with a generated named iterator class with the name specified in the
iterator declaration clause. That generated class includes an accessor method for
each column in the iterator declaration clause. The accessor method’s name is the
name of the column specified in the iterator declaration clause, and its result data
type is the data type of the associated column in that clause. As with all Java
identifiers an accessor method’s name is case sensitive. However, while the
accessor method’s name is case sensitive, an accessor method’s name and a result
table column name that differ only in case are considered to be matching names.

The following iterator declaration clause generates the named iterator class
ByName, which includes two accessor methods. Those accessor methods are
LastName() returning values of class java.lang.String, and HireDate() returning
values of class java.sql.Date. Then nameiter is declared to be an object of the
ByName class:

#sql iterator ByName(String LastName, java.sql.Date HireDate);
ByName nameiter;

To use an iterator, an assignment clause assigns the result table from a SELECT
statement to an instance of an iterator class. Figure 15 shows how nameiter could
be used to retrieve rows from a result table containing values of the LASTNAME
and HIREDATE columns of the EMPLOYEE table.

Notes to Figure 15:

�1� This executable clause performs the SELECT statement, constructs an iterator
object containing the result table for the SELECT, and assigns the iterator object to
variable nameiter. In the terminology of other language embeddings this statement
performs the functions of both the DECLARE CURSOR and the OPEN statements.

�2� Method next(), a method of the generated class ByName, replaces the FETCH
statement of positioned iterators. It advances the iterator to successive rows of the
result set. next returns a value of true when a next row is available, and a value
of false when all rows have been fetched.

�1� #sql nameiter={SELECT LASTNAME, HIREDATE FROM EMPLOYEE};
�2� while (nameiter.next())

{
System.out.println(nameiter.LastName() +

" was hired on " + nameiter.HireDate());
}

�3� nameiter.close();

Figure 15. Retrieving rows using a named iterator

Java Applications

678 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

�3� Method close(), a method of the generated iterator class ByName, should be called
to release resources associated with the iterator when that iterator is no longer
needed.

The names of a named iterator’s accessor methods must be valid Java identifiers.
The names must also match the column names in the result table from which the
iterator retrieves its rows. If a SELECT statement that will be assigned to a named
iterator involves columns that either have no names or whose names might not be
valid Java identifiers, the SQL AS clauses can be used to give columns of the result
table acceptable names.

For example, suppose a named iterator is to be used to retrieve the rows specified
by this statement:

SELECT PUBLIC FROM GOODTABLE

The iterator column name must match the column name of the result table, but a
name of public cannot be specified because public is a reserved Java keyword.
This leaves one of two choices. First, because Java is case sensitive, the iterator
could declare that a name such as puBlic, or PUBlic, or PUBLIC be given to the
PUBLIC column, or an AS clause could be used to rename PUBLIC to a Java identifier
that is not similar to a keyword. For example:

SELECT PUBLIC AS IS_PUBLIC FROM GOODTABLE

A named iterator with a column name that is a valid Java identifier and matches
the column name of the result table can then be declared:

#sql iterator ByName(String is_public);
ByName nameiter;

And nameiter could then be used as the target of an assignment clause:
#sql nameiter={SELECT PUBLIC AS IS_PUBLIC FROM GOODTABLE};

Using iterators for positioned update and delete operations
When declaring an iterator that will be used in a positioned UPDATE or DELETE
statement, an SQLJ implements clause is used to specify that the iterator implements
the sqlj.runtime.ForUpdate interface. The iterator must also be declared as public.
For example, suppose instances of iterator class ByPos are to be used in a
positioned DELETE statement. The declaration would be:

#sql public iterator ByPos(String) implements sqlj.runtime.ForUpdate
with(updateColumns="EMPNO");

Because the iterator is public but not static Java requires that it either be declared
in a different source file, or be declared as a nested class. To use the iterator when
it is declared in a different source file:
1. Import the generated iterator class.
2. Declare an instance of the generated iterator class.
3. Assign the SELECT statement associated with the positioned UPDATE or

DELETE to the iterator instance.
4. Execute positioned UPDATE or DELETE statements using the iterator.

After the iterator is created, any application that has addressability to the iterator
and imports the generated class can retrieve data and execute positioned UPDATE
or DELETE statements using the iterator. The authorization ID under which a

Java Applications

Appendix J. Coding SQL statements in Java applications 679

positioned UPDATE or DELETE statement executes is the authorization ID under
which the DB2 package containing the UPDATE or DELETE executes.

For example, consider the named iterator UpdByName declared in the following
example.

#sql public iterator UpdByName(String EMPNO, BigDecimal SALARY)
implements sqlj.runtime.ForUpdate
with(updateColumns="SALARY");

To use UpdByName for a positioned UPDATE in another file, execute statements
like those in Figure 16.

Notes to Figure 16:

�1� This statement imports named iterator class UpdByName, generated by the
iterator declaration clause for UpdByName in UpdByName.sqlj. The import
command is not needed if UpdByName is in the same package as the Java source
file that references it.

�2� This executable clause performs the SELECT statement, constructs an iterator
object containing the result table for the SELECT, and assigns the iterator object to
variable upditer.

�3� This statement positions the iterator to the next row to be updated.
�4� This executable clause performs the positioned UPDATE.

Handling SQL errors and warnings in Java
A Java program containing SQL statements does not use an SQLCA or support the
WHENEVER statement. SQLJ throws an Exception of the JDBC-defined class
java.sql.SQLException whenever an SQL statement returns an error. To handle
SQL errors, import java.sql.SQLException and use the Java language try/catch
blocks to modify program flow when an SQL error is returned. After an exception
is caught, the SQLException’s getErrorCode method can be used to retrieve a
return code and its getSQLState method to retrieve SQLSTATE values. For
example, the following SELECT INTO statement would fail and an SQLException
would be thrown if more than one row exists for the employee whose EMPNO is
‘000010’:

�1� import UpdByName;
:
:

{
UpdByName upditer; // Declare object of UpdByName class
String enum;

�2� #sql upditer = {SELECT EMPNO, SALARY FROM EMPLOYEE
WHERE WORKDEPT='D11'};

�3� while (upditer.next())
{

enum = upditer.EMPNO(); // Get value from result table
�4� #sql {UPDATE EMPLOYEE SET SALARY=SALARY*1.05 WHERE CURRENT OF :upditer};

// Update row where cursor is positioned
System.out.println("Updating row for " + enum);

}
upditer.close(); // Close the iterator
#sql {COMMIT}; // Commit the changes

}

Figure 16. Updating rows using a positioned iterator

Java Applications

680 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

try
{

#sql {SELECT LASTNAME INTO :empname
FROM EMPLOYEE WHERE EMPNO='000010'};

}
catch(SQLException e)
{

System.out.println("SQLSTATE returned: " + e.getSQLState());
}

Unlike errors, warnings returned by SQL do not result in SQLExceptions. The
handling of warnings depends on whether the warning is associated with an
executable clause or with an SQLJ iterator. In either case, first import
java.sql.SQLWarning.

To check for a warning associated with an executable clause, after the clause is
executed invoke the getWarnings method against the execution context associated
with that clause. getWarnings returns the first warning an SQL statement generates.
Subsequent warnings are chained to the first SQLWarning. An execution context
can either be explicitly specified in the embedded SQL statement or accessed from
the connection context associated with the statement. The following example
retrieves an SQLWarning, with execution context ExecCtx specified explicitly:

ExecutionContext ExecCtx = new ExecutionContext();
#sql [ExecCtx] {SELECT LASTNAME INTO :empname

FROM EMPLOYEE WHERE EMPNO='000010'};
SQLWarning sqlWarn = ExecCtx.getWarnings();
if (sqlWarn != null)

System.out.println("SQLWarning " + sqlWarn);

Alternatively, to access the execution context associated with connection context
myConn:

#sql [myConn] {SELECT LASTNAME INTO :empname
FROM EMPLOYEE WHERE EMPNO='000010'};

ExecutionContext ExecCtx = myConn.getExecutionContext();
SQLWarning sqlWarn = ExecCtx.getWarnings();
if (sqlWarn != null)

System.out.println("SQLWarning " + sqlWarn);

To check for a warning associated with an SQLJ iterator, invoke the generated
iterator class’s getWarnings method against the iterator. To be aware of all
warnings, it is necessary for the getWarnings method to be invoked following each
fetch operation. The overhead of those invocations should be weighed against the
possible benefit of knowing a warning has been reported. It may be useful to test
for warnings only if there is corrective action that an application will take
following a warning. In that case, then if, for example, an SQLJ iterator has been
declared:
#sql positer = {SELECT LASTNAME, SALARY FROM EMPLOYEE};

Then an application could test for warnings as shown in the following:
#sql {FETCH :positer INTO :name, :sal};
while (!positer.endFetch())
{

SQLWarning sqlWarn = positer.getWarnings();
if (sqlWarn != null)

System.out.println("SQLWarning " + sqlWarn);
System.out.println(name + " has base salary " + sal);
#sql {FETCH :positer INTO :name, :sal};

}
positer.close();

Java Applications

Appendix J. Coding SQL statements in Java applications 681

Note that the end of data condition for a result set does not cause getWarnings to
report a warning.

An important subclass of both java.sql.SQLException and java.sql.SQLWarning is
that of java.sql.DataTruncation. A java.sql.DataTruncation exception may be
thrown when an update operation storing or modifying data causes a data
truncation error to be returned. Alternatively, a java.sql.DataTruncation may be
reported through getWarnings() when a truncation takes place reading data from a
data source.

The java.sql.DataTruncation class supports methods providing information
specific to truncation errors or warnings that is not otherwise available through
java.sql.SQLException and java.sql.SQLWarning. For further information see
applicable product documentation.

Determining equivalent SQL and Java data types
There is no Java data type whose value, when output by the database manager, is
unable to be recognized as having been an SQL NULL. As a result, the SQLTYPE
of all host variables use the values that indicate an associated indicator variable.
This aspect of SQLJ’s runtime is outside the control of the application programmer.
The SQLTYPE and SQLLEN information provided below is for consistency with
similar tables in other appendices.

Table 70. Java declarations mapped to typical SQL data types

Java Data Type SQLTYPE of
Host Variable

SQLLEN of Host
Variable

SQL Data Type

short 501 2 SMALLINT

int, java.lang.Integer 497 4 INTEGER

float, java.lang.Float 481 4 REAL

double, java.lang.Double 481 8 DOUBLE

java.math.BigDecimal 481 8 DOUBLE1

java.lang.String 449 length VARCHAR(length)

byte[]2 449 length VARCHAR(length)
FOR BIT DATA

java.sql.Clob3 409 length CLOB(length)

java.sql.Blob3 405 length BLOB(length)

java.sql.Date3, 4 385 10 CHAR(10)

java.sql.Time3, 4 389 8 CHAR(8)

java.sql.Timestamp3, 4 393 26 CHAR(26)

Java Applications

682 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 70. Java declarations mapped to typical SQL data types (continued)

Java Data Type SQLTYPE of
Host Variable

SQLLEN of Host
Variable

SQL Data Type

Note:

1. Each instance of a BigDecimal class has its own precision and scale. On input, the
absence of a known, constant, precision and scale prevents directly mapping the
parameter to a DECIMAL or NUMERIC data type. For that reason, DOUBLE
PRECISION is used.

2. Because this data type is equivalent to a DB2 character data type defined as FOR BIT
DATA, SQLJ performs no character conversion for data of this type.

3. This class is part of the JDBC API.

4. The specified SQLTYPE indicates that the contents of the fixed length character string
are, as appropriate, a DATE, TIME, or TIMESTAMP. When conveying a distinction
between types is less important, 461 (the NUL-terminated VARCHAR representation)
may be used instead.

The following table can be used to determine the Java data type that is equivalent
to a given SQL data type.

Table 71. SQL data types mapped to typical Java declarations

SQL Data Type Java Data Type Notes

SMALLINT short, java.lang.Integer The java.lang package defines
no wrapper class specific to
the primitive type short, so
java.lang.Integer is used.

INTEGER int, java.lang.Integer

DECIMAL(p,s) or
NUMERIC(p,s)

java.math.BigDecimal

REAL float, java.lang.Float

DOUBLE double, java.lang.Double

CHAR(n) java.lang.String n is a positive integer. The
maximum value of n is 254.
See Table 39 on page 552 for
more information.

VARCHAR(n) java.lang.String n is a positive integer. The
maximum value of n is
32 672. See Table 39 on
page 552 for more
information.

CHAR(n) FOR BIT DATA byte[]1 n is a positive integer. The
maximum value of n is 254.
See Table 39 on page 552 for
more information.

VARCHAR(n) FOR BIT
DATA

byte[]1 n is a positive integer. The
maximum value of n is
32 672. See Table 39 on
page 552 for more
information.

CLOB(n) java.sql.Clob2 n is a positive integer. The
maximum value of n is
2 147 483 647. See Table 39 on
page 552 for more
information.

Java Applications

Appendix J. Coding SQL statements in Java applications 683

Table 71. SQL data types mapped to typical Java declarations (continued)

SQL Data Type Java Data Type Notes

GRAPHIC(n) java.lang.String n is a positive integer. The
maximum value of n is 127.
See Table 39 on page 552 for
more information.

VARGRAPHIC(n) java.lang.String n is a positive integer. The
maximum value of n is
16 336. See Table 39 on
page 552 for more
information.

DBCLOB(n) no exact equivalent Not supported.

BLOB(n) java.sql.Blob2 n is a positive integer. The
maximum value of n is
2 147 483 647. See Table 39 on
page 552 for more
information.

DATE java.sql.Date2

TIME java.sql.Time2

TIMESTAMP java.sql.Timestamp2

Note:

1. Because this data type is equivalent to a DB2 character data type defined as FOR BIT
DATA, SQLJ performs no character conversion for data of this type.

2. This class is part of the JDBC API.

Example
The following example, using DB2 UDB for z/OS and OS/390, solicits the name of
a department, obtains the names and phone numbers of all members of that
department from the EMPLOYEE table, and presents that information on the
screen.
package Reports;

import sqlj.runtime.*;
import java.sql.*;
import java.io.*;
import COM.ibm.db2os390.sqlj.jdbc.*;

#sql context CT1x;

public class Summary
{

#sql static iterator ReportDept(String lastName, String phoneNo);

/* Names and Phones by Department */
public static void main (String[] args) // Main entry point
throws SQLException
{

CT1x myConn=null;
InputStreamReader inStream = new InputStreamReader(System.in);
char[] inBuffer = new char[10];
int ii;
String workDept;
ReportDept deptSummary = null; /* iterator used to process the select */

/* Get a local connection from DB2 for OS/390 JDBC driver, with */
/* autocommit off. For any errors in setup, print a stack trace and exit. */

Java Applications

684 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

try
{

Class.forName("COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver");
myConn=new CT1x("jdbc:db2os390sqlj:", false);

}
catch (SQLException e)
{

e.printStackTrace();
return;

}
catch (ClassNotFoundException e)
{

e.printStackTrace();
return;

}

try
{

/* Get the department number to be used in the SELECT statement and */
/* put into upper case. */
System.out.println("Enter a Department number, followed by a <return> ");
ii = inStream.read(inBuffer, 0, 10);
inStream.close();
workDept = (new String(inBuffer)).trim().toUpperCase();

/* Perform the select */
#sql [myConn] deptSummary =

{SELECT LASTNAME,PHONENO FROM EMPLOYEE WHERE WORKDEPT = :workDept};

System.out.println("Here are the members of Department " + workDept);
/* For all rows in the result table */
while (deptSummary.next())
{

/* Display name and phone. If employee does not have a phone, */
/* then display ? */
if (deptSummary.phoneNo() == null)

System.out.println(deptSummary.lastName() + " ?");
else

System.out.println(deptSummary.lastName() + " " +
deptSummary.phoneNo());

}

/* Close the cursor and end the logical unit of work */
deptSummary.close();
#sql [myConn] {COMMIT};

}
catch (SQLException e)
{

e.printStackTrace();
return;

}
catch (java.io.IOException)
{

e.printStackTrace();
return;

}
finally
{

/* whether an error occurred or not, close any created connection */
if (myConn != null)

myConn.close();
}

} /* main */
} /* Summary */

Java Applications

Appendix J. Coding SQL statements in Java applications 685

Java Applications

686 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Appendix K. Coding SQL statements in REXX applications

In the HP-UX, Linux, and Solaris environments, REXX is not supported.

SQL is enabled in REXX through the special REXX command EXECSQL, which is
used to pass SQL statements to the database manager for processing. 146

REXX procedures do not have to be preprocessed. At run time, the REXX
interpreter passes SQL statements to the database manager for processing.

The SQL/REXX interface supports the following SQL statements:

ALTER TABLE 147 DROP 147

CALL 149 EXECUTE
CLOSE EXECUTE IMMEDIATE
COMMIT FETCH
COMMENT 147 GRANT 147

CREATE ALIAS 147 INSERT 147, 148

CREATE DISTINCT TYPE 147 LOCK TABLE 147

CREATE FUNCTION 147 OPEN
CREATE INDEX 147 PREPARE
CREATE PROCEDURE 147 RELEASE SAVEPOINT
CREATE TABLE 147 RENAME 147

CREATE VIEW 147 REVOKE 147

DECLARE CURSOR ROLLBACK
DECLARE GLOBAL TEMPORARY TABLE SAVEPOINT
DELETE 147, 148 SET PATH 147, 148

DESCRIBE UPDATE 147, 148

The following SQL statements are not supported by the SQL/REXX interface:

BEGIN DECLARE SECTION SELECT INTO
CONNECT SET CONNECTION
END DECLARE SECTION SET transition-variable
FREE LOCATOR VALUES
INCLUDE VALUES INTO
RELEASE WHENEVER 150

146. In DB2 UDB for LUW in the OS/2, AIX and Windows for 32-bit operating systems environments, the database manager
supports REXX through calls to an external function named SQLEXEC. In the examples that follow, where EXECSQL '...'
appears, substitute CALL SQLEXEC '...' in these environments.

147. In DB2 UDB for LUW in the OS/2, AIX and Windows for 32-bit operating systems environments, this statement is supported
via either PREPARE followed by EXECUTE, or by EXECUTE IMMEDIATE.

148. These statements cannot be executed directly if they contain host variables; they must be the object of a PREPARE and then an
EXECUTE.

149. The CALL statement cannot include host variables or the USING DESCRIPTOR clause.

150. See “Handling SQL errors and warnings in REXX” on page 691 for more information.

© Copyright IBM Corp. 1982, 2003 687

Defining the SQL communications area in REXX
The fields that make up the SQL Communications Area (SQLCA) are automatically
included by the SQL/REXX interface. An INCLUDE SQLCA statement is not
required, nor is it allowed. The SQLSTATE or SQLCODE fields of the SQLCA
contain SQL return codes. These values are set by the database manager after each
SQL statement is executed. An application can check the SQLSTATE or SQLCODE
value to determine whether the last SQL statement was successful.

The SQL/REXX interface uses the SQLCA in a manner consistent with the typical
SQL usage. (See Appendix C, “SQLCA (SQL communication area)”, on page 567 for
more information.) However, the SQL/REXX interface maintains the fields of the
SQLCA in separate variables rather than in a contiguous data area. The variables
that the SQL/REXX interface maintains for the SQLCA are defined as follows: 151

SQLCODE The SQL return code.

SQLERRMC Error and warning message tokens.

SQLERRP Product code and, if there is an error, the name of
the module that returned the error.

SQLERRD.n Six variables (n is a number between 1 and 6)
containing diagnostic information.

SQLWARN.n Eleven variables (n is a number between 0 and 10)
containing warning flags.

SQLSTATE An SQL return code that indicates the outcome of
the most recently executed SQL statement. Portable
applications should use the SQLSTATE return code
instead of SQLCODE return code.

Defining SQL descriptor areas in REXX
The following statements require an SQLDA:

CALL...USING DESCRIPTOR descriptor-name

DESCRIBE statement-name INTO descriptor-name

EXECUTE...USING DESCRIPTOR descriptor-name

FETCH...USING DESCRIPTOR descriptor-name

OPEN...USING DESCRIPTOR descriptor-name

PREPARE statement-name INTO descriptor-name ...

Unlike the SQLCA, there can be more than one SQLDA in a procedure, and an
SQLDA can have any valid name. Each SQLDA consists of a set of REXX variables
with a common stem, where the name of the stem is the descriptor-name from the
appropriate SQL statement(s). This must be a simple stem; that is, the stem itself
must not contain any periods. The SQL/REXX interface automatically provides the
fields of the SQLDA for each unique descriptor name. An INCLUDE SQLDA
statement is not required, nor is it allowed.

The SQL/REXX interface uses the SQLDA in a manner consistent with the typical
SQL usage. (See Appendix D, “SQLDA (SQL descriptor area)”, on page 571 for

151. In DB2 UDB for LUW in the OS/2 environment, the stem SQLCA precedes each SQLCA variable name (such as
SQLCA.SQLCODE, SQLCA.SQLERRMC).

REXX Applications

688 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

more information.) However, the SQL/REXX interface maintains the fields of the
SQLDA in separate variables rather than in a contiguous data area.

The following variables are returned to the application after a DESCRIBE statement
or a PREPARE statement that contains an INTO clause:

stem.n.SQLNAME The name of the nth column in the result table.

stem.SQLCCSID The CCSID of the nth column of data.

The following variables must be provided by the application before an
OPEN...DESCRIPTOR, a FETCH...DESCRIPTOR, or an EXECUTE...DESCRIPTOR
statement. They are returned to the application after a DESCRIBE statement or a
PREPARE statement that contains an INTO clause:

stem.SQLD Number of variable elements that the SQLDA
actually contains.

stem.n.SQLTYPE An integer representing the data type of the nth
element (for example, the first element is in
stem.1.SQLTYPE).

The following data types are not allowed:

400/401
NUL-terminated graphic string

404/405
BLOB

408/409
CLOB

412/413
DBCLOB

460/461
NUL-terminated character string

504/505
DISPLAY SIGN LEADING SEPARATE

960/961
BLOB locator

964/965
CLOB locator

968/969
DBCLOB locator

stem.n.SQLLEN If SQLTYPE does not indicate a DECIMAL or
NUMERIC data type, the maximum length of the
data contained in stem.n.SQLDATA.

stem.n.SQLLEN.SQLPRECISION
If the data type is DECIMAL or NUMERIC, this
will contain the precision of the number.

stem.n.SQLLEN.SQLSCALE If the type is DECIMAL or NUMERIC, this will
contain the scale of the number.

The following variables must be provided by the application before an
EXECUTE...DESCRIPTOR or OPEN...DESCRIPTOR statement, they are returned to

REXX Applications

Appendix K. Coding SQL statements in REXX applications 689

the application after a FETCH...DESCRIPTOR statement. They are not used after a
DESCRIBE statement or a PREPARE statement that contains an INTO clause:

stem.n.SQLDATA This contains the input value supplied by the
application, or the output value fetched by SQL.

This value is converted to the attributes specified
in SQLTYPE, SQLLEN, SQLPRECISION, and
SQLSCALE.

stem.n.SQLIND If the input or output value is null, this will be a
negative number.

Embedding SQL statements in REXX
An SQL statement can be placed anywhere a REXX command can be placed.

Each SQL statement in a REXX procedure must begin with EXECSQL 152 (in any
combination of uppercase and lowercase letters), followed by either:
v The SQL statement enclosed in single or double quotes, or
v A REXX variable containing the statement. Note that a colon must not precede a

REXX variable when it contains an SQL statement.

For example:
EXECSQL “COMMIT”

is equivalent to:
rexxvar = “COMMIT”
EXECSQL rexxvar

The command follows normal REXX rules. For example, it can optionally be
followed by a semicolon to allow a single line to contain more than one REXX
statement. REXX also permits command names to be included within single
quotes; for example:

'EXECSQL COMMIT'

Comments
Neither SQL comments (--) nor REXX comments are allowed in strings
representing SQL statements. Otherwise, normal REXX commenting rules are
followed.

Continuation of SQL statements
The string containing an SQL statement can be split into several strings on several
lines, separated by commas or concatenation operators, according to standard
REXX usage.

Including code
Unlike the other host languages, support is not provided for including externally
defined statements.

Margins
There are no special margin rules for the SQL/REXX interface.

152. In the OS/2 environment, EXECSQL is replaced with CALL SQLEXEC.

REXX Applications

690 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Names
Any valid REXX name not ending in a period (.) can be used for a host variable.

Do not use host variable names that begin with 'SQL', 'DB2', 'RDI', 'DSN', 'RXSQL',
or 'QRW'. These names are reserved for the database manager.

In DB2 UDB for z/OS and OS/390 and DB2 UDB for LUW in the OS/2
environment, cursor names and statement names are predefined. These predefined
names must be used in SQL statements that reference cursors and prepared
statement names, and they must not be used as host variable names. See the
product documentation for more information.

Nulls
Although the term null is used in both REXX and SQL, the term means different
things in the two languages. REXX has a null string (a string of length zero) and a
null clause (a clause consisting only of blanks and comments). The SQL null value
is a special value that is distinct from all nonnull values and denotes the absence
of a (nonnull) value.

Statement labels
REXX command statements can be labeled as usual.

Handling SQL errors and warnings in REXX
The WHENEVER statement is not supported by the SQL/REXX interface. Any of
the following may be used instead:
v A test of the REXX SQLSTATE or SQLCODE variables after each SQL statement

to detect error and warning conditions issued by the database manager, but not
for those issued by the SQL/REXX interface.

v A test of the REXX RC variable after each SQL statement to detect error and
warning conditions. Each use of the EXECSQL command sets the RC variable to:

0 Statement completed successfully.

positive A SQL warning occurred.

negative An SQL error occurred

This can be used to detect errors and warnings issued by either the database
manager or by the SQL/REXX interface. The values of RC are product-specific.

In DB2 UDB for LUW, the RC variable is not set to a positive value for
warnings.

v The REXX SIGNAL ON ERROR and SIGNAL ON FAILURE facilities can be
used to detect errors, but not warnings. This is driven by the REXX RC variable.
In DB2 UDB for LUW, SIGNAL ON ERROR and SIGNAL ON FAILURE cannot
be used to detect SQL errors.

Isolation level
To use different isolation levels in REXX see the product documentation.

REXX Applications

Appendix K. Coding SQL statements in REXX applications 691

G

G
G

G
G

Using host variables in REXX
REXX does not provide for variable declarations. New variables are recognized by
their appearance in assignment statements. Therefore, there is no SQL declare
section, and the BEGIN DECLARE SECTION and END DECLARE SECTION
statements are not supported.

All host variables within an SQL statement must be preceded by a colon (:).

The SQL/REXX interface performs substitution in compound variables before
passing statements to the database manager. For example:

a = 1
b = 2
EXECSQL 'OPEN c1 USING :x.a.b'

will cause the contents of x.1.2 to be passed to SQL.

Determining data types of input host variables
All data in REXX is in the form of strings. The data type of input host variables
(that is, host variables used in a 'USING host variable' clause in an EXECUTE or
OPEN statement) is inferred by the database manager at run-time from the
contents of the variable according to Table 72.

These rules define either numeric, character, or graphic values. A numeric value
can be used as input to a numeric column of any type. A character value can be
used as input to a character column of any type, or to a date, time, or timestamp
column. A graphic value can be used as input to a graphic column of any type.

Table 72. Determining Data Types of Host Variables in REXX

Host Variable Contents Assumed Data Type SQL Type
Code

SQL Type
Description

A number with neither decimal point nor exponent. It
can have a leading plus or minus sign.

signed integers 496/497 INTEGER

A number that includes a decimal point, but no
exponent,

or

A number that does not include a decimal point or an
exponent and is greater than 2147483647 or smaller than
-2147483647.

It can have a leading plus or minus sign. m is the total
number of digits in the number. n is the number of
digits to the left of the decimal point (if any).

packed decimal 484/485 DECIMAL(m,n)

A number that is in scientific or engineering notation
(that is, followed immediately by an 'E' or 'e', an
optional plus or minus sign, and a series of digits). It
can have a leading plus or minus sign.

floating point 480/481 DOUBLE
PRECISION

A string with leading and trailing apostrophes (’) or
quotation marks ("), which has length n after removing
the two delimiters,

or

A string of length n which cannot be recognized as
numeric or graphic via other rules in this table.

varying-length character
string

448/449 VARCHAR(n)

REXX Applications

692 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 72. Determining Data Types of Host Variables in REXX (continued)

Host Variable Contents Assumed Data Type SQL Type
Code

SQL Type
Description

A string with a leading and trailing apostrophe (’) or
quotation marks (") preceded by the character 'G', 'g',
'N', or 'n', which contains n DBCS characters. 153

varying-length character
string

464/465 VARGRAPHIC(n)

undefined variable variable for which a value
has not been assigned

none Data that is
not valid was
detected.

The format of output host variables
It is not necessary to determine the data type of an output host variable (that is, a
host variable used in an 'INTO host variable' clause in a FETCH statement).
Output values are assigned to host variables as follows:
v Character values are assigned without leading and trailing apostrophes.
v Graphic values are assigned without a leading G or apostrophe, without a

trailing apostrophe, and without shift-out and shift-in characters.
v Numeric values are translated into strings.
v Integer values do not retain any leading zeros. Negative values have a leading

minus sign. Positive values do not have a leading plus sign.
v Decimal values retain leading and trailing zeros according to their precision and

scale. Negative values have a leading minus sign. Positive values do not have a
leading plus sign.

v Floating-point values are in scientific notation, with one digit to the left of the
decimal place. The 'E' is in uppercase.

Avoiding REXX conversion
To guarantee that a string is not converted to a number or assumed to be of
graphic type, strings can be enclosed in the following: "'". Simply enclosing the
string in apostrophes does not work. For example:

stringvar = '100'

will cause REXX to set the variable stringvar to the string of characters 100
(without the apostrophes). This will be evaluated by the SQL/REXX interface as
the number 100, and it will be passed to SQL as such.

On the other hand,
stringvar = “'“100”'”

will cause REXX to set the variable stringvar to the string of characters '100' (with
the apostrophes). This will be evaluated by the SQL/REXX interface as the string
100, and it will be passed to SQL as such.

Indicator variables in REXX
An indicator variable is an integer. On retrieval, an indicator variable is used to
show whether its associated host variable has been assigned a null value. On
assignment to a column, a negative indicator variable is used to indicate that a null
value should be assigned.

153. In EBCDIC implementations, the byte immediately following the leading apostrophe or quote is a X'0E' shift-out, and the byte
immediately preceding the trailing apostrophe or quote is a X'0F' shift-in.

REXX Applications

Appendix K. Coding SQL statements in REXX applications 693

Unlike other languages, a valid value must be specified in the host variable even if
its associated indicator variable contains a negative value.

See “References to host variables” on page 87 for more information on using
indicator variables.

Example
The following example solicits the name of a department, obtains the names and
phone numbers of all members of that department from the EMPLOYEE table, and
presents that information on the screen.
/* Names and Phones by Department Exec */

/* If there are any nonzero return codes, then branch to the error handler */
Signal on error

/* Prepare the select statement */
stmt = ’SELECT LASTNAME, PHONENO FROM EMPLOYEE WHERE WORKDEPT = ?’
what_stmt = ’PREPARE’
EXECSQL ’PREPARE stmt_name FROM :stmt’

/* Declare the cursor to be used for reading the result table */
what_stmt = ’DECLARE’
EXECSQL ’DECLARE c1 CURSOR FOR stmt_name’

/* Get the department number to be used in the SELECT and put into upper case) */
Say ’Enter a Department number’
Parse upper pull dept

/* Find all rows that satisfy the SELECT */
what_stmt = ’OPEN’
EXECSQL ’OPEN c1 USING :dept’

/* Turn off the automatic error trap (in order to handle FETCH warnings in-line */
Signal off error

/* For all rows in the result table */
Say ’Here are the members of Department’ dept
Do forever

/* Fetch the row */
what_stmt = ’FETCH’
EXECSQL ’FETCH c1 INTO :name, :phone :phone_ind’

/* If no more rows, then done */
If rc <> 0 & sqlcode = 100 then

Leave
/* If error then go to error handler */

If rc <> 0 then
Signal error

/* If employee does not have a phone, then set phone to ? */
If phone_ind < 0 then

phone = ’?’
/* Display name and phone */

Say name phone
End

/* Turn on the automatic error trap again */
Signal on error

/* Close the cursor and end the logical unit of work */
what_stmt = ’CLOSE’
EXECSQL ’CLOSE c1’

what_stmt = ’COMMIT’
EXECSQL ’COMMIT’

Exit 0

REXX Applications

694 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Error: /* Error handler */
Signal off error
Say ’ ’
Say ’Error accessing EMPLOYEE table’
Say ’Statement in error was:’ what_stmt
Say ’RC =’ rc
Say ’SQLCODE =’ sqlcode
Exit rc

REXX Applications

Appendix K. Coding SQL statements in REXX applications 695

REXX Applications

696 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Appendix L. Coding programs for use by external routines

Parameter passing for external routines
An external routine invokes an executable program that must be written to accept
parameters according to the specified language and parameter style of the routine.

Whether the program is written as a main program or a subroutine may be
specified by the PROGRAM TYPE clause (see “CREATE PROCEDURE (External)”
on page 367) or is product specific for the type of routine.

Parameter passing for external functions written in C or
COBOL

An external function written in C or COBOL must use a parameter style of
DB2SQL. When using the DB2SQL parameter style, the database manager passes
implicit parameters to the program in addition to the parameters specified in the
invocation of the user-defined function. The parameters are passed to the program
in the order defined by the following diagram.

�� � � � �

� �

SQL-argument SQL-result SQL-argument-ind SQL-result-ind

SQL-result SQL-result-ind

�

� SQL-state qualified-function-name specific-name diagnostic-message �

�
scratchpad call-type dbinfo

��

SQL-argument
Each SQL-argument represents one input parameter defined when the function
was created.

Each input parameter of the function is set by the database manager before
invoking the program. The value of each of these arguments is taken from the
expression specified in the function invocation. It is assigned to the
corresponding parameter definition in the CREATE statement using storage
assignment as described in “Assignments and comparisons” on page 60. The
corresponding parameter is determined by the positional ordering from left to
right.

These arguments are input only and any changes to these argument values
made by the program are ignored by the database manager upon return from
the program.

SQL-result
For a scalar function, SQL-result is the output argument of the function, which
must be set by the program before returning to the database manager. For a
table function, each SQL-result represents a column in the result table of the
function, which must be set by the program before returning to the database

© Copyright IBM Corp. 1982, 2003 697

G
G
G

manager. Each SQL-result of a table function corresponds to the column in
position from left to right in the RETURNS clause of the routine definition.

If the CAST FROM clause was specified in the CREATE FUNCTION statement,
the program is expected to return a data type based on the SQL data type
specified immediately following the CAST FROM. Then, the database manager
does a second CAST, to the SQL data type specified immediately following the
RETURNS. If the CAST FROM clause was not specified in the CREATE
FUNCTION statement, the program is expected to return a data type based on
the SQL data type specified immediately following the RETURNS keyword.

The program must return a value that corresponds to the data type and length
of the result as specified when the function was created. See “Attributes of the
arguments of a routine program” on page 706 for appropriate data type
declarations. The SQL-result value is assigned to a value with the RETURNS
data type or the CAST FROM data type using storage assignment rules as
described in “Assignments and comparisons” on page 60.

SQL-argument-ind
There is an SQL-argument-ind for each SQL-argument passed to the program.
The nth SQL-argument-ind corresponds to the nth SQL-argument and indicates
whether the SQL-argument has a value or is NULL.

Each SQL-argument-ind is defined as a two-byte signed integer.

Each SQL-argument-ind associated with an argument of the function is set by
the database manager before invoking the program. It contains one of the
following values:

0 The argument is present and not NULL.

-1 The argument value is NULL.

-2 The argument value is NULL due to a numeric conversion error (such as
divide by 0 or overflow) or a character conversion error.

If the function is defined with RETURNS NULL ON NULL INPUT, the
program does not need to check for a NULL value. However, if it is defined
with CALLED ON NULL INPUT, any argument can be NULL and the
program should check each SQL-argument-ind.

SQL-result-ind
For a scalar function, there is an SQL-result-ind for the single SQL-result of the
program, which must be set by the program before returning to the database
manager. For a table function, there is an SQL-result-ind for each SQL-result
parameter of the program, which must be set by the program before returning
to the database manager. The nth SQL-result-ind corresponds to the nth
SQL-result of the program.

Each SQL-result-ind is defined as a two-byte signed integer.

A result indicator is used by the program to indicate if a result value is NULL:

0 or positive
The result value is present and not NULL.

negative
The result value is NULL.

Any negative value for the indicator set by the program is returned by the
database manager as a -1, except for a value of -2 which is returned as a -2.

Coding programs for use by external routines

698 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

SQL-result-ind is defined as a two-byte signed integer.

SQL-state
This output argument is a CHAR(5) value that represents the SQLSTATE. This
argument is passed in from the database manager with the initial value set to
’00000’ and can be set by the program as the result SQLSTATE for the function.
While normally the SQLSTATE is not set by the program, it can be used to
return an error or warning as follows:

01Hxx
The program detected a warning situation. This results in an SQL warning.
Here xx may be one of several possible strings.

38xxx
The program detected an error situation. It results in an SQL error. Here
xxx may be one of several possible strings.

See Appendix E, “SQLSTATE values—common return codes”, on page 581 for
more information about valid SQLSTATEs that the program may use.

qualified-function-name
This input argument is set by the database manager before invoking the
program. It is a VARCHAR(517) value that contains the qualified name of the
function that is invoking the program. The identifiers in the function name
might be delimited. This argument is useful when the program is being used
by multiple function definitions so that the program can distinguish which
function is being invoked. This argument is input only and any changes to the
argument value made by the program are ignored by the database manager
upon return from the program.

specific-name
This input argument is set by the database manager before invoking the
program. It is a VARCHAR(128) value that contains the specific name of the
function that is invoking the program. Like qualified-routine-name, this
parameter is useful when the program is being used by multiple function
definitions so that the program can distinguish which definition is being
invoked. See “CREATE FUNCTION” on page 325 for more information about
specific-name. This argument is input only and any changes to the argument
value made by the program are ignored by the database manager upon return
from the program.

diagnostic-message
This output argument is a VARCHAR(70) value that can be used by the
program to send message text back when an SQLSTATE warning or error is
returned by the program. It is initialized by the database manager to an empty
string before invoking the program and may be set by the program with
descriptive information. The diagnostic-message argument value is ignored by
the database manager unless the SQL-state argument is set by the program to a
value other than ’00000’.

scratchpad
This input and output argument is set by the database manager before
invoking the program. It is only present if SCRATCHPAD is specified in the
CREATE FUNCTION statement. The scratchpad provides the program access
to storage that is persistent across function invocations within the same SQL
statement.

This argument is a structure with the following elements:
v an INTEGER containing the length of the scratchpad

Coding programs for use by external routines

Appendix L. Coding programs for use by external routines 699

v the actual scratchpad, initialized to all binary zeroes by the database
manager before the first invocation of the program.

The value of the scratchpad is unchanged by the database manager between
invocations of program based on iterations of the same function invocation
within an SQL statement.

call-type
This input argument is set by the database manager before invoking the
program. This argument is present for all external table functions and for an
external scalar function if the CREATE FUNCTION statement for the function
specified FINAL CALL. The call-type argument is an INTEGER value that
identifies the type of call. The call-type argument is for input only and any
changes to the argument value that are made by the program are ignored by
the database manager upon return from the program.

For a scalar function, call-type contains one of the following values:

SQLUDF_FIRST_CALL (-1)
This is the first invocation of the program for this statement. A first call is
a normal call in that all the external function argument values of the
parameter style are passed. The scratchpad, if included, is set to binary
zeros when the function is invoked with this call-type.

SQLUDF_NORMAL_CALL (0)
This is a normal call. All the external function argument values of the
parameter style are passed.

SQLUDF_FINAL_CALL (1)
This is a final call. No SQL-argument or SQL-argument-ind values are
passed. The program should not set the SQL-result, SQL-result-ind,
SQL-state, or diagnostic-message arguments.

SQLUDF_FINAL_CRA (255)
This is a final call that does not allow any SQL statement except the
CLOSE statement to be processed. This value for call-type is used when the
final call is being made as a result of commit or rollback processing. No
SQL-argument or SQL-argument-ind values are passed. This call balances the
first call, and can be used to release resources. The program should not set
the SQL-result, SQL-result-ind, SQL-state, or diagnostic-message arguments.

This value is never used when processing the function on DB2 UDB for
iSeries.

For a table function, call-type contains one of the following values:

SQLUDF__TF_FIRST (-2)
This is the first invocation of the program for this statement. A first call
occurs only if FINAL CALL is specified in the CREATE FUNCTION
statement. A first call passes all the external function argument values of
the parameter style. The scratchpad, if included, is set to binary zeros
when the function is invoked with this call-type. The program should not
set the SQL-result or SQL-result-ind arguments for a first call because these
parameters are ignored by the database manager upon return from the
program.

SQLUDF__TF_OPEN (-1)
This is an open call. All the external function argument values of the
parameter style are passed. If the CREATE FUNCTION statement for the
function did not specify FINAL CALL, the scratchpad (if passed) is
initialized. Otherwise, the scratchpad is not modified from the first call. The

Coding programs for use by external routines

700 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

program should not set the SQL-result or SQL-result-ind arguments for an
open call because these parameters are ignored by the database manager
upon return from the program.

SQLUDF__TF_FETCH (0)
This is a fetch call. All the external function argument values of the
parameter style are passed. The database manager expects a fetch call of a
table function to return either a row comprising the set of returned values
or an end-of-table condition indicated by SQLSTATE 02000.

SQLUDF__TF_CLOSE (1)
This is a close call. No SQL-argument or SQL-argument-ind values are
passed. This call balances the open call, and can be used to perform any
close processing and to release resources (particularly if there is NO FINAL
CALL). In cases such as when the table function is used in a join or a
subquery, the sequence of open, fetch, and close calls may be repeated
multiple times while processing the higher level query. The program
should not set the SQL-result, SQL-result-ind, SQL-state, or diagnostic-message
arguments.

SQLUDF__TF_FINAL (2)
This is a final call. No SQL-argument or SQL-argument-ind values are
passed. This call balances the first call, and can be used to release
resources. The program should not set the SQL-result, SQL-result-ind,
SQL-state, or diagnostic-message arguments.

SQLUDF__TF_FINAL_CRA (255)
This is a final call that does not allow any SQL statement except the
CLOSE statement to be processed. This value for call-type is used when the
final call is being made as a result of commit or rollback processing. No
SQL-argument or SQL-argument-ind values are passed. This call balances the
first call, and can be used to release resources. The program should not set
the SQL-result, SQL-result-ind, SQL-state, or diagnostic-message arguments.

This value is never used when processing the function on DB2 UDB for
iSeries.

dbinfo
This input argument is set by the database manager before invoking the
program. It is only present if the CREATE FUNCTION statement for the
routine specifies the DBINFO keyword. The argument is a structure whose
definition is described in “Database information in external routines
(DBINFO)” on page 708. The dbinfo argument is input only and any changes to
the argument value made by the program are ignored by the database
manager upon return from the program.

Parameter passing for external functions written in Java
The Java parameter style is the style specified by Information technology - Database
languages - SQL - Part 13: SQL Routines and Types Using the Java™ Programming
Language (SQL/JRT) ISO/IEC 9075-13:2002. When coding a Java method for an
external function, the following conventions must be followed.
v The Java method must be a public static method.
v The parameters of the Java method must be a Java type that is equivalent to the

SQL data type of the parameter (see Table 73 on page 706).
v The Java method must return a Java type that is equivalent to the SQL data type

of the result defined for the function (see Table 73 on page 706). The return value
is the result of the method.

Coding programs for use by external routines

Appendix L. Coding programs for use by external routines 701

Consider an example of a function created with parameters of SQL types t1, t2,
and t3 and returning type t4 with external name ’jarfile.fname’ (jarfile is the Java
class name). The database manager will invoke the Java method with the expected
Java signature:
public static T4 fname (T1 a, T2 b, T3 c) {}

Where:
v fname is the Java method name
v T1 through T4 are the Java types that correspond to SQL types t1 through t4.
v a, b, and c are arbitrary variable names for the input arguments.

For example, given an external function called sample.test3 that returns INTEGER
and takes arguments of type CHAR(5), INTEGER, and DATE, the database
manager expects the Java implementation of the function to have the following
signature:
import java.sql.*;
public class sample
{

public static int test3(String arg1, int arg2, Date arg3) { ... }
}

To return a result of an external function from a Java method when using the JAVA
parameter style, simply return the result from the method.
{

...
return value;

}

SQL NULL values are representable in Java only by variables declared to be
instances of a Java class. In such variables, SQL NULL is represented by Java null.
The following primitive Java types do not support the SQL NULL value: short, int,
long, float, double. If a null value is passed to a parameter that is a Java primitive
type, an SQL error is returned.

For portability, all Java classes used by an external function must either reside in
the jar file installed in the database and referenced in the external-program-name of
the function definition, or be a class provided by the database manager. If the
external-program-name does not specify a JAR, then a platform specific mechanism is
used to locate classes that are not provided by the database manager.

Parameter passing for external procedures written in C or
COBOL

An external procedure written in C or COBOL can be defined to use one of three
parameter styles. When using the DB2SQL parameter style, the database manager
passes parameters to the program in addition to the parameters specified in the
call to the procedure. Depending on the parameter style, the parameters are passed
to the program in the order defined by the following diagrams.

Parameter Style GENERAL:

��

� SQL-argument

��

Coding programs for use by external routines

702 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
G

Parameter Style GENERAL WITH NULLS:

��

� SQL-argument SQL-argument-ind-array

��

Parameter style DB2SQL:

��

� �
(1)

SQL-argument SQL-argument-ind

SQL-state �

� qualified-procedure-name specific-name diagnostic-message
dbinfo

��

Notes:

1 On DB2 UDB for LUW, an SQL-argument-ind-array is used.

SQL-argument
Each SQL-argument represents one input value, one output value, or both an
input value and an output value that is defined when the routine was created.

The following describes the use of each SQL-argument.
v An IN parameter of a procedure is set by the database manager before

invoking the program. The value of each of these arguments is taken from
the expression specified in the CALL to the procedure. It is assigned to the
corresponding parameter definition in the CREATE PROCEDURE statement
using storage assignment as described in “Assignments and comparisons”
on page 60.

These arguments are input only and any changes to these argument values
made by the program are ignored upon return from the program.

v An OUT parameter of a procedure is set by the program before returning to
the database manager. The program must return a value that corresponds to
the data type and length of the result as specified when the procedure was
created. See “Attributes of the arguments of a routine program” on page 706
for appropriate data type declarations.

v An INOUT parameter of a procedure behaves as both an IN and an OUT
parameter and therefore follows both sets of rules described above.

SQL-argument-ind-array
There is an element in SQL-argument-ind-array for each SQL-argument passed to
the program. SQL-argument-ind-array is an array of two-byte signed integers.
The nth element of SQL-argument-ind-array corresponds to the nth
SQL-argument. The elements of the array can be used by the program to
determine if the corresponding SQL-argument is null or not.

The following describes the use of each SQL-argument-ind-array element.
v An IN parameter of a procedure is set by DB2 before invoking the program.

It contains one of the following values:

0 The procedure argument is present and not NULL.

-1 The procedure argument value is NULL.

Coding programs for use by external routines

Appendix L. Coding programs for use by external routines 703

-2 The argument value is NULL due to a numeric conversion error (such as
divide by 0 or overflow) or a character conversion error.

The program should check every input argument’s SQL-argument-ind-array
element because any argument can be NULL.

v An OUT parameter of a procedure which must be set by the program before
returning to the database manager. This argument is used by the program to
indicate if the particular returned value is NULL:

0 or positive
The returned value is present and not NULL.

negative
The returned value is NULL.

The program must set the SQL-argument-ind-array element of all output
parameters. If the indicator value is other than -1 or -2, the returned value
may not be the same as the value specified in the program.

v An INOUT parameter of a procedure behaves as both an IN and an OUT
parameter and therefore follows both sets of rules described above.

SQL-argument-ind
There is an SQL-argument-ind for each SQL-argument passed to the program.
The nth SQL-argument-ind corresponds to the nth SQL-argument and indicates
whether the SQL-argument has a value or is NULL.

Each SQL-argument-ind is defined as a two-byte signed integer. The use of each
SQL-argument-ind is the same as the use of each element of
SQL-argument-ind-array.

DB2 UDB for LUW uses an SQL-argument-ind-array for parameter style
DB2SQL on procedures. See the description of SQL-argument-ind-array for
details.

SQL-state
This output argument is a CHAR(5) value that represents the SQLSTATE. This
argument is passed in from the database manager with the initial value set to
’00000’ and can be set by the program as an SQLSTATE for the procedure.
While normally the SQLSTATE is not set by the program, it can be used to
return an error or warning to the database as follows:

01Hxx
The program detected a warning situation. This results in an SQL warning.
Here xx may be one of several possible strings.

38xxx
The program detected an error situation. It results in an SQL error. Here
xxx may be one of several possible strings.

See Appendix E, “SQLSTATE values—common return codes”, on page 581 for
more information about valid SQLSTATEs that the program may use.

qualified-procedure-name
This input argument is set by the database manager before invoking the
program. It is a VARCHAR(517) value that contains the name of the procedure
that is invoking the program. The format of the value in qualified-procedure-
name is:
"schema-name"."procedure-name"

Coding programs for use by external routines

704 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
G

Note that any double quote character within the schema-name or procedure-name
gets doubled. This argument is useful when the program is being used by
multiple procedure definitions so that the program can distinguish which
procedure is being invoked. This argument is input only and any changes to
the argument value made by the program are ignored by the database
manager upon return from the program.

specific-name
This input argument is set by the database manager before invoking the
program. It is a VARCHAR(128) value that contains the specific name of the
procedure that is invoking the program. Like qualified-procedure-name, this
parameter is useful when the routine code is being used by multiple procedure
definitions so that the program can distinguish which definition is being
invoked. See CREATE PROCEDURE for more information about specific-name.
This argument is input only and any changes to the argument value made by
the program are ignored by the database manager upon return from the
program.

diagnostic-message
This output argument is a VARCHAR(70) value that can be used by the
program to send message text back when an SQLSTATE warning or error is
returned by the program. It is initialized by the database manager to an empty
string before invoking the program and may be set by the program with
descriptive information. The diagnostic-message argument value is ignored by
the database manager unless the SQL-state argument is set by the program to a
value other than ’00000’.

dbinfo
This output argument is set by the database manager before invoking the
program. It is only present if DBINFO is specified in the CREATE
PROCEDURE statement. The argument is a structure whose definition is
described in “Database information in external routines (DBINFO)” on
page 708. This argument is input only and any changes to the argument value
made by the program are ignored by the database manager upon return from
the program.

Parameter passing for external procedures written in Java
The Java parameter style is the style specified by Information technology - Database
languages - SQL - Part 13: SQL Routines and Types Using the Java™ Programming
Language (SQL/JRT) ISO/IEC 9075-13:2002. When coding a Java method for an
external procedure, the following conventions must be followed.
v The Java method must be a public void static (not instance) method.
v The parameters of the Java method must be a Java type that is equivalent to the

SQL data type of the parameter (see Table 73 on page 706).
v The output parameters must be returned using single element arrays.
v If the procedure is defined with DYNAMIC RESULT SETS n, where n is greater

than zero, the Java method signature must end with n parameters whose type is
java.sql.ResultSet[]. All java.sql.ResultSets to be returned to the calling
application must be assigned to the first element of the array representing their
output parameter, and all ResultSets that are not being returned to the calling
application need to be explicitly or implicitly closed before the procedure
returns.

Coding programs for use by external routines

Appendix L. Coding programs for use by external routines 705

Consider an example of a procedure created with parameters of SQL types t1, t2,
and t3, and t4 with external name ’jarfile.pname’ (jarfile is the Java class name).
The database manager will invoke the Java method with the expected Java
signature:
public static void pname (T1 a, T2 b, T3 c, T4 d) { ... }

Where:
v pname is the Java method name
v T1 through T4 are the Java types that correspond to SQL types t1 through t4
v a, b, c, and d are arbitrary variable names for the arguments.

SQL NULL values are representable in Java only by variables declared to be
instances of a Java class. In such variables, SQL NULL is represented by Java null.
The following primitive Java types do not support the SQL NULL value: short, int,
long, float, double. If a null value is passed to a parameter that is a Java primitive
type, an SQL error is returned.

For portability, all Java classes used by an external procedure must either reside in
the jar file installed in the database and referenced in the external-program-name of
the procedure definition, or be a class provided by the database manager. If the
external-program-name does not specify a JAR, then a platform specific mechanism is
used to locate classes that are not provided by the database manager.

Attributes of the arguments of a routine program
Table 73 should be used to determine the appropriate type declarations for the
parameters of the program associated with a routine. Each programming language
supports different data types. The SQL data type is contained in the leftmost
column of the table. Other columns in that row contain an indication of whether
that data type is supported as a parameter type for a particular language. If the
column contains a dash (-), the data type is not supported as a parameter type for
that language.

Table 73. Data type mappings for parameters

SQL Data Type C and C++ COBOL Java

SMALLINT short PIC S9(4) BINARY short

INTEGER sqlint32 PIC S9(9) BINARY int

DECIMAL(p,s) or
NUMERIC(p,s)

- PIC S9(p-s)V9(s)
PACKED-DECIMAL
Note: Precision must
not be greater than
18.

java.math.BigDecimal

REAL or FLOAT(p) float COMP-1 float

DOUBLE PRECISION
or FLOAT or
FLOAT(p)

double COMP-2 double

CHARACTER(n) char ... [n+1] PIC X(n) java.lang.String

154. In C, C++, or COBOL, a DATE or TIME value is passed to a routine using a string representation in the ISO format. For
example, a TIME value is passed to routine as the string ’12.58.01’. When returning a DATE or TIME value, any of the
supported DATE or TIME string formats to be used except from a table function where the ISO format must be used. See
“String representations of datetime values” on page 52 for details.

Coding programs for use by external routines

706 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G
G

Table 73. Data type mappings for parameters (continued)

SQL Data Type C and C++ COBOL Java

CHAR(n) FOR BIT
DATA

char ... [n+1] PIC X(n) byte[]

VARCHAR(n) char ... [n+1] Varying-Length
Character String (see
“Character host
variables (excluding
CLOB)” on page 657)

java.lang.String

VARCHAR(n) FOR
BIT DATA

VARCHAR structured
form (see “Character
host variables
(excluding CLOB)” on
page 640)

Varying-Length
Character String (see
“Character host
variables (excluding
CLOB)” on page 657.

byte[]

GRAPHIC(n) sqldbchar ... [n+1] PIC G(n) DISPLAY-1
or PIC N(n)

java.lang.String

VARGRAPHIC(n) VARGRAPHIC
structured form (see
C chapter)

Varying-Length
Graphic String (see
“Graphic host
variables (excluding
DBCLOB)” on
page 658)

java.lang.String

DATE154 char ... [11] PIC X(10) java.sql.Date

TIME154 char ... [9] PIC X(8) java.sql.Time

TIMESTAMP154 char ... [27] PIC X(26) java.sql.Timestamp

CLOB CLOB structured
form (see “Declaring
a LOB parameter”)

CLOB structured
form (see “Declaring
a LOB parameter”)

-

BLOB BLOB structured
form (see “Declaring
a LOB parameter”)

BLOB structured
form (see “Declaring
a LOB parameter”)

-

DBCLOB DBCLOB structured
form (see “Declaring
a LOB parameter”)

DBCLOB structured
form (see “Declaring
a LOB parameter”)

-

distinct type 155 155 155

Indicator Variable short PIC S9(4) BINARY Not applicable for
Java

Declaring a LOB parameter
The declaration of a LOB parameter for a routine written in C or COBOL requires
a structure with a length and data fields.
v For a CLOB or BLOB in C, the following is an example declaration for a

CLOB(64K) or BLOB(64K) parameter:
struct parm1_t
{

unsigned long length;
char data[65536];

} *parm1;

155. A distinct type parameter is passed as the source type of the distinct type. Refer to the source type of the distinct type to
determine the appropriate language type.

Coding programs for use by external routines

Appendix L. Coding programs for use by external routines 707

Taking advantage of definitions in the sqludf include file, the same declaration
could also be done as follows:

struct sqludf_lob *parm1;

v For a DBCLOB in C, the following is an example declaration for a DBCLOB(64K)
parameter:

struct parm2_t
{

unsigned long length;
wchar_t data[65536];

} parm2;

Taking advantage of definitions in the sqludf include file, the same declaration
could also be done as follows:

struct sqludf_lobg *parm1;

v For a CLOB or BLOB in COBOL, the following is an example declaration for a
CLOB(64K) or BLOB(64K) parameter:

01 LOB-PARM1.
49 LOB-PARM1-LENGTH PIC 9(9) BINARY.
49 LOB-PARM1-DATA PIC X(65536).

v For a DBCLOB in COBOL, the following is an example declaration for a
DBCLOB(64K) parameter:

01 DBCLOB-PARM2.
49 DBCLOB-PARM2-LENGTH PIC 9(9) BINARY.
49 DBCLOB-PARM2-DATA PIC G(8192) DISPLAY-1.

Database information in external routines (DBINFO)
Routines sometimes need access to information about the current server and where
the routine is invoked. Table 74 contains a description of the relevant fields of the
DBINFO structure which provide such information. Detailed information about the
DBINFO structure can be found in the sqludf include file.

Table 74. DBINFO fields

Field Data Type156 Description

Relational database name VARCHAR(128) The name of the current server.

Authorization ID VARCHAR(128) The execution time authorization ID.

Environment CCSID
Information

structure (see
“DBINFO structure
for C” on page 711
or “DBINFO
structure for
COBOL” on
page 712)

The CCSID information of the
environment. See “CCSID information in
DBINFO” on page 710 for more details.

Schema name VARCHAR(128) Schema name of the target table where
the function reference is either the right
side of a SET clause in an UPDATE
statement or an item in the VALUES list
of an INSERT statement. Otherwise
empty (zero length).

156. A data type of VARCHAR(n) in this table implies that there is a 2 byte length field followed by character string data. The
character string may not be nul-terminated.

Coding programs for use by external routines

708 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Table 74. DBINFO fields (continued)

Field Data Type156 Description

Table name VARCHAR(128) Table name of the target table where the
function reference is either the right side
of a SET clause in an UPDATE statement
or an item in the VALUES list of an
INSERT statement. Otherwise empty
(zero length).

Column name VARCHAR(128) Column name of the target column
where the function reference is either the
right side of a SET clause in an UPDATE
statement or an item in the VALUES list
of an INSERT statement. Otherwise
empty (zero length).

Product information CHAR(8) Identifies the product on which the
routine executes. The information has the
form pppvvrrm, where:

v ppp is:

DSN for DB2 UDB for z/OS and
OS/390

QSQ for DB2 UDB for iSeries

SQL for DB2 UDB for LUW

v vv is a two-digit version identifier
such as ’07’.

v rr is a two-digit release identifier such
as ’01’.

v m is a one-digit modification level
such as ’0’.

For example, if the server is Version 7 of
DB2 UDB for z/OS and OS/390, the
value would be 'DSN07010'.

Platform type INTEGER Identifies the operating system on which
the program that invokes the routine
runs. The value is one of these:

v 0 Unknown

v 1 OS/2

v 3 Windows

v 4 AIX

v 5 Windows NT

v 6 HP-UX

v 7 Solaris

v 8 OS/390 or z/OS

v 13 Siemens Nixdorf

v 15 Windows 95

v 16 SCO UNIX

v 24 Linux/390

v 400 OS/400

Number of column list
entries

SMALLINT For table functions only, the number of
entries in the column list array.

Coding programs for use by external routines

Appendix L. Coding programs for use by external routines 709

Table 74. DBINFO fields (continued)

Field Data Type156 Description

Table function column list pointer to 2-byte
integer array

For table functions only, an array
corresponding to the ordinal numbers of
the columns that this invocation requires
from the function. The pointer is null if
the function is not a table function. For
more details, refer to “Table function
column list information in DBINFO”.

Application identifier pointer to character
string

If not a null pointer, a pointer to a
character string that uniquely identifies
the application’s connection to the
database. A different value is generated
for each connection to the database.

CCSID information in DBINFO
The environment CCSID information provided in DBINFO is presented in the form
of 3 sets of 3 CCSIDs. Each set consists of an SBCS CCSID, a DBCS CCSID, and a
mixed CCSID. The reason for 3 sets of CCSIDs is to allow representations of the
different encoding schemes that are possible. Therefore the field following the sets
of CCSIDs indicates which set is relevant. The environment CCSIDs provide the
routine with information about the CCSID that is used See “Coded character sets
and CCSIDs” on page 22 for more information on CCSIDs and codepages.

The meaning of these environment CCSIDs depends on the application server
where the routine is executed.
v On DB2 UDB for z/OS and OS/390, the environment CCSIDs are the CCSIDs

for the table accessed in the containing SQL statement.
v On DB2 UDB for iSeries, the environment CCSIDs are the CCSIDs associated

with the job.
v On DB2 UDB for LUW, the environment CCSIDs are the CCSIDs for the

relational database.

Table function column list information in DBINFO
If the DBINFO structure is passed to a table function, information about the
columns that are required by the caller is passed in the column list array. The
database manager allocates the array of 2-byte integers and provides the pointer. If
a function is not defined to return a table, this pointer is null. Values are assigned
to the elements of the array up to the number of column list entries specified in
the DBINFO (referred to as numtfcol). The value numtfcol is greater than or equal to
0 and less than or equal to the number result columns defined for the user-defined
function in the RETURNS TABLE clause of the CREATE FUNCTION statement.
The values correspond to the numbers of the columns that the invoking statement
needs from the table function. A value of 1 means the first defined result column, 2
means the second defined result column, and so on. The values can be in any
order. If numtfcol is equal to 0, the contents of the array should be ignored. This is
the case for a statement like the following one, where the invoking statement needs
no column values.
SELECT COUNT(*) FROM TABLE(TF(...)) AS QQ

This array represents an opportunity for optimization. The user-defined function
does not need to return all values for all the result columns of the table function.

Coding programs for use by external routines

710 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

G
G

G
G

G
G

G
G

Instead, the user-defined function can return only those columns that are needed in
the particular context, which you identify by number in the array. However, if this
optimization complicates the user-defined function logic enough to cancel the
perfomance benefit, you might choose to return every defined column.

DBINFO structure for C
In C, the DBINFO structure and associated structure declarations are equivalent
(but not necessarily identical) to the following structure declarations. Overall size
of the structure and size of reserved fields is platform specific.
#define SQLUDF_MAX_IDENT_LEN 128 /* max length of identifier */
#define SQLUDF_SH_IDENT_LEN 8 /* length of short identifier */

/*---*/
/* Structure used for: Environment CCSID */
/*---*/

SQL_STRUCTURE db2_cdpg
{

struct db2_ccsids
{

unsigned long db2_sbcs;
unsigned long db2_dbcs;
unsigned long db2_mixed;

} db2_ccsids_t[3];

unsigned long db2_encoding_scheme;
unsigned char reserved[8];

};

union db_cdpg
{

/* union includes other platform-specific deprecated structures */
/* not included here. */
struct db2_cdpg cdpg_db2; /* Common environment CCSID structure */

};

/*---*/
/* encoding_scheme values for db2_cdpg.db2_encoding_scheme */
/*---*/
#define SQLUDF_ASCII 0 /* ASCII */
#define SQLUDF_EBCDIC 1 /* EBCDIC */
#define SQLUDF_UNICODE 2 /* UNICODE */

/*--*/
/* Structure used for: dbinfo. */
/*--*/
SQL_STRUCTURE sqludf_dbinfo
{

unsigned short dbnamelen; /* database name length */
unsigned char dbname[SQLUDF_MAX_IDENT_LEN]; /* database name */
unsigned short authidlen; /* authorization ID length */
unsigned char authid[SQLUDF_MAX_IDENT_LEN]; /* appl authorization ID */
union db_cdpg codepg; /* database code page */
unsigned short tbschemalen; /* table schema name length*/
unsigned char tbschema[SQLUDF_MAX_IDENT_LEN];/* table schema name */
unsigned short tbnamelen; /* table name length */
unsigned char tbname[SQLUDF_MAX_IDENT_LEN]; /* table name */
unsigned short colnamelen; /* column name length */
unsigned char colname[SQLUDF_MAX_IDENT_LEN]; /* column name */
unsigned char ver_rel[SQLUDF_SH_IDENT_LEN]; /* product information */
unsigned long platform; /* platform type */
unsigned short numtfcol; /* number of entries in */

/* the TF column list array*/
unsigned char resd1[24]; /* Reserved- for expansion */

Coding programs for use by external routines

Appendix L. Coding programs for use by external routines 711

unsigned short *tfcolumn; /* tfcolumn is allocated */
/* dynamically if TF is */
/* defined; otherwise, this*/
/* will be a null */

char *appl_id; /* application identifier */
unsigned char resd2[20]; /* Reserved- for expansion */

};

DBINFO structure for COBOL
In COBOL, the DBINFO structure and associated structure declarations are
equivalent (but not necessarily identical) to the following.

* Structure used for: dbinfo.
**
01 SQLUDF-DBINFO.
* relational database name length

05 DBNAMELEN PIC 9(4) USAGE BINARY.
* reltional database name

05 DBNAME PIC X(128).
* authorization ID length

05 AUTHIDLEN PIC 9(4) USAGE BINARY.
* authorization ID

05 AUTHID PIC X(128).
* environment CCSID information

05 CODEPG PIC X(48).
05 CDPG-DB2 REDEFINES CODEPG.

10 DB2-CCSIDS OCCURS 3 TIMES.
15 DB2-SBCS PIC 9(9) USAGE BINARY.
15 DB2-DBCS PIC 9(9) USAGE BINARY.
15 DB2-MIXED PIC 9(9) USAGE BINARY.

10 ENCODING-SCHEME PIC 9(9) USAGE BINARY.
10 RESERVED PIC X(8).

* other platform-specific deprecated CCSID structures not included here
* schema name length

05 TBSCHEMALEN PIC 9(4) USAGE BINARY.
* schema name

05 TBSCHEMA PIC X(128).
* table name length

05 TBNAMELEN PIC 9(4) USAGE BINARY.
* table name

05 TBNAME PIC X(128).
* column name length

05 COLNAMELEN PIC 9(4) USAGE BINARY.
* column name

05 COLNAME PIC X(128).
* product information

05 VER-REL PIC X(8).
* Reserved for expansion

05 RESD0 PIC X(2).
* platform type

05 PLATFORM PIC 9(9) USAGE BINARY.
* number of entries in the TF column list array (tfcolumn, below)

05 NUMTFCOL PIC 9(4) COMP-5.
* Reserved for expansion

05 RESD1 PIC X(24).
* tfcolumn will be allocated dynamically if TF is defined; otherwise,
* this will be a null pointer.

05 TFCOLUMN USAGE IS POINTER.
* application identifier

05 APPL-ID USAGE IS POINTER.
* Reserved for expansion

05 RESD2 PIC X(20).

Coding programs for use by external routines

712 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Scratch pad in external functions
External functions may need an area to save information between invocations. This
is referred to as a scratch pad. A function is enabled to have a scratch pad by
specifying the SCRATCHPAD keyword during CREATE FUNCTION (see
“CREATE FUNCTION (External Scalar)” on page 329). Table 75 contains a
description of the fields of the scratchpad structure. Detailed information about the
scratchpad structure can be found in the sqludf include file.

Table 75. SCRATCHPAD fields

Field Data Type Description

Length of scratchpad INTEGER Length of the data field of the
scratchpad.

Scratchpad area CHARACTER(100) The data area available for a scratchpad.
Actual length of the scratchpad can
exceed 100, but the structure definition
in the sqludf include file defaults to 100.

The following is an example of a C declaration for a scratchpad with 150 bytes.
SQL_STRUCTURE sqludf_scratchpad
{

unsigned long length; /* length of scratchpad data */
char data[150]; /* scratchpad data, init. to all \0 */

};

Coding programs for use by external routines

Appendix L. Coding programs for use by external routines 713

Coding programs for use by external routines

714 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Appendix M. Sample tables

The tables on the following pages are used in the examples that appear throughout
this book. This appendix contains the following sample tables:

“ACT”
“CL_SCHED” on page 716
“DEPARTMENT” on page 716
“EMP_PHOTO” on page 716
“EMP_RESUME” on page 717
“EMPLOYEE” on page 717
“EMPPROJACT” on page 720
“IN_TRAY” on page 722
“ORG” on page 722
“PROJACT” on page 723
“PROJECT” on page 724.
“SALES” on page 726
“STAFF” on page 727

In these tables, a question mark (?) indicates a null value.

ACT

Name: ACTNO ACTKWD ACTDESC

Type: SMALLINT
NOT NULL

CHAR(6)
NOT NULL

VARCHAR(20)
NOT NULL

Desc: Account number Account keyword Account description

Values: 10 MANAGE MANAGE/ADVISE

20 ECOST ESTIMATE COST

30 DEFINE DEFINE SPECS

40 LEADPR LEAD PROGRAM/DESIGN

50 SPECS WRITE SPECS

60 LOGIC DESCRIBE LOGIC

70 CODE CODE PROGRAMS

80 TEST TEST PROGRAMS

90 ADMQS ADM QUERY SYSTEM

100 TEACH TEACH CLASSES

110 COURSE DEVELOP COURSES

120 STAFF PERS AND STAFFING

130 OPERAT OPER COMPUTER SYS

140 MAINT MAINT SOFTWARE SYS

150 ADMSYS ADM OPERATING SYS

160 ADMDB ADM DATA BASES

© Copyright IBM Corp. 1982, 2003 715

Name: ACTNO ACTKWD ACTDESC

170 ADMDC ADM DATA COMM

180 DOC DOCUMENT

CL_SCHED

Name: CLASS_CODE DAY STARTING ENDING

Type: CHAR(7) SMALLINT TIME TIME

Desc: Class code
(room:teacher)

Day # of 4 day schedule Class start time Class end time

Values: 042:BF 4 12:10 PM 02:00 PM

553:MJA 1 10:30 AM 11:00 AM

543:CWM 3 09:10 AM 10:30 AM

778:RES 2 12:10 PM 02:00 PM

044:HD 3 05:12 PM 06:00 PM

DEPARTMENT

Name: DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

Type: CHAR(3)
NOT NULL

VARCHAR(29)
NOT NULL

CHAR(6) CHAR(3)
NOT NULL

CHAR(16)

Desc: Department
number

Name describing general
activities of department

Employee
number
(EMPNO) of
department
manager

Department
(DEPTNO) to
which this
department
reports

Name of the
remote location

Values: A00 SPIFFY COMPUTER SERVICE
DIV.

000010 A00 ?

B01 PLANNING 000020 A00 ?

C01 INFORMATION CENTER 000030 A00 ?

D01 DEVELOPMENT CENTER ? A00 ?

D11 MANUFACTURING SYSTEMS 000060 D01 ?

D21 ADMINISTRATION SYSTEMS 000070 D01 ?

E01 SUPPORT SERVICES 000050 A00 ?

E11 OPERATIONS 000090 E01 ?

E21 SOFTWARE SUPPORT 000100 E01 ?

EMP_PHOTO

Name: EMPNO PHOTO_FORMAT PICTURE

Type: CHAR(6)
NOT NULL

VARCHAR(10)
NOT NULL

BLOB(100K)

Desc: Employee number Photograph format Photograph

Values: 000130 bitmap Figure 17 on page 728

Sample tables

716 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Name: EMPNO PHOTO_FORMAT PICTURE

000130 gif Figure 17 on page 728

000140 bitmap Figure 19 on page 730

000140 gif Figure 19 on page 730

000150 bitmap Figure 21 on page 732

000150 gif Figure 21 on page 732

000190 bitmap Figure 23 on page 734

000190 gif Figure 23 on page 734

EMP_RESUME

Name: EMPNO RESUME_FORMAT RESUME

Type: CHAR(6)
NOT NULL

VARCHAR(10)
NOT NULL

CLOB(5K)

Desc: Employee number Resume format Resume

Values: 000130 ascii Figure 18 on page 729

000130 html Figure 18 on page 729

000140 ascii Figure 20 on page 731

000140 html Figure 20 on page 731

000150 ascii Figure 22 on page 733

000150 html Figure 22 on page 733

000190 ascii Figure 24 on page 735

000190 html Figure 24 on page 735

EMPLOYEE

Names: EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE

Type: CHAR(6)
NOT NULL

VARCHAR(12)
NOT NULL

CHAR(1)
NOT NULL

VARCHAR(15)
NOT NULL

CHAR(3) CHAR(4) DATE

Desc: Employee
number

First name Middle
initial

Last name Department
(DEPTNO)
in which the
employee
works

Phone
number

Date of
hire

JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

CHAR(8) SMALLINT
NOT NULL

CHAR(1) DATE DECIMAL(9,2) DECIMAL(9,2) DECIMAL(9,2)

Job Number of years of
formal education

Sex
(M male,
F female)

Date of birth Yearly salary Yearly bonus Yearly
commission

See the following page for the values in the EMPLOYEE table.

Sample tables

Appendix M. Sample tables 717

E
M

P
N

O
FI

R
S

T
N

M
E

M
ID

IN
IT

L
A

S
T

N
A

M
E

W
O

R
K

D
E

P
T

P
H

O
N

E
N

O
H

IR
E

D
A

T
E

JO
B

E
D

L
E

V
E

L
S

E
X

B
IR

T
H

D
A

T
E

S
A

L
A

R
Y

B
O

N
U

S
C

O
M

M

00
00

10
C

H
R

IS
T

IN
E

I
H

A
A

S
A

00
39

78
19

65
-0

1-
01

PR
E

S
18

F
19

33
-0

8-
24

52
75

0
10

00
42

20

00
00

20
M

IC
H

A
E

L
L

T
H

O
M

PS
O

N
B

01
34

76
19

73
-1

0-
10

M
A

N
A

G
E

R
18

M
19

48
-0

2-
02

41
25

0
80

0
33

00

00
00

30
SA

L
LY

A
K

W
A

N
C

01
47

38
19

75
-0

4-
05

M
A

N
A

G
E

R
20

F
19

41
-0

5-
11

38
25

0
80

0
30

60

00
00

50
JO

H
N

B
G

E
Y

E
R

E
01

67
89

19
49

-0
8-

17
M

A
N

A
G

E
R

16
M

19
25

-0
9-

15
40

17
5

80
0

32
14

00
00

60
IR

V
IN

G
F

ST
E

R
N

D
11

64
23

19
73

-0
9-

14
M

A
N

A
G

E
R

16
M

19
45

-0
7-

07
32

25
0

50
0

25
80

00
00

70
E

V
A

D
PU

L
A

SK
I

D
21

78
31

19
80

-0
9-

30
M

A
N

A
G

E
R

16
F

19
53

-0
5-

26
36

17
0

70
0

28
93

00
00

90
E

IL
E

E
N

W
H

E
N

D
E

R
SO

N
E

11
54

98
19

70
-0

8-
15

M
A

N
A

G
E

R
16

F
19

41
-0

5-
15

29
75

0
60

0
23

80

00
01

00
T

H
E

O
D

O
R

E
Q

SP
E

N
SE

R
E

21
09

72
19

80
-0

6-
19

M
A

N
A

G
E

R
14

M
19

56
-1

2-
18

26
15

0
50

0
20

92

00
01

10
V

IN
C

E
N

Z
O

G
L

U
C

C
H

E
SS

I
A

00
34

90
19

58
-0

5-
16

SA
L

E
SR

E
P

19
M

19
29

-1
1-

05
46

50
0

90
0

37
20

00
01

20
SE

A
N

O
’C

O
N

N
E

L
L

A
00

21
67

19
63

-1
2-

05
C

L
E

R
K

14
M

19
42

-1
0-

18
29

25
0

60
0

23
40

00
01

30
D

O
L

O
R

E
S

M
Q

U
IN

TA
N

A
C

01
45

78
19

71
-0

7-
28

A
N

A
LY

ST
16

F
19

25
-0

9-
15

23
80

0
50

0
19

04

00
01

40
H

E
A

T
H

E
R

A
N

IC
H

O
L

L
S

C
01

17
93

19
76

-1
2-

15
A

N
A

LY
ST

18
F

19
46

-0
1-

19
28

42
0

60
0

22
74

00
01

50
B

R
U

C
E

A
D

A
M

SO
N

D
11

45
10

19
72

-0
2-

12
D

E
SI

G
N

E
R

16
M

19
47

-0
5-

17
25

28
0

50
0

20
22

00
01

60
E

L
IZ

A
B

E
T

H
R

PI
A

N
K

A
D

11
37

82
19

77
-1

0-
11

D
E

SI
G

N
E

R
17

F
19

55
-0

4-
12

22
25

0
40

0
17

80

00
01

70
M

A
SA

TO
SH

I
J

Y
O

SH
IM

U
R

A
D

11
28

90
19

78
-0

9-
15

D
E

SI
G

N
E

R
16

M
19

51
-0

1-
05

24
68

0
50

0
19

74

00
01

80
M

A
R

IL
Y

N
S

SC
O

U
T

T
E

N
D

11
16

82
19

73
-0

7-
07

D
E

SI
G

N
E

R
17

F
19

49
-0

2-
21

21
34

0
50

0
17

07

00
01

90
JA

M
E

S
H

W
A

L
K

E
R

D
11

29
86

19
74

-0
7-

26
D

E
SI

G
N

E
R

16
M

19
52

-0
6-

25
20

45
0

40
0

16
36

00
02

00
D

A
V

ID
B

R
O

W
N

D
11

45
01

19
66

-0
3-

03
D

E
SI

G
N

E
R

16
M

19
41

-0
5-

29
27

74
0

60
0

22
17

00
02

10
W

IL
L

IA
M

T
JO

N
E

S
D

11
09

42
19

79
-0

4-
11

D
E

SI
G

N
E

R
17

M
19

53
-0

2-
23

18
27

0
40

0
14

62

00
02

20
JE

N
N

IF
E

R
K

L
U

T
Z

D
11

06
72

19
68

-0
8-

29
D

E
SI

G
N

E
R

18
F

19
48

-0
3-

19
29

84
0

60
0

23
87

00
02

30
JA

M
E

S
J

JE
FF

E
R

SO
N

D
21

20
94

19
66

-1
1-

21
C

L
E

R
K

14
M

19
35

-0
5-

30
22

18
0

40
0

17
74

00
02

40
SA

LV
A

TO
R

E
M

M
A

R
IN

O
D

21
37

80
19

79
-1

2-
05

C
L

E
R

K
17

M
19

54
-0

3-
31

28
76

0
60

0
23

01

00
02

50
D

A
N

IE
L

S
SM

IT
H

D
21

09
61

19
69

-1
0-

30
C

L
E

R
K

15
M

19
39

-1
1-

12
19

18
0

40
0

15
34

00
02

60
SY

B
IL

P
JO

H
N

SO
N

D
21

89
53

19
75

-0
9-

11
C

L
E

R
K

16
F

19
36

-1
0-

05
17

25
0

30
0

13
80

00
02

70
M

A
R

IA
L

PE
R

E
Z

D
21

90
01

19
80

-0
9-

30
C

L
E

R
K

15
F

19
53

-0
5-

26
27

38
0

50
0

21
90

00
02

80
E

T
H

E
L

R
SC

H
N

E
ID

E
R

E
11

89
97

19
67

-0
3-

24
O

PE
R

A
TO

R
17

F
19

36
-0

3-
28

26
25

0
50

0
21

00

00
02

90
JO

H
N

R
PA

R
K

E
R

E
11

45
02

19
80

-0
5-

30
O

PE
R

A
TO

R
12

M
19

46
-0

7-
09

15
34

0
30

0
12

27

00
03

00
PH

IL
IP

X
SM

IT
H

E
11

20
95

19
72

-0
6-

19
O

PE
R

A
TO

R
14

M
19

36
-1

0-
27

17
75

0
40

0
14

20

Sample tables

718 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

E
M

P
N

O
FI

R
S

T
N

M
E

M
ID

IN
IT

L
A

S
T

N
A

M
E

W
O

R
K

D
E

P
T

P
H

O
N

E
N

O
H

IR
E

D
A

T
E

JO
B

E
D

L
E

V
E

L
S

E
X

B
IR

T
H

D
A

T
E

S
A

L
A

R
Y

B
O

N
U

S
C

O
M

M

00
03

10
M

A
U

D
E

F
SE

T
R

IG
H

T
E

11
33

32
19

64
-0

9-
12

O
PE

R
A

TO
R

12
F

19
31

-0
4-

21
15

90
0

30
0

12
72

00
03

20
R

A
M

L
A

L
V

M
E

H
TA

E
21

99
90

19
65

-0
7-

07
FI

L
E

R
E

P
16

M
19

32
-0

8-
11

19
95

0
40

0
15

96

00
03

30
W

IN
G

L
E

E
E

21
21

03
19

76
-0

2-
23

FI
L

E
R

E
P

14
M

19
41

-0
7-

18
25

37
0

50
0

20
30

00
03

40
JA

SO
N

R
G

O
U

N
O

T
E

21
56

98
19

47
-0

5-
05

FI
L

E
R

E
P

16
M

19
26

-0
5-

17
23

84
0

50
0

19
07

Sample tables

Appendix M. Sample tables 719

EMPPROJACT

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

Type: CHAR(6)
NOT NULL

CHAR(6)
NOT NULL

SMALLINT
NOT NULL

DECIMAL(5,2) DATE DATE

Desc: Employee
number

Project number Activity
number

Proportion of
employee’s full

time to be
spent on

project

Date activity
starts

Date activity
ends

Values: 000010 AD3100 10 .50 1982-01-01 1982-07-01

000070 AD3110 10 1.00 1982-01-01 1983-02-01

000230 AD3111 60 1.00 1982-01-01 1982-03-15

000230 AD3111 60 .50 1982-03-15 1982-04-15

000230 AD3111 70 .50 1982-03-15 1982-10-15

000230 AD3111 80 .50 1982-04-15 1982-10-15

000230 AD3111 180 .50 1982-10-15 1983-01-01

000240 AD3111 70 1.00 1982-02-15 1982-09-15

000240 AD3111 80 1.00 1982-09-15 1983-01-01

000250 AD3112 60 1.00 1982-01-01 1982-02-01

000250 AD3112 60 .50 1982-02-01 1982-03-15

000250 AD3112 60 1.00 1983-01-01 1983-02-01

000250 AD3112 70 .50 1982-02-01 1982-03-15

000250 AD3112 70 1.00 1982-03-15 1982-08-15

000250 AD3112 70 .25 1982-08-15 1982-10-15

000250 AD3112 80 .25 1982-08-15 1982-10-15

000250 AD3112 80 .50 1982-10-15 1982-12-01

000250 AD3112 180 .50 1982-08-15 1983-01-01

000260 AD3113 70 .50 1982-06-15 1982-07-01

000260 AD3113 70 1.00 1982-07-01 1983-02-01

000260 AD3113 80 1.00 1982-01-01 1982-03-01

000260 AD3113 80 .50 1982-03-01 1982-04-15

000260 AD3113 180 .50 1982-03-01 1982-04-15

000260 AD3113 180 1.00 1982-04-15 1982-06-01

000260 AD3113 180 1.00 1982-06-01 1982-07-01

000270 AD3113 60 .50 1982-03-01 1982-04-01

000270 AD3113 60 1.00 1982-04-01 1982-09-01

000270 AD3113 60 .25 1982-09-01 1982-10-15

000270 AD3113 70 .75 1982-09-01 1982-10-15

000270 AD3113 70 1.00 1982-10-15 1983-02-01

000270 AD3113 80 1.00 1982-01-01 1982-03-01

000270 AD3113 80 .50 1982-03-01 1982-04-01

000030 IF1000 10 .50 1982-06-01 1983-01-01

000130 IF1000 90 1.00 1982-10-01 1983-01-01

Sample tables

720 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

000130 IF1000 100 .50 1982-10-01 1983-01-01

000140 IF1000 90 .50 1982-10-01 1983-01-01

000030 IF2000 10 .50 1982-01-01 1983-01-01

000140 IF2000 100 1.00 1982-01-01 1982-03-01

000140 IF2000 100 .50 1982-03-01 1982-07-01

000140 IF2000 110 .50 1982-03-01 1982-07-01

000140 IF2000 110 .50 1982-10-01 1983-01-01

000010 MA2100 10 .50 1982-01-01 1982-11-01

000110 MA2100 20 1.00 1982-01-01 1983-03-01

000010 MA2110 10 1.00 1982-01-01 1983-02-01

000200 MA2111 50 1.00 1982-01-01 1982-06-15

000200 MA2111 60 1.00 1982-06-15 1983-02-01

000220 MA2111 40 1.00 1982-01-01 1983-02-01

000150 MA2112 60 1.00 1982-01-01 1982-07-15

000150 MA2112 180 1.00 1982-07-15 1983-02-01

000170 MA2112 60 1.00 1982-01-01 1983-06-01

000170 MA2112 70 1.00 1982-06-01 1983-02-01

000190 MA2112 70 1.00 1982-01-01 1982-10-01

000190 MA2112 80 1.00 1982-10-01 1983-10-01

000160 MA2113 60 1.00 1982-07-15 1983-02-01

000170 MA2113 80 1.00 1982-01-01 1983-02-01

000180 MA2113 70 1.00 1982-04-01 1982-06-15

000210 MA2113 80 .50 1982-10-01 1983-02-01

000210 MA2113 180 .50 1982-10-01 1983-02-01

000050 OP1000 10 .25 1982-01-01 1983-02-01

000090 OP1010 10 1.00 1982-01-01 1983-02-01

000280 OP1010 130 1.00 1982-01-01 1983-02-01

000290 OP1010 130 1.00 1982-01-01 1983-02-01

000300 OP1010 130 1.00 1982-01-01 1983-02-01

000310 OP1010 130 1.00 1982-01-01 1983-02-01

000050 OP2010 10 .75 1982-01-01 1983-02-01

000100 OP2010 10 1.00 1982-01-01 1983-02-01

000320 OP2011 140 .75 1982-01-01 1983-02-01

000320 OP2011 150 .25 1982-01-01 1983-02-01

000330 OP2012 140 .25 1982-01-01 1983-02-01

000330 OP2012 160 .75 1982-01-01 1983-02-01

000340 OP2013 140 .50 1982-01-01 1983-02-01

000340 OP2013 170 .50 1982-01-01 1983-02-01

000020 PL2100 30 1.00 1982-01-01 1982-09-15

Sample tables

Appendix M. Sample tables 721

IN_TRAY

Name: RECEIVED SOURCE SUBJECT NOTE_TEXT

Type: TIMESTAMP CHAR(8) CHAR(64) VARCHAR(3000)

Desc: Date and time
received

User id of person
sending note

Brief description The note

Values: 1988-12-25-
17.12.30.000000

BADAMSON FWD: Fantastic
year! 4th Quarter
Bonus.

To: JWALKER Cc: QUINTANA, NICHOLLS
Jim, Looks like our hard work has paid off. I
have some good beer in the fridge if you want
to come over to celebrate a bit. Delores and
Heather, are you interested as well?
Bruce
Subject: FWD: Fantastic year! 4th Quarter Bonus.
To: Dept_D11
Congratulations on a job well done. Enjoy this
year’s bonus.
Irv
Subject: Fantastic year! 4th Quarter Bonus.
To: All_Managers
Our 4th quarter results are in. We pulled
together as a team and exceeded our plan! I
am pleased to announce a bonus this year of
18%. Enjoy the holidays.
Christine Haas

1988-12-23-
08.53.58.000000

ISTERN FWD: Fantastic
year! 4th Quarter
Bonus.

To: Dept_D11
Congratulations on a job well done. Enjoy this
year’s bonus.
Irv
Subject: Fantastic year! 4th Quarter Bonus.
To: All_Managers
Our 4th quarter results are in. We pulled
together as a team and exceeded our plan! I
am pleased to announce a bonus this year of
18%. Enjoy the holidays.
Christine Haas

1988-12-22-
14.07.21.136421

CHAAS Fantastic year! 4th
Quarter Bonus.

To: All_Managers
Our 4th quarter results are in. We pulled
together as a team and exceeded our plan! I
am pleased to announce a bonus this year of
18%. Enjoy the holidays.
Christine Haas

ORG

Name: DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION

Type: SMALLINT
NOT NULL

VARCHAR(14) SMALLINT VARCHAR(10) VARCHAR(13)

Desc: Department
number

Department name Manager number Division Location

Values: 10 Head Office 160 Corporate New York

15 New England 50 Eastern Boston

20 Mid Atlantic 10 Eastern Washington

38 South Atlantic 30 Eastern Atlanta

Sample tables

722 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Name: DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION

42 Great Lakes 100 Midwest Chicago

51 Plains 140 Midwest Dallas

66 Pacific 270 Western San Francisco

84 Mountain 290 Western Denver

PROJACT

Name: PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

Type: CHAR(6)
NOT NULL

SMALLINT
NOT NULL

DECIMAL(5,2) DATE
NOT NULL

DATE

Desc: Project number Activity number Activity staffing Activity start Activity end

Values: AD3100 10 ? 1982-01-01 ?

AD3110 10 ? 1982-01-01 ?

AD3111 60 ? 1982-01-01 ?

AD3111 60 ? 1982-03-15 ?

AD3111 70 ? 1982-03-15 ?

AD3111 80 ? 1982-04-15 ?

AD3111 180 ? 1982-10-15 ?

AD3111 70 ? 1982-02-15 ?

AD3111 80 ? 1982-09-15 ?

AD3112 60 ? 1982-01-01 ?

AD3112 60 ? 1982-02-01 ?

AD3112 60 ? 1983-01-01 ?

AD3112 70 ? 1982-02-01 ?

AD3112 70 ? 1982-03-15 ?

AD3112 70 ? 1982-08-15 ?

AD3112 80 ? 1982-08-15 ?

AD3112 80 ? 1982-10-15 ?

AD3112 180 ? 1982-08-15 ?

AD3113 70 ? 1982-06-15 ?

AD3113 70 ? 1982-07-01 ?

AD3113 80 ? 1982-01-01 ?

AD3113 80 ? 1982-03-01 ?

AD3113 180 ? 1982-03-01 ?

AD3113 180 ? 1982-04-15 ?

AD3113 180 ? 1982-06-01 ?

AD3113 60 ? 1982-03-01 ?

AD3113 60 ? 1982-04-01 ?

AD3113 60 ? 1982-09-01 ?

AD3113 70 ? 1982-09-01 ?

AD3113 70 ? 1982-10-15 ?

Sample tables

Appendix M. Sample tables 723

Name: PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

IF1000 10 ? 1982-06-01 ?

IF1000 90 ? 1982-10-01 ?

IF1000 100 ? 1982-10-01 ?

IF2000 10 ? 1982-01-01 ?

IF2000 100 ? 1982-01-01 ?

IF2000 100 ? 1982-03-01 ?

IF2000 110 ? 1982-03-01 ?

IF2000 110 ? 1982-10-01 ?

MA2100 10 ? 1982-01-01 ?

MA2100 20 ? 1982-01-01 ?

MA2110 10 ? 1982-01-01 ?

MA2111 50 ? 1982-01-01 ?

MA2111 60 ? 1982-06-15 ?

MA2111 40 ? 1982-01-01 ?

MA2112 60 ? 1982-01-01 ?

MA2112 180 ? 1982-07-15 ?

MA2112 70 ? 1982-06-01 ?

MA2112 70 ? 1982-01-01 ?

MA2112 80 ? 1982-10-01 ?

MA2113 60 ? 1982-07-15 ?

MA2113 80 ? 1982-01-01 ?

MA2113 70 ? 1982-04-01 ?

MA2113 80 ? 1982-10-01 ?

MA2113 180 ? 1982-10-01 ?

OP1000 10 ? 1982-01-01 ?

OP1010 10 ? 1982-01-01 ?

OP1010 130 ? 1982-01-01 ?

OP2010 10 ? 1982-01-01 ?

OP2011 140 ? 1982-01-01 ?

OP2011 150 ? 1982-01-01 ?

OP2012 140 ? 1982-01-01 ?

OP2012 160 ? 1982-01-01 ?

OP2013 140 ? 1982-01-01 ?

OP2013 170 ? 1982-01-01 ?

PL2100 30 ? 1982-01-01 ?

PROJECT

Name: PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

Type: CHAR(6)
NOT NULL

VARCHAR(24)
NOT NULL

CHAR(3)
NOT NULL

CHAR(6)
NOT NULL

DECIMAL(5,2) DATE DATE CHAR(6)

Sample tables

724 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Name: PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

Desc: Project
number

Project name Department
responsible

Employee
responsible

Estimated
mean staffing

Estimated
start date

Estimated
end date

Major
project,
for a
subproject

Values: AD3100 ADMIN
SERVICES

D01 000010 6.5 1982-01-01 1983-02-01 ?

AD3110 GENERAL
ADMIN
SYSTEMS

D21 000070 6 1982-01-01 1983-02-01 AD3100

AD3111 PAYROLL
PROGRAMMING

D21 000230 2 1982-01-01 1983-02-01 AD3110

AD3112 PERSONNEL
PROGRAMMING

D21 000250 1 1982-01-01 1983-02-01 AD3110

AD3113 ACCOUNT
PROGRAMMING

D21 000270 2 1982-01-01 1983-02-01 AD3110

IF1000 QUERY
SERVICES

C01 000030 2 1982-01-01 1983-02-01 ?

IF2000 USER
EDUCATION

C01 000030 1 1982-01-01 1983-02-01 ?

MA2100 WELD LINE
AUTOMATION

D01 000010 12 1982-01-01 1983-02-01 ?

MA2110 W L
PROGRAMMING

D11 000060 9 1982-01-01 1983-02-01 MA2100

MA2111 W L
PROGRAM
DESIGN

D11 000220 2 1982-01-01 1982-12-01 MA2110

MA2112 W L ROBOT
DESIGN

D11 000150 3 1982-01-01 1982-12-01 MA2110

MA2113 W L PROD
CONT PROGS

D11 000160 3 1982-02-15 1982-12-01 MA2110

OP1000 OPERATION
SUPPORT

E01 000050 6 1982-01-01 1983-02-01 ?

OP1010 OPERATION E11 000090 5 1982-01-01 1983-02-01 OP1000

OP2000 GEN SYSTEMS
SERVICES

E01 000050 5 1982-01-01 1983-02-01 ?

OP2010 SYSTEMS
SUPPORT

E21 000100 4 1982-01-01 1983-02-01 OP2000

OP2011 SCP SYSTEMS
SUPPORT

E21 000320 1 1982-01-01 1983-02-01 OP2010

OP2012 APPLICATIONS
SUPPORT

E21 000330 1 1982-01-01 1983-02-01 OP2010

OP2013 DB/DC
SUPPORT

E21 000340 1 1982-01-01 1983-02-01 OP2010

PL2100 WELD LINE
PLANNING

B01 000020 1 1982-01-01 1982-09-15 MA2100

Sample tables

Appendix M. Sample tables 725

SALES

Name: SALES_DATE SALES_PERSON REGION SALES

Type: DATE VARCHAR(15) VARCHAR(15) INTEGER

Desc: Date Sales person Region Sales amount

Values: 1995-12-31 LUCCHESSI Ontario-South 1

1995-12-31 LEE Ontario-South 3

1995-12-31 LEE Quebec 1

1995-12-31 LEE Manitoba 2

1995-12-31 GOUNOT Quebec 1

1996-03-29 LUCCHESSI Ontario-South 3

1996-03-29 LUCCHESSI Quebec 1

1996-03-29 LEE Ontario-South 2

1996-03-29 LEE Ontario-North 2

1996-03-29 LEE Quebec 3

1996-03-29 LEE Manitoba 5

1996-03-29 GOUNOT Ontario-South 3

1996-03-29 GOUNOT Quebec 1

1996-03-29 GOUNOT Manitoba 7

1996-03-30 LUCCHESSI Ontario-South 1

1996-03-30 LUCCHESSI Quebec 2

1996-03-30 LUCCHESSI Manitoba 1

1996-03-30 LEE Ontario-South 7

1996-03-30 LEE Ontario-North 3

1996-03-30 LEE Quebec 7

1996-03-30 LEE Manitoba 4

1996-03-30 GOUNOT Ontario-South 2

1996-03-30 GOUNOT Quebec 18

1996-03-30 GOUNOT Manitoba 1

1996-03-31 LUCCHESSI Manitoba 1

1996-03-31 LEE Ontario-South 14

1996-03-31 LEE Ontario-North 3

1996-03-31 LEE Quebec 7

1996-03-31 LEE Manitoba 3

1996-03-31 GOUNOT Ontario-South 2

1996-03-31 GOUNOT Quebec 1

1996-04-01 LUCCHESSI Ontario-South 3

1996-04-01 LUCCHESSI Manitoba 1

1996-04-01 LEE Ontario-South 8

1996-04-01 LEE Ontario-North ?

1996-04-01 LEE Quebec 8

1996-04-01 LEE Manitoba 9

Sample tables

726 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Name: SALES_DATE SALES_PERSON REGION SALES

1996-04-01 GOUNOT Ontario-South 3

1996-04-01 GOUNOT Ontario-North 1

1996-04-01 GOUNOT Quebec 3

1996-04-01 GOUNOT Manitoba 7

STAFF

Name: ID NAME DEPT JOB YEARS SALARY COMM

Type: SMALLINT
NOT NULL

VARCHAR(9) SMALLINT CHAR(5) SMALLINT DECIMAL(7,2)DECIMAL(7,2)

Desc: Staff ID Name Department Job Years of
service

Salary Commission

Values: 10 Sanders 20 Mgr 7 18357.50 ?

20 Pernal 20 Sales 8 18171.25 612.45

30 Marenghi 38 Mgr 5 17506.75 ?

40 O’Brien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 ?

60 Quigley 38 Sales ? 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk ? 13504.60 128.20

90 Koonitz 42 Sales 6 18001.75 1386.70

100 Plotz 42 Mgr 7 18352.80 ?

110 Ngan 15 Clerk 5 12508.20 206.60

120 Naughton 38 Clerk ? 12954.75 180.00

130 Yamaguchi 42 Clerk 6 10505.90 75.60

140 Fraye 51 Mgr 6 21150.00 ?

150 Williams 51 Sales 6 19456.50 637.65

160 Molinare 10 Mgr 7 22959.20 ?

170 Kermisch 15 Clerk 4 12258.50 110.10

180 Abrahams 38 Clerk 3 12009.75 236.50

190 Sneider 20 Clerk 8 14252.75 126.50

200 Scoutten 42 Clerk ? 11508.60 84.20

210 Lu 10 Mgr 10 20010.00 ?

220 Smith 51 Sales 7 17654.50 992.80

230 Lundquist 51 Clerk 3 13369.80 189.65

240 Daniels 10 Mgr 5 19260.25 ?

250 Wheeler 51 Clerk 6 14460.00 513.30

260 Jones 10 Mgr 12 21234.00 ?

270 Lea 66 Mgr 9 18555.50 ?

280 Wilson 66 Sales 9 18674.50 811.50

290 Quill 84 Mgr 10 19818.00 ?

Sample tables

Appendix M. Sample tables 727

Name: ID NAME DEPT JOB YEARS SALARY COMM

300 Davis 84 Sales 5 15454.50 806.10

310 Graham 66 Sales 13 21000.00 200.30

320 Gonzales 66 Sales 4 16858.20 844.00

330 Burke 66 Clerk 1 10988.00 55.50

340 Edwards 84 Sales 7 17844.00 1285.00

350 Gafney 84 Clerk 5 13030.50 188.00

Sample files with BLOB and CLOB data type
This section shows the data found in the EMP_PHOTO files (pictures of
employees) and EMP_RESUME files (resumes of employees).

Quintana photo

Figure 17. Dolores M. Quintana

Sample tables

728 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Quintana resume

Resume: Dolores M. Quintana

Personal Information

Address: 1150 Eglinton Ave Mellonville, Idaho 83725

Phone: (208) 555-9933

Birthdate: September 15, 1925

Sex: Female

Marital Status: Married

Height: 5’2″

Weight: 120 lbs.

Department Information

Employee Number: 000130

Dept Number: C01

Manager: Sally Kwan

Position: Analyst

Phone: (208) 555-4578

Hire Date: 1971-07-28

Education

1965 Math and English, B.A. Adelphi University

1960 Dental Technician Florida Institute of Technology

Work History

10/91 - present Advisory Systems Analyst Producing documentation
tools for engineering department.

12/85 - 9/91 Technical Writer, Writer, text programmer, and planner.

1/79 - 11/85 COBOL Payroll Programmer Writing payroll programs
for a diesel fuel company.

Interests

v Cooking

v Reading

v Sewing

v Remodeling

Figure 18. Dolores M. Quintana

Sample tables

Appendix M. Sample tables 729

Nicholls photo

Figure 19. Heather A. Nicholls

Sample tables

730 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Nicholls resume

Resume: Heather A. Nicholls

Personal Information

Address: 844 Don Mills Ave Mellonville, Idaho 83734

Phone: (208) 555-2310

Birthdate: January 19, 1946

Sex: Female

Marital Status: Single

Height: 5’8″

Weight: 130 lbs.

Department Information

Employee Number: 000140

Dept Number: C01

Manager: Sally Kwan

Position: Analyst

Phone: (208) 555-1793

Hire Date: 1976-12-15

Education

1972 Computer Engineering, Ph.D. University of Washington

1969 Music and Physics, M.A. Vassar College

Work History

2/83 - present Architect, OCR Development Designing the architecture
of OCR products.

12/76 - 1/83 Text Programmer Optical character recognition (OCR)
programming in PL/I.

9/72 - 11/76 Punch Card Quality Analyst Checking punch cards met
quality specifications.

Interests

v Model railroading

v Interior decorating

v Embroidery

v Knitting

Figure 20. Heather A. Nicholls

Sample tables

Appendix M. Sample tables 731

Adamson photo

Figure 21. Bruce Adamson

Sample tables

732 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Adamson resume

Resume: Bruce Adamson

Personal Information

Address: 3600 Steeles Ave Mellonville, Idaho 83757

Phone: (208) 555-4489

Birthdate: May 17, 1947

Sex: Male

Marital Status: Married

Height: 6’0″

Weight: 175 lbs.

Department Information

Employee Number: 000150

Dept Number: D11

Manager: Irving Stern

Position: Designer

Phone: (208) 555-4510

Hire Date: 1972-02-12

Education

1971 Environmental Engineering, M.Sc. Johns Hopkins
University

1968 American History, B.A. Northwestern University

Work History

8/79 - present Neural Network Design Developing neural networks for
machine intelligence products.

2/72 - 7/79 Robot Vision Development Developing rule-based
systems to emulate sight.

9/71 - 1/72 Numerical Integration Specialist Helping bank systems
communicate with each other.

Interests

v Racing motorcycles

v Building loudspeakers

v Assembling personal computers

v Sketching

Figure 22. Bruce Adamson

Sample tables

Appendix M. Sample tables 733

Walker photo

Figure 23. James H. Walker

Sample tables

734 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Walker resume

Resume: James H. Walker

Personal Information

Address: 3500 Steeles Ave Mellonville, Idaho 83757

Phone: (208) 555-7325

Birthdate: June 25, 1952

Sex: Male

Marital Status: Single

Height: 5’11″

Weight: 166 lbs.

Department Information

Employee Number: 000190

Dept Number: D11

Manager: Irving Stern

Position: Designer

Phone: (208) 555-2986

Hire Date: 1974-07-26

Education

1974 Computer Studies, B.Sc. University of Massachusetts

1972 Linguistic Anthropology, B.A. University of Toronto

Work History

6/87 - present Microcode Design Optimizing algorithms for
mathematical functions.

4/77 - 5/87 Printer Technical Support Installing and supporting laser
printers.

9/74 - 3/77 Maintenance Programming Patching assembly language
compiler for mainframes.

Interests

v Wine tasting

v Skiing

v Swimming

v Dancing

Figure 24. James H. Walker

Sample tables

Appendix M. Sample tables 735

736 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Appendix N. Terminology differences

Some terminology used in the ANSI and ISO standards differs from the
terminology used in this book and other product books. The following table is a
cross reference of the SQL 1999 Core standard terms to DB2 UDB SQL terms.

Table 76. ANSI/ISO term to DB2 UDB SQL term cross-reference

ANSI/ISO Term DB2 UDB SQL Term

literal constant

comparison predicate basic predicate

comparison predicate subquery subquery in a basic predicate

degree of table/cursor number of items in a select list

grouped table result table created by a group-by or having clause

grouped view result view created by a group-by or having clause

grouping column column in a group-by clause

outer reference correlated reference

query expression fullselect

query specification subselect

result specification result

set function column function

table expression �──from─clause──┬──────────────┬───────────�
└─where─clause─┘

�──┬─────────────────┬──┬───────────────┬──�
└─group─by─clause─┘ └─having─clause─┘

target specification host variable followed by an indicator variable

transaction logical unit of work or unit of work

value expression arithmetic expression

The following table is a cross reference of DB2 UDB SQL terms to the SQL 1999
Core standard terms.

Table 77. DB2 UDB SQL term to ANSI/ISO term cross-reference

DB2 UDB SQL Term ANSI/ISO Term

arithmetic expression value expression

basic predicate comparison predicate

column function set function

column in a group-by clause grouping column

correlated reference outer reference

�──from─clause──┬──────────────┬───────────�
└─where─clause─┘

�──┬─────────────────┬──┬───────────────┬──�
└─group─by─clause─┘ └─having─clause─┘

table expression

fullselect query expression

host variable followed by an indicator variable target specification

© Copyright IBM Corp. 1982, 2003 737

Table 77. DB2 UDB SQL term to ANSI/ISO term cross-reference (continued)

DB2 UDB SQL Term ANSI/ISO Term

logical unit of work or unit of work transaction

direct SQL

number of items in a select list degree of table/cursor

result result specification

result table created by a group-by or having clause grouped table

result view created by a group-by or having clause grouped view

subquery in a basic predicate comparison predicate subquery

subselect query specification

subselect or fullselect in parenthesis query term

Terminology differences

738 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Appendix O. Reserved schema names and reserved words

This appendix describes the restrictions of certain names used by the database
manager. In some cases, names are reserved and cannot be used by application
programs. In other cases, certain names are not recommended for use by
application programs though not prevented by the database manager.

Reserved schema names
The following schema names are reserved:
v QSYS2
v SYSCAT
v SYSFUN
v SYSIBM
v SYSPROC
v SYSSTAT
v SYSTEM

In addition, it is strongly recommended that schema names never begin with the Q
prefix or SYS prefix, as Q and SYS are by convention used to indicate an area
reserved by the system.

It is also recommended not to use SESSION as a schema name.

Reserved words
The DB2 Universal Database reserved words are:

ADD DISALLOW LEFT RESTART
AFTER DISCONNECT LIKE RESTRICT
ALIAS DISTINCT LINKTYPE RESULT
ALL DO LOCAL RESULT_SET_LOCATOR
ALLOCATE DOUBLE LOCALE RETURN
ALLOW DROP LOCATOR RETURNS
ALTER DSNHATTR LOCATORS REVOKE
AND DSSIZE LOCK RIGHT
ANY DYNAMIC LOCKMAX ROLLBACK
AS EACH LOCKSIZE ROUTINE
ASSOCIATE EDITPROC LONG ROW
ASUTIME ELSE LOOP ROWS
AUDIT ELSEIF MAXVALUE RRN
AUTHORIZATION ENCODING MICROSECOND RUN
AUX END MICROSECONDS SAVEPOINT
AUXILIARY END-EXEC MINUTE SCHEMA
BEFORE END-EXEC1 MINUTES SCRATCHPAD
BEGIN ERASE MINVALUE SECOND
BETWEEN ESCAPE MODE SECONDS
BINARY EXCEPT MODIFIES SECQTY
BUFFERPOOL EXCEPTION MONTH SECURITY
BY EXCLUDING MONTHS SELECT
CACHE EXECUTE NEW SENSITIVE
CALL EXISTS NEW_TABLE SET
CALLED EXIT NO SIGNAL
CAPTURE EXTERNAL NOCACHE SIMPLE
CARDINALITY FENCED NOCYCLE SOME

© Copyright IBM Corp. 1982, 2003 739

CASCADED FETCH NODENAME SOURCE
CASE FIELDPROC NODENUMBER SPECIFIC
CAST FILE NOMAXVALUE SQL
CCSID FINAL NOMINVALUE SQLID
CHAR FOR NOORDER STANDARD
CHARACTER FOREIGN NOT START
CHECK FREE NULL STATIC
CLOSE FROM NULLS STAY
CLUSTER FULL NUMPARTS STOGROUP
COLLECTION FUNCTION OBID STORES
COLLID GENERAL OF STYLE
COLUMN GENERATED OLD SUBPAGES
COMMENT GET OLD_TABLE SUBSTRING
COMMIT GLOBAL ON SYNONYM
CONCAT GO OPEN SYSFUN
CONDITION GOTO OPTIMIZATION SYSIBM
CONNECT GRANT OPTIMIZE SYSPROC
CONNECTION GRAPHIC OPTION SYSTEM
CONSTRAINT GROUP OR TABLE
CONTAINS HANDLER ORDER TABLESPACE
CONTINUE HAVING OUT THEN
COUNT HOLD OUTER TO
COUNT_BIG HOUR OVERRIDING TRANSACTION
CREATE HOURS PACKAGE TRIGGER
CROSS IDENTITY PARAMETER TRIM
CURRENT IF PART TYPE
CURRENT_DATE IMMEDIATE PARTITION UNDO
CURRENT_LC_CTYPE IN PATH UNION
CURRENT_PATH INCLUDING PIECESIZE UNIQUE
CURRENT_SERVER INCREMENT PLAN UNTIL
CURRENT_TIME INDEX POSITION UPDATE
CURRENT_TIMESTAMP INDICATOR PRECISION USAGE
CURRENT_TIMEZONE INHERIT PREPARE USER
CURRENT_USER INNER PRIMARY USING
CURSOR INOUT PRIQTY VALIDPROC
CYCLE INSENSITIVE PRIVILEGES VALUES
DATA INSERT PROCEDURE VARIABLE
DATABASE INTEGRITY PROGRAM VARIANT
DAY INTO PSID VCAT
DAYS IS QUERYNO VIEW
DB2GENERAL ISOBID READ VOLUMES
DB2GENRL ISOLATION READS WHEN
DB2SQL ITERATE RECOVERY WHERE
DBINFO JAR REFERENCES WHILE
DECLARE JAVA REFERENCING WITH
DEFAULT JOIN RELEASE WLM
DEFAULTS KEY RENAME WRITE
DEFINITION LABEL REPEAT YEAR
DELETE LANGUAGE RESET YEARS
DESCRIPTOR LC_CTYPE RESIGNAL
DETERMINISTIC LEAVE

The ISO/ANSI SQL99 reserved words that are not in the list of DB2 Universal
Database reserved words are:
ABSOLUTE DESCRIBE MODULE SESSION
ACTION DESTROY NAMES SESSION_USER
ADMIN DESTRUCTOR NATIONAL SETS
AGGREGATE DIAGNOSTICS NATURAL SIZE
ARE DICTIONARY NCHAR SMALLINT
ARRAY DOMAIN NCLOB SPACE
ASC EQUALS NEXT SPECIFICTYPE
ASSERTION EVERY NONE SQLEXCEPTION
AT EXEC NUMERIC SQLSTATE
BIT FALSE OBJECT SQLWARNING
BLOB FIRST OFF STATE
BOOLEAN FLOAT ONLY STATEMENT

Reserved schema names and reserved words

740 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

BOTH FOUND OPERATION STRUCTURE
BREADTH GROUPING ORDINALITY SYSTEM_USER
CASCADE HOST OUTPUT TEMPORARY
CATALOG IGNORE PAD TERMINATE
CLASS INITIALIZE PARAMETERS THAN
CLOB INITIALLY PARTIAL TIME
COLLATE INPUT POSTFIX TIMESTAMP
COLLATION INT PREFIX TIMEZONE_HOUR
COMPLETION INTEGER PREORDER TIMEZONE_MINUTE
CONSTRAINTS INTERSECT PRESERVE TRAILING
CONSTRUCTOR INTERVAL PRIOR TRANSLATION
CORRESPONDING LARGE PUBLIC TREAT
CUBE LAST REAL TRUE
CURRENT_ROLE LATERAL RECURSIVE UNDER
DATE LEADING REF UNKNOWN
DEALLOCATE LESS RELATIVE UNNEST
DEC LEVEL ROLE VALUE
DECIMAL LIMIT ROLLUP VARCHAR
DEFERRABLE LOCALTIME SCOPE VARYING
DEFERRED LOCALTIMESTAMP SCROLL WHENEVER
DEPTH MAP SEARCH WITHOUT
DEREF MATCH SECTION WORK
DESC MODIFY SEQUENCE ZONE

Reserved schema names and reserved words

Appendix O. Reserved schema names and reserved words 741

Reserved schema names and reserved words

742 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1982, 2003 743

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

744 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Programming interface information
This SQL Reference for Cross-Platform Development documents intended
Programming Interfaces that allow the customer to write programs to obtain the
services of DB2 Universal Database products.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries or both:

AIX
CICS
DATABASE 2
DB2
DB2 Universal Database
Distributed Relational Database Architecture
DRDA

iSeries
IBM
OS/2
OS/390
OS/400
z/OS

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 745

746 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

Index

Special characters
_ (underscore) in LIKE predicate 123
: (colon) 88, 517

C 639
COBOL 654
Java 674
REXX 692

? (question mark)
EXECUTE statement 439, 467
PREPARE statement 472

/ (divide) operator 99
(and) 261
* (asterisk) 138

in COUNT 137
in subselect 247

* (multiply) operator 99
− (subtract) operator 99
% (percent) in LIKE predicate 123
> (greater than) operator 116, 117
>= (greater than or equal to)

operator 116, 117
< (less than) operator 116, 117
<> (not equal to) operator 116, 117
<= (less than or equal to) operator 116,

117
+ (add) operator 99
= (equal to) operator

in predicate 116, 117
in UPDATE statement 509

A
ABS function 145
access plan 9
ACOS function 146
ACT sample table 715
administrative authority

description 11
alias

CREATE ALIAS statement 318
description 9, 42
dropping 434

ALIAS clause
COMMENT statement 305
DROP statement 434

alias-name
description 34
in COMMENT statement 304
in DROP statement 434

ALL
clause of RELEASE statement 478
clause of subselect 247
keyword

AVG function 136
column functions 135
MAX function 139
MIN function 140
SUM function 142

quantified predicate 117

ALL clause
keyword

COUNT_BIG function 138
STDDEV function 141
VAR function 143
VARIANCE function 143

ALL PRIVILEGES clause
GRANT (Table or View Privileges)

statement 457
REVOKE (Table and View Privileges)

statement 491
ALL SQL

clause of RELEASE statement 478
ALLOW PARALLEL clause

CREATE FUNCTION statement 336
ALTER clause

GRANT (Table or View Privileges)
statement 457

REVOKE (Table and View Privileges)
statement 491

ALTER TABLE statement 281
ambiguous reference 84
AND

operator in search condition 129
truth table 129

ANY quantified predicate 117
application

SQLJ support 669
application process, definition of 13
application program

coding SQL statements
C 635
COBOL 651
Java 669
REXX 687

concurrency 13
SQLCA 567
SQLDA 571

application requester 23, 562
application server 23, 562
application-directed access

CONNECT (Type 2) statement 315
mixed environment 558

arguments of COALESCE
result data type 70

arithmetic expression
equivalent term 737

arithmetic operators 99
AS clause of CREATE VIEW

statement 406
AS LOCATOR clause

CREATE FUNCTION statement 332,
343

ASC clause
CREATE INDEX statement 365
select-statement 265

ASIN function 147
assignment

C NUL-terminated strings 63
datetime values 64
distinct type 65

assignment (continued)
LOB Locators 66
mixed strings 63
numeric 61
operation in SQL 60
retrieval 63
storage 62
string 62

assignment-clause
in UPDATE statement 510

asterisk
COUNT function 137
multiply operator 99
subselect 247

asterisk (*)
in COUNT_BIG function 138

ATAN function 148
ATAN2 function 150
ATANH function 149
authorization

description 11
ID 43
name 34
privileges 13
to create in a schema 13

authorization-name
description 34
in GRANT (Distinct Type Privileges)

statement 448
in GRANT (Function or Procedure

Privileges) statement 450, 452
in GRANT (package privileges)

statement 454
in GRANT (Table or View Privileges)

statement 456, 458
in REVOKE (Distinct Type Privileges)

statement 483
in REVOKE (Function and Procedure

Privileges) statement 486, 487
in REVOKE (package privileges)

statement 489
in REVOKE (Table and View

Privileges) statement 491, 492
length 38

AVG function 136

B
base table 3
basic operations in SQL 60
basic predicate 116

equivalent term 737
BEGIN DECLARE SECTION

statement 295
BETWEEN predicate 119
Binary

data type 48
binary data string

description 48
binary integer 45
bind 1

© Copyright IBM Corp. 1982, 2003 747

binding statement 1
bit data 47
BLOB data type

in CREATE TABLE statement 385
BLOB function 151
built-in function 93
built-in type

in CREATE TABLE statement 382
built-in-type

in CREATE TABLE statement 382

C
C application program

coding SQL statements 635
host variable 87, 442
INCLUDE SQLCA statement 569
INCLUDE SQLDA statement 578

C NUL-terminated strings
assignment 63

call level interface (CLI) 2
CALL statement 297, 523
CALLED ON NULL INPUT clause

CREATE FUNCTION statement 334,
345, 361

calling
procedures 297

CARDINALITY clause
CREATE FUNCTION statement 348

CASCADE delete rule
description 5
in ALTER TABLE statement 281, 290
in CREATE TABLE statement 379,

392
CASE expression 109
CASE statement 525
CAST specification 112
cast-function-name

CALL statement 298, 524
casting

between data types 56
user-defined types 56

catalog 13
CCSID (coded character set identifier)

conversion rules for assignments 63
conversion rules for comparison 68
conversion rules for string

operations 73
default 23
description 22
values 617

CDRA (character data representation
architecture) 22

CEIL function 152
CEILING function 152
CHAR

data type 46
data type in CREATE TABLE

statement 383
function 153

character conversion
character set 20
code page 20
code point 20
coded character set 20
encoding scheme 20
substitution character 21

character data representation architecture
(CDRA) 22

character data string
assignment 62
bit data 47
comparison 67
constant 75
description 46
empty 46
mixed data 47
SBCS data 47
Unicode data 47

CHARACTER data type 383
character set 20
character-string constant 75
characters

description 31
digit 31
letter 31
special character 31

CHECK
ALTER TABLE statement 291

CHECK clause
ALTER TABLE statement 291

CHECK clause of CREATE TABLE
statement 393

check constraint 6
CHECK OPTION clause of CREATE

VIEW statement
description 407

check-condition
ALTER TABLE statement 287
CREATE TABLE statement 390

CL_SCHED sample table 716
class-id

description 35
CLOB data type

in CREATE TABLE statement 384
CLOB function 158
CLOSE statement 302
closed state of cursor 469
COALESCE function 159
COBOL application program

coding SQL statements 651
host structure 91
host variable 87, 442
INCLUDE SQLCA statement 569
INCLUDE SQLDA statement 580

code page 20
code point 20
coded character set 20
coding SQL statements

in C applications 635
in COBOL applications 651
in Java applications 669
in REXX applications 687

collection
in SQL path 40

column
description 3
function

See function
grouping 257
names 34, 81
names in a result 248
qualified names 81
rules 261

COLUMN clause of COMMENT
statement 305

column constraint of CREATE TABLE
statement 389

column function 93
equivalent term 737

column in a group-by clause
equivalent term 737

column-name
description 34
in ALTER TABLE statement 281, 285
in AVG function 136
in COMMENT statement 304, 306
in COUNT function 137
in CREATE GLOBAL TEMPORARY

TABLE statement 418
in CREATE INDEX statement 365
in CREATE TABLE statement 379,

382
in CREATE VIEW statement 406
in DISTINCT operation of column

functions 135
in expressions 99
in GRANT (Table or View Privileges)

statement 456, 457
in GROUP BY clause 257
in HAVING clause 258
in INSERT statement 461, 462
in labeled-duration 99
in LIKE predicate 123
in MAX function 139
in MIN function 140
in NULL predicate 128
in ORDER BY clause 264
in search-condition of DELETE

statement 425
in select list 248
in SUM function 142
in UPDATE clause 267
in UPDATE statement 508, 510
in WHERE clause 256
unqualified, length of 38

comment
C 637
COBOL 652
in catalog tables 304
REXX 690
SQL 32, 280
SQLJ 670

COMMENT statement
column name qualification 81
description 304

commit processing 14
COMMIT statement 309
comparison

compatibility rules 60
datetime values 68
distinct type values 69
numeric 66
operation in SQL 60, 66
predicate

equivalent term 737
predicate subquery

equivalent term 737
string 67

compatibility
data types 60

748 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

compatibility (continued)
rules 60

composite key 3
compound statement 527
CONCAT function 160
CONCAT operator 99
concatenation operator 101
concurrency

application 13
with LOCK TABLE statement 466

condition handler
declaring 531

condition-name
description 34

CONNECT
differences, type 1 and type 2 633
statement, type 2 315

CONNECT (Type 1) statement 311
connected state 28
connecting to a data source

SQLJ 671
connection

SQL 26
connection state 501

CONNECT (Type 2) statement 26
connection states

application process 28
distributed unit of work 26
remote unit of work 25

constant
character string 75
decimal 75
floating-point 75
graphic string 76
in expressions 99
in IN predicate 121
in labeled-duration 99
integer 75
SQL 75

CONSTRAINT clause of ALTER TABLE
statement 286

CONSTRAINT clause of CREATE TABLE
statement 389, 393

constraint-name
description 34
in ALTER TABLE statement 281
in CREATE TABLE statement 379
length 38

constraint, check 6
constraints 3

referential constraint 3
table check constraint 3
unique constraint 3

CONTINUE clause of WHENEVER
statement 517

control statements 519
conversion of numbers

precision 61
scale 61

conversion rules for assignments 63
conversion rules for comparisons 63
conversion rules for operations that

combine strings 73
correlated reference 85, 256

equivalent term 737
correlation name

defining 81

correlation name (continued)
qualifying a column name 81

correlation-name
description 34
in DELETE statement 424, 425
in SELECT clause 247
in UPDATE statement 508, 509
length 38

COS function 161
COSH function 162
COUNT function 137
COUNT_BIG function 138
CREATE ALIAS statement 9, 318
CREATE DISTINCT TYPE

statement 319, 324
CREATE FUNCTION (External Scalar)

statement 340
CREATE FUNCTION (External Table)

statement 349
CREATE FUNCTION (Sourced)

statement 356
CREATE FUNCTION (SQL)

statement 363
CREATE FUNCTION statement 325,

329, 340, 350, 357
CREATE INDEX statement 364
CREATE PROCEDURE (External)

statement 367
CREATE PROCEDURE (SQL)

statement 374
CREATE PROCEDURE statement 366

assignment statement 522
CALL statement 523
CASE statement 525
compound statement 527
condition handlers 531
DECLARE statement 527
GET DIAGNOSTICS statement 534
GOTO statement 536
handler statement 531
IF statement 537
LEAVE statement 539
LOOP statement 540
REPEAT statement 541
RESIGNAL statement 543
RETURN statement 545
SIGNAL statement 547
SQL control statement 519
variables 527
WHILE statement 549

CREATE TABLE statement 379
CREATE TRIGGER statement 398
CREATE VIEW statement 8, 406
CS (cursor stability) isolation level 18
CURRENT

clause of RELEASE statement 478
current connection state 27
CURRENT DATE special register 78
CURRENT PATH special register 78

SET PATH statement 503
current server

designating
CONNECT (Type 2)

statement 315
CURRENT SERVER special register 79
CURRENT TIME special register 79

CURRENT TIMESTAMP special
register 80

CURRENT TIMEZONE special
register 80

cursor
closed by error

FETCH statement 445
UPDATE statement 511

closed state 469
closing 302

CONNECT (Type 2)
statement 315

current row 445
defining 411
moving position 444
name 34
positions for open 445
preparing 467
read-only status, conditions for 413
updatability, determining 413

cursor stability 18
cursor-name

description 34
in CLOSE statement 302
in DECLARE CURSOR

statement 411
in DELETE statement 424, 426
in FETCH statement 444
in OPEN statement 467
in UPDATE statement 508, 511
length 38

D
data access classification 560
data representation considerations 29
data type

binary string 48
character string 46
datetime values 51
description 44
distinct 53, 319
function 329, 340, 350, 357
graphic string 47
in CREATE TABLE statement 382
in SQLCA 567
in SQLDA 572
numbers 45
result columns 249
user-defined 53

data types
casting between 56
equivalent Java and SQL 682
promotion 55

data-type
in ALTER TABLE statement 281, 285
in CAST specification 113
in CREATE TABLE statement 379,

382
database manager limits 554, 555
date

duration 103
strings 52

DATE
arithmetic operations 105
assignment 64
CREATE TABLE statement 386

Index 749

DATE (continued)
data type 51, 386
function 163

date and time
format 154

datetime
arithmetic operations 104
assignment 64
comparisons 68
data types

default date format 52
default time format 52
description 51
string representation 52

format
EUR 52, 153
ISO 52, 153
JIS 52, 153
USA 52, 153

limits 553
Datetime Host Variables 52
DAY function 165
DAY labeled duration 99, 103
DAYOFWEEK function 166
DAYOFWEEK_ISO function 167
DAYOFYEAR function 168
DAYS function 169
DAYS labeled duration 99, 103
DBCLOB

function 170
DBCLOB data type

in CREATE TABLE statement 384
DBCS (double-byte character set) data

description 48
strings 47
within mixed data 47

DBINFO
clause of CREATE FUNCTION

statement 335, 345
DEC data type 379, 383
decimal

arithmetic in SQL 100
constant 75
data type 45
numbers 45

DECIMAL
data type 379

DECIMAL function 171
decimal point 77
declarations in a program 459
DECLARE CURSOR statement 411
DECLARE GLOBAL TEMPORARY

TABLE statement 416
DECLARE statement 527
declared temporary table

defining 416
DEFAULT clause

in ALTER TABLE statement 285
in CREATE GLOBAL TEMPORARY

TABLE statement 419
in CREATE TABLE statement 386

default date format 52
default decimal point 77
default decimal separator character

description 46
DEFAULT keyword

in INSERT statement 461, 462

default solation level 16
default time format 52
degree

of table
equivalent term 737

DEGREES function 173
deletable

view 409
DELETE

clause of GRANT (Table or View
Privileges) statement 457

clause of REVOKE (Table and View
Privileges) statement 492

in ON DELETE clause of ALTER
TABLE statement 290

in ON DELETE clause of CREATE
TABLE statement 392

statement 424
delete rule for referential constraint 6
delete-connected table 6
deleting SQL objects 433
delimited identifier in SQL 33
delimiter token 32
DEPARTMENT sample table 716
dependent privilege 492
dependent row 4
dependent table 4
DESC clause

CREATE INDEX statement 365
select-statement 265

descendent row 4
descendent table 4
DESCRIBE statement 429
descriptor-name

description 34
in C 635
in COBOL 652
in DESCRIBE statement 429
in EXECUTE statement 439
in FETCH statement 444
in OPEN statement 467, 468
in PREPARE statement 471
in REXX 688

DETERMINISTIC clause
CREATE FUNCTION statement 334,

344, 360
digit 31
DIGITS function 174
dirty read 19
DISALLOW PARALLEL clause

CREATE FUNCTION statement 336,
347

DISTINCT
clause of subselect 247
COUNT_BIG function 138
keyword

AVG function 136
column function 135
COUNT function 137
MAX function 139
MIN function 140
SUM function 142

STDDEV function 141
VAR function 143
VARIANCE function 143

distinct type
assignment 65

distinct type (continued)
comparisons 69
CREATE DISTINCT TYPE

statement 319
description 53

DISTINCT TYPE clause
COMMENT statement 306
REVOKE (Distinct Type Privileges)

statement 483
distinct type name

in CREATE TABLE statement 386
in GRANT (Distinct Type Privileges)

statement 448
distinct-type-name

description 34
in COMMENT statement 304
in CREATE TABLE statement 386
in DROP statement 434
in REVOKE (Distinct Type Privileges)

statement 483
distributed data

CONNECT statement 24
RELEASE statement 478
SET CONNECTION statement 501

distributed relational database
application requester 23
application server 23
considerations for using 562
data representation considerations 29
remote unit of work 24
use of extensions to IBM SQL on

unlike application servers 562
distributed relational database

architecture (DRDA) 23
distributed unit of work

mixed environment 558
division by zero 110
dormant connection state 27
DOUBLE

function 175
DOUBLE PRECISION data type in

CREATE TABLE statement 383
DOUBLE_PRECISION function 175
double-precision floating-point

numbers 45
DRDA (Distributed Relational Database

Architecture) 23
driver, JDBC

registering with DriverManager 669
DROP CHECK clause of ALTER TABLE

statement 292
DROP FOREIGN KEY clause of ALTER

TABLE statement 292
DROP PRIMARY KEY clause of ALTER

TABLE statement 292
DROP statement 433
DROP UNIQUE clause of ALTER TABLE

statement 292
duplicate rows in fullselect 261
duration

date 103
labeled 103
time 104
timestamp 104

dynamic select 278
dynamic SQL

description 1

750 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

dynamic SQL (continued)
EXECUTE IMMEDIATE

statement 442
EXECUTE statement 439
execution 277
obtaining information with

DESCRIBE 429
preparation 277
PREPARE statement 471
SQLDA 571
statements allowed 558
use of SQL path 40

E
embedded SQL 276
Embedded SQL for Java (SQLJ) 2
EMP_PHOTO sample table 716
EMP_RESUME sample table 717
EMPLOYEE sample table 717
EMPPROJACT sample table 720
empty character string 46
encoding scheme 20
END DECLARE SECTION

statement 438
ending a unit of work 309, 494
equivalent terms 737
error

closes cursor 469
DELETE statement 426
FETCH statement 445
return code 279, 581
UPDATE statement 511

error handling
SQLJ 680

escape character 33
ESCAPE clause of LIKE predicate 125
EUR (IBM European standard)

argument in CHAR function 153
evaluation order 108
exclusive locks 17
EXCLUSIVE option of LOCK TABLE

statement 466
EXECSQL REXX command 687, 690
executable statement 276, 277
EXECUTE

in GRANT (Function or Procedure
Privileges) statement 451

in GRANT (package privileges)
statement 454

in REVOKE (Function and Procedure
Privileges) statement 486

in REVOKE (package privileges)
statement 489

EXECUTE IMMEDIATE statement 442
EXECUTE privilege 450, 454, 486, 489
EXECUTE statement 439
EXISTS predicate 120
EXP function 177
exposed name 82
expression 361

arithmetic operators 99
CASE expression 109
CAST specification 112
concatenation operator 101
datetime operands 103
decimal arithmetic in SQL 100

expression (continued)
decimal operands 100
description 99, 131
distinct type operands 101
floating-point operands 101
in ABS function 145
in ACOS function 146
in ASIN function 147
in ATAN function 148
in ATAN2 function 150
in ATANH function 149
in AVG function 136
in basic predicate 116
in BETWEEN predicate 119
in BLOB function 151
in CEILING function 152
in CHAR function 153
in CLOB function 158
in COALESCE function 159
in CONCAT function 160
in COS function 161
in COSH function 162
in COUNT function 137
in COUNT_BIG function 138
in DATE function 163
in DAY function 165
in DAYOFWEEK function 166
in DAYOFWEEK_ISO function 167
in DAYOFYEAR function 168
in DAYS function 169
in DBCLOB function 170
in DECIMAL function 171
in DEGREES function 173
in DIGITS function 174
in DOUBLE function 175
in DOUBLE_PRECISION

function 175
in EXP function 177
in FLOAT function 178
in FLOOR function 179
in GRAPHIC function 180
in HEX function 181
in HOUR function 182
in IN predicate 121
in INSERT statement 461, 462
in INTEGER function 187
in JULIAN_DAY function 188
in labeled-duration 99
in LCASE function 189
in LEFT function 190
in LENGTH function 191
in LN function 192
in LOCATE function 193
in LOG10 function 195
in LOWER function 196
in LTRIM function 197
in MAX function 139
in MICROSECOND function 198
in MIDNIGHT_SECONDS

function 199
in MIN function 140
in MINUTE function 200
in MOD function 201
in MONTH function 202
in NULLIF function 203
in POSSTR function 204
in POWER function 206

expression (continued)
in quantified predicate 117
in QUARTER function 207
in RADIANS function 208
in RAND function 209
in REAL function 210
in ROUND function 211
in RTRIM function 213
in scalar functions 144
in SECOND function 214
in SELECT clause 247
in SIGN function 215
in SIN function 216
in SINH function 217
in SMALLINT function 218
in SPACE function 219
in SQRT function 220
in STDDEV function 141
in subselect 247
in SUBSTR function 221
in SUM function 142
in TAN function 224
in TANH function 225
in TIME function 226
in TIMESTAMP function 227
in TRANSLATE function 229
in TRUNC function 231
in TRUNCATE function 231
in UCASE function 233
in UPDATE statement 508, 510
in UPPER function 234
in VALUE function 235
in VALUES statement 514
in VAR function 143
in VARCHAR function 236
in VARGRAPHIC function 238
in VARIANCE function 143
in WEEK function 241
in WEEK_ISO function 242
in YEAR function 243
integer operands 100
precedence of operation 108
two decimal operands 100
two integer operands 100
without operators 99

EXTERNAL ACTION clause
CREATE FUNCTION statement 335,

345, 360
EXTERNAL clause

CREATE FUNCTION statement 338,
347

external function program
call-type parameter 700
dbinfo parameter 701
diagnostic-message parameter 699
qualified-function-name

parameter 699
scratchpad parameter 699
specific-name parameter 699
SQL-argument parameter 697
SQL-argument-ind parameter 698
SQL-result parameter 697
SQL-result-ind parameter 698
SQL-state parameter 699

external procedure program
dbinfo parameter 705
diagnostic-message parameter 705

Index 751

external procedure program (continued)
qualified-procedure-name

parameter 704
specific-name parameter 705
SQL-argument parameter 703
SQL-argument-ind parameter 704
SQL-argument-ind-array

parameter 703
SQL-state parameter 704

external-program-name
description 35

F
FENCED

clause of CREATE FUNCTION
statement 335, 346

FETCH statement 444
fixed-length string 46, 47
FLOAT data type in CREATE TABLE

statement 383
FLOAT function 178
floating-point

constant 75
numbers 45

FLOOR function 179
FOR BIT DATA clause of CREATE TABLE

statement 383
FOR UPDATE OF clause

prohibited in views 409
foreign key 4
FOREIGN KEY clause

ALTER TABLE statement 289
of ALTER TABLE statement 289
of CREATE TABLE statement 391

FREE LOCATOR statement 447
FROM clause

correlation clause 251
DELETE statement 425
joined-table 253
nested table expression 251
of subselect 251
PREPARE statement 472
REVOKE (Distinct Type Privileges)

statement 483
REVOKE (Function and Procedure

Privileges) statement 487
REVOKE (package privileges)

statement 489
REVOKE (Table and View Privileges)

statement 492
SELECT INTO statement 499
table reference 251

fullselect
conversion rules for operations that

combine strings 73
description 245, 261
equivalent term 737
examples of 262
in CREATE VIEW statement 406
in INSERT statement 461, 463
ORDER BY clause 264
subselect component 246
UPDATE clause 267

function 9
best fit 96
built-in 93

function (continued)
column 93

AVG 136
COUNT 137
COUNT_BIG 138
description 135
MAX 139
MIN 140
STDDEV 141
SUM 142
VARIANCE or VAR 143

description 131
dropping 435, 436
external 93
function 325
in expressions 99
in labeled-duration 99
invocation 98
nesting 144
resolution 94
scalar 93

ABS 145
ACOS 146
ASIN 147
ATAN 148
ATAN2 150
ATANH 149
BLOB 151
CEIL 152
CEILING 152
CHAR 153
CLOB 158
COALESCE 159
CONCAT 160
COS 161
COSH 162
DATE 163
DAY 165
DAYOFWEEK 166
DAYOFWEEK_ISO 167
DAYOFYEAR 168
DAYS 169
DBCLOB 170
DECIMAL 171
DEGREES 173
description 144
DIGITS 174
DOUBLE 175
DOUBLE_PRECISION 175
EXP 177
FLOAT 178
FLOOR 179
GRAPHIC 180
HEX 181
HOUR 182
IDENTITY_VAL_LOCAL 183
INTEGER 187
JULIAN_DAY 188
LCASE 189
LEFT 190
LENGTH 191
LN 192
LOCATE 193
LOG10 195
LOWER 196
LTRIM 197
MICROSECOND 198

function (continued)
scalar (continued)

MIDNIGHT_SECONDS 199
MINUTE 200
MOD 201
MONTH 202
NULLIF 203
POSSTR 204
POWER 206
QUARTER 207
RADIANS 208
RAND 209
REAL 210
ROUND 211
RTRIM 213
SECOND 214
SIGN 215
SIN 216
SINH 217
SMALLINT 218
SPACE 219
SQRT 220
SUBSTR 221
TAN 224
TANH 225
TIME 226
TIMESTAMP 227
TRANSLATE 229
TRUNCATE 231
UCASE 233
UPPER 234
VALUE 235
VALUE (see COALESCE) 159
VARCHAR 236
VARGRAPHIC 238
WEEK 241
WEEK_ISO 242
YEAR 243

sourced 93
SQL 93
table 93
types 93
user-defined 93

FUNCTION clause
COMMENT statement 306
DROP statement 435
GRANT (Function or Procedure

Privileges) statement 451
REVOKE (Function and Procedure

Privileges) statement 486
REVOKE (Function or Procedure

Privileges) statement 486
function invocation

syntax 94
function path 54
function reference

syntax 94
function resolution 40
function-name

function 36
in COMMENT statement 304
in DROP statement 435
in GRANT (Function or Procedure

Privileges) statement 450
in REVOKE (Function and Procedure

Privileges) statement 486

752 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

functions
attributes of arguments 706
coding programs for external

functions 697
DBINFO 708
description 93
parameter passing to C or

COBOL 697
parameter passing to Java 701
scratch pad 713
SCRATCHPAD 713

G
GET DIAGNOSTICS statement 534
GO TO clause of WHENEVER

statement 517
GOTO statement 536
GRANT (Distinct Type Privileges)

statement 448
GRANT (Function or Procedure

Privileges) statement 450
GRANT (package privileges)

statement 454
GRANT (Table or View Privileges)

statement 456
GRAPHIC

function 180
graphic data string

DBCS data 48
Unicode data 48

GRAPHIC data type
in ALTER TABLE statement 281
in CREATE TABLE statement 384

graphic string
constant 76
definition 47

GROUP BY clause
cannot join view 409
SELECT INTO statement 499
subselect

intermediate results 257
results 248

grouping column 257

H
handlers

declaring 531
Handling SQL Errors and Warnings

COBOL 654
HAVING clause

results with subselect 248
SELECT INTO statement 499
subselect 258

held connection state 27
HEX function 181
host label

WHENEVER statement 517
host structure 91

C 645
COBOL 662

host variable
C 639
COBOL 654
description 36, 87

host variable (continued)
EXECUTE IMMEDIATE

statement 442
FETCH statement 444
indicator variable 88
LOB locator 90
naming a structure

C program 645
references to 87
REXX 692
SELECT INTO statement 499
substitution for parameter

markers 439
host variable followed by an indicator

variable
equivalent term 737

host-identifier
description 88
length 38

host-identifiers
description 33

host-label
description 36

host-variable
description 36, 87, 88

in Java 89
general use in SQL statements 88
in CONNECT statement 311
in EXECUTE IMMEDIATE

statement 442
in EXECUTE statement 439
in expressions 99
in FETCH statement 444
in IN predicate 121
in labeled-duration 99
in LIKE predicate 123, 125
in OPEN statement 467
in PREPARE statement 471, 472
in SELECT INTO statement 499

HOUR function 182
HOUR labeled duration 99, 103
HOURS labeled duration 99, 103

I
identifiers

host identifier 33
limits 39, 551, 552
naming conventions 33
SQL

delimited 33
description 33
limits 38
ordinary 33

IDENTITY_VAL_LOCAL function 183
IF statement 537
IMMEDIATE keyword of EXECUTE

IMMEDIATE statement 442
IN EXCLUSIVE MODE clause of LOCK

TABLE statement 466
IN predicate 121
IN SHARE MODE clause of LOCK

TABLE statement 466
IN_TRAY sample table 722
INCLUDE statement 459
index

dropping 436

INDEX clause
COMMENT statement 307

INDEX keyword
CREATE INDEX statement 364
DROP statement 436
GRANT (Table or View Privileges)

statement 457
REVOKE (Table and View Privileges)

statement 492
index-name

description 36
in COMMENT statement 304
in CREATE INDEX statement 364
in DROP statement 433, 436
unqualified, length of 38

index, definition of 6
indicator array 91
INDICATOR keyword 88
indicator variable

C 645
COBOL 661
in EXECUTE IMMEDIATE

statement 442
REXX 693

infix operators 100
INNER JOIN clause

in FROM clause 254
INSERT

clause of GRANT (Table or View
Privileges) statement 457

clause of REVOKE (Table and View
Privileges) statement 492

statement 461
insert rule with referential constraint 5
insert rules with INSERT statement 463
insertable

view 409
INT data type 382
integer

constant 75
in ALTER TABLE statement 281
in C VARGRAPHIC structured

form 643
in CREATE TABLE statement 379,

383
in ORDER BY clause 264, 265

INTEGER
data type 45, 382

INTEGER function 187
interactive entry of SQL statements 278
interactive SQL 2
INTO clause

in PREPARE statement 471
INTO keyword

DESCRIBE statement 429
FETCH statement 444
in INSERT statement 462
SELECT INTO statement 499
VALUES INTO statement 515

invoking SQL statements 276
IS clause of COMMENT statement 307
ISO (International Standards

Organization)
argument in CHAR function 153

isolation clause
select-statement 270

Index 753

isolation level
comparison 18
cursor stability 18
default 16
description 16
read stability 17
repeatable read 17
uncommitted read 18

isolation levels
in DELETE statement 270

isolation-clause
DELETE statement 426
INSERT statement 463
SELECT INTO statement 499
UPDATE statement 511

iterator
for positioned DELETE 679
for positioned UPDATE 679

J
jar-name

description 35
Java

equivalent SQL data types 682
Java application program

coding SQL statements 669
Java Database Connectivity (JDBC) 2
JIS (Japanese Industrial Standard)

argument in CHAR function 153
JOIN clause

in FROM clause 254
JULIAN_DAY function 188

K
key

ALTER TABLE statement 288
composite 3
CREATE TABLE statement 390
foreign 4
parent 4
primary 4
primary index 4
unique 3
unique index 4

L
label

description 36
label, GOTO 536
labeled duration 103
labeled-duration 99
LANGUAGE

clause of CREATE FUNCTION
statement 333, 343, 360

large integers 45
large object (LOB)

locator variable 90
large object location, definition 49
LCASE function 189
LEAVE statement 539
LEFT function 190
LEFT JOIN clause

in FROM clause 255

LEFT OUTER JOIN clause
in FROM clause 255

length attribute of column 46, 47
LENGTH function 191
letter 31
LIKE predicate 123
limits

database manager 554, 555
datetime 553
DB2 UDB SQL 551
identifier 39, 551, 552
numeric 552
string 552, 553

literal
constant

equivalent term 737
literals 75
LN function 192
LOB

locator variable 90
locator, definition 49

LOB Locators
assignment 66

LOCATE function 193
locator

declaring host variable 90
definition 49
FREE LOCATOR statement 447

LOCK TABLE statement 466
locks

description 13
exclusive 17
LOCK TABLE statement 466
share 17
UPDATE statement 511

LOG10 function 195
logical operator 129
long string

limitations 46, 137, 138, 139, 140, 163,
165, 166, 167, 168, 169, 171, 175, 180,
181, 182, 187, 188, 196, 198, 199, 200,
202, 207, 214, 218, 226, 227, 229, 234,
236, 238, 241, 242, 243

LOOP statement 540
LOWER function 196
LTRIM function 197

M
MAX function 139
method-id

description 35
MICROSECOND function 198
MICROSECOND labeled duration 99,

103
MICROSECONDS labeled duration 99,

103
MIDNIGHT_SECONDS function 199
MIN function 140
MINUTE function 200
MINUTE labeled duration 99, 103
MINUTES labeled duration 99, 103
mixed data

description 47
EBCDIC

shift-in character xii
shift-out character xii

mixed data (continued)
string assignment 63

mixed string
truncated during assignment 63

mixed strings
assignment 63

MOD function 201
MODE keyword of LOCK TABLE

statement 466
MONTH function 202
MONTH labeled duration 99, 103
MONTHS labeled duration 99, 103

N
NAME clause

CREATE FUNCTION statement 338,
348

name qualification 40
named iterator

example 678
renaming result table columns

for 679
SQLJ iterator 678

naming conventions
C 638
COBOL 653
REXX 691
SQL 34

NO DBINFO clause
CREATE FUNCTION statement 335,

345
NO EXTERNAL ACTION clause

CREATE FUNCTION statement 335,
345, 360

NO SCRATCHPAD clause
CREATE FUNCTION statement 337,

347
nonexecutable statement 276, 277
nonexposed name 82
nonrepeatable read 19
NOT

in BETWEEN predicate 119
in IN predicate 121
in LIKE predicate 123
in NULL predicate 128
operator in search conditions 129

NOT DETERMINISTIC clause
CREATE FUNCTION statement 334,

344, 360
NOT FOUND clause of WHENEVER

statement 517
NOT NULL clause of CREATE TABLE

statement 379, 389
NOT NULL PRIMARY KEY clause of

CREATE TABLE statement 379
NOT NULL UNIQUE clause of CREATE

TABLE statement 379
NUL in C 638
NUL terminator 641
NUL-terminated host variable 640, 642
NULL

in CAST specification 113
in VALUES statement 514
keyword in UPDATE statement 509
keyword SET NULL delete rule

description 5

754 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

NULL (continued)
keyword SET NULL delete rule

(continued)
in ALTER TABLE statement 290
in CREATE TABLE statement 392

predicate 128
value in C 638

NULL keyword
in INSERT statement 461, 462, 463

null string in REXX 691
null value, SQL

assigned to host variable 499
assignment 60
contrasted with null value in C 638
contrasted with null value in

REXX 691
definition 44
duplicate rows 247
grouping columns 257
result columns 248
specified by indicator variable 88

NULLIF function 203
number of items in a select list

equivalent term 738
numbers

default decimal separator
character 46

precision 45
scale 45
SQL 45
truncation of 61

numeric
assignment 61
comparisons 66
data type 45
data types

default decimal separator
character 46

string representation 46
limits 552

NUMERIC
data type 383

O
object table 84
ON clause

CREATE INDEX statement 365
GRANT (package privileges)

statement 454
GRANT (Table or View Privileges)

statement 457
REVOKE (package privileges)

statement 489
REVOKE (Table and View Privileges)

statement 492
ON DISTINCT TYPE clause

REVOKE (Distinct Type Privileges)
statement 483

ON TYPE clause
GRANT (Distinct Type Privileges)

statement 448
open state of cursor 445
OPEN statement 467
operand

datetime 103
decimal 100

operand (continued)
distinct type 101
floating-point 101
integer 100
string 101

operands of in list
result data type 70

operation
assignment 60
comparison 66
description 60
precedence 108

operator
arithmetic 99
concatenation 101
logical 129
string 101

OPTIMIZE FOR clause
select-statement 269

OR
operator in search condition 129
truth table 129

ORDER BY clause
prohibited in views 409
select-statement 264

order of evaluation of operators 108
ordinary identifier in SQL 33
ordinary token 32
ORG sample table 722
outer join

See also LEFT OUTER JOIN clause
See RIGHT OUTER JOIN clause

outer reference
equivalent term 737

ownership 13

P
package

dropping 436
package and access plan 9
PACKAGE clause

DROP statement 436
GRANT (Package Privileges)

statement 454
REVOKE (Package Privileges)

statement 489
package-name

description 36
in DROP statement 433, 436
in GRANT (package privileges)

statement 454
in REVOKE (package privileges)

statement 489
unqualified, length of 38

padding on string assignment 62
parameter marker

EXECUTE statement 439, 467
in PREPARE statement 472
OPEN statement 468
replacement 440, 469
rules 472
typed 472
untyped 472
usage in expressions, predicates and

functions 472

parameter style
DB2SQL 703
GENERAL 702
GENERAL WITH NULLS 703

PARAMETER STYLE clause
CREATE FUNCTION statement 333,

343
parameter-marker

in CAST specification 113
parameter-name

description 36
parent key 4
parent row 4
parent table 4
parentheses used to change order of

evaluation of
expression 108
UNION operation 261

path
function resolution 95

performance
isolation clause 270
OPTIMIZE FOR clause 269

phantom row 17, 19
Positioned DELETE statement 424
positioned iterator

example 677
SQLJ iterator 677

Positioned UPDATE statement 508
POSSTR function 204
POWER function 206
precedence

level 108
operation 108

precision of numbers
assignment 61
comparisons 66
description 45
determined by SQLLEN variable 575
results of arithmetic operations 100

predicate
basic 116
BETWEEN 119
description 115
EXISTS 120
IN 121
in search condition 129
LIKE 123
NULL 128
quantified 117

prefix operator 100
PREPARE statement 471
prepared SQL statement

dynamically prepared by
PREPARE 471, 476

executing 439
obtaining information

by INTO with PREPARE 430
obtaining information with

DESCRIBE 429
SQLDA provides information 571
statements allowed 558

preparing statements 1
primary index 4
primary key 4
PRIMARY KEY clause

ALTER TABLE statement 288

Index 755

PRIMARY KEY clause (continued)
CREATE TABLE statement 390

PRIMARY KEY clause of ALTER TABLE
statement 286

PRIMARY KEY clause of CREATE TABLE
statement 389

privileges
description 12
granting 448, 450, 454, 456
revoking 483, 485, 489, 491

procedure 9
authorization for creating 367, 374
creating, SQL statement

instructions 366, 367, 374
dropping 436

PROCEDURE clause
DROP statement 436

procedure-name
in COMMENT statement 304
in DROP statement 436
in GRANT (Function or Procedure

Privileges) statement 450
in REVOKE (Function and Procedure

Privileges) statement 486
procedure 36

PROCEDURE
clause of COMMENT statement 307

procedures
attributes of arguments 706
coding programs for external

procedures 697
DBINFO 708
parameter passing 702
parameter passing to Java 705

program preparation 1
PROGRAM synonym for PACKAGE

DROP statement 436
GRANT (Package Privileges)

statement 454
PROJACT sample table 723
PROJECT sample table 724
promoting

data types 55
precedence 55

PUBLIC clause
GRANT (Distinct Type Privileges)

statement 449
GRANT (Function or Procedure

Privileges) statement 453
GRANT (package privileges)

statement 455
GRANT (Table or View Privileges)

statement 458
REVOKE (Distinct Type Privileges)

statement 483
REVOKE (Function and Procedure

Privileges) statement 488
REVOKE (package privileges)

statement 489
REVOKE (Table and View Privileges)

statement 492
publications, related xiii

Q
qualified column names 81

qualifier
reserved 739

quantified predicate 117
QUARTER function 207
queries 245
query

expression
equivalent term 737

specification
equivalent term 737

question mark
EXECUTE statement 439, 467
PREPARE statement 472

R
RADIANS function 208
RAND function 209
READ ONLY clause

select-statement 268
read stability 17
read-only

READ ONLY clause 268
view 409

REAL data type in CREATE TABLE
statement 383

REAL function 210
recovery of applications 13
REFERENCES clause

ALTER TABLE statement 281, 287,
289

CREATE TABLE statement 379, 389
FOREIGN KEY clause 287, 389
GRANT (Table or View Privileges)

statement 457
REVOKE (Table and View Privileges)

statement 492
references to host variables 87
referential constraint 3, 4
referential cycle 4
referential integrity 4
relational database 1
RELEASE SAVEPOINT statement 480
RELEASE statement 478
release-pending connection state 27
remote unit of work 24
RENAME statement 481
REPEAT statement 541
repeatable read 17
reserved

qualifiers 739
schema names 739
words 739

RESET
clause of CONNECT statement 316

RESIGNAL statement 543
RESTRICT delete rule

description 5
in ALTER TABLE statement 281, 290
in CREATE TABLE statement 379,

392
result

equivalent term 738
result columns of subselect 249
result data type

arguments of COALESCE 70
operands 70

result data type (continued)
result expressions of CASE 70
UNION 70

result expressions of CASE
result data type 70

result sets
returning from a SQL procedure 530

result specification
equivalent term 737

result table 3
result table created by a group-by or

having clause
equivalent term 738

result view created by a group-by or
having clause

equivalent term 738
RESULT_STATUS

GET DIAGNOSTICS statement 534
result-expression

in CASE specification 109
retrieval

assignment 63
retrieving rows in SQLJ

named iterator example 678
positioned iterator example 677
with named iterators 678

return code 279, 581
RETURN statement 361, 545
returning result sets 530
RETURNS clause of CREATE FUNCTION

statement 332, 352, 359
RETURNS NULL ON NULL INPUT

clause
CREATE FUNCTION statement 334,

345
RETURNS TABLEclause of CREATE

FUNCTION statement 343
REVOKE (Distinct Type Privileges)

statement 483
REVOKE (Function or Procedure

Privileges) statement 485
REVOKE (package privileges)

statement 489
REVOKE (Table and View Privileges)

statement 491
REXX application program

coding SQL statements 687
host variable 87

RIGHT JOIN clause
in FROM clause 255

RIGHT OUTER JOIN clause
in FROM clause 255

rollback description 14
ROLLBACK statement 494, 496
ROUND function 211
routine 9
routines

attributes of arguments 706
coding program for external

routines 697
DBINFO 708
parameter passing 697
parameter passing for functions

written in C or COBOL 697
parameter passing for functions

written in Java 701

756 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

routines (continued)
parameter passing for

procedures 702
parameter passing for procedures

written in Java 705
scratch pad 713

row
deleting 424
dependent 4
descendent 4
description 3
inserting 461
parent 4
self-referencing 4

ROW_COUNT
GET DIAGNOSTICS statement 534

RR (repeatable read) isolation level 17
RS (read stability) isolation level 17
RTRIM function 213
RUN privilege 454
run-time authorization ID 43

S
SALES sample table 726
sample tables 715
savepoint 36

RELEASE SAVEPOINT
statement 480

SAVEPOINT statement 496
SAVEPOINT statement 496, 497
savepoint-name

description 36
savepoint–name

in RELEASE SAVEPOINT
statement 480

in SAVEPOINT statement 496
SBCS (single-byte character set) data

description 47
within mixed data 47

scalar function 93
scale of data

determined by SQLLEN variable 574
scale of numbers

assignment 61
comparisons 66
description 45
determined by SQLLEN variable 575
results of arithmetic operations 100

schema 36
system 3

schema-name
description 36
length 38
reserved names 739

SCRATCHPAD clause
CREATE FUNCTION statement 337,

347
search condition

DELETE statement 425
description 129
HAVING clause 258
in JOIN clause 254
order of evaluation 129
WHERE clause 256

search-condition
description 129

search-condition (continued)
in CASE specification 110
in DELETE statement 424, 425
in HAVING clause 258
in UPDATE statement 508, 511

Searched DELETE statement 424
Searched UPDATE statement 508
searched-when-clause

in CASE specification 109
SECOND function 214
SECOND labeled duration 99, 103
SECONDS labeled duration 99, 103
SELECT

clause of GRANT (Table or View
Privileges) statement 457

clause of REVOKE (Table and View
Privileges) statement 492

clause of subselect 246
select-statement 263

SELECT INTO statement 499
select list

application 248
description 247
notation 247

SELECT statement 498
select-statement

description 245, 263
examples of 271
in DECLARE CURSOR

statement 411, 412
in OPEN statement 467
in UPDATE clause 267

self-referencing row 4
self-referencing table 4
separator

comment 32
space 32

server-name
description 36
in CONNECT statement 311
length 38

SET clause of UPDATE statement 509
SET CONNECTION statement 501
set function

equivalent term 737
SET NULL delete rule

description 5
in ALTER TABLE statement 290
in CREATE TABLE statement 392

SET PATH statement
detailed description 503

SET statement 522
SET transition-variable statement 506
share locks 17
SHARE option of LOCK TABLE

statement 466
shift-in character xii, 103
shift-out character xii, 103
SIGN function 215
SIGNAL ON ERROR in REXX 691
SIGNAL statement 547
simple-when-clause

in CASE specification 109
SIN function 216
single-precision floating-point

numbers 45
single-row select 499

SINH function 217
small integers 45
SMALLINT data type 382
SMALLINT function 218
SOME quantified predicate 117
SOURCE clause of CREATE FUNCTION

statement 353
space 31
SPACE function 219
special character 31
special register

CURRENT DATE 78, 79
CURRENT PATH 78
CURRENT SERVER 79
CURRENT TIME 79
CURRENT TIMESTAMP 80
CURRENT TIMEZONE 80
description 78
USER 80

special-register
in expressions 99
in IN predicate 121

SPECIFIC clause
CREATE FUNCTION statement 333,

344, 353, 360
DROP statement 436
GRANT (Function or Procedure

Privileges) statement 452
REVOKE (Function and Procedure

Privileges) statement 487
specific-name

description 37
in DROP statement 436
in GRANT (Function or Procedure

Privileges) statement 452
in REVOKE (Function and Procedure

Privileges) statement 487
SQL

equivalent Java data types 682
SQL (Structured Query Language) 1

call level interface (CLI) 2
dynamic

statements allowed 558
Embedded SQL for Java (SQLJ) 2
Java Database Connectivity (JDBC) 2
Open Database Connectivity

(ODBC) 2
SQL 1999 Core standard ix
SQL comments 280
SQL Control statement

SQL procedure statement 521
SQL control statements 519
SQL data acess clause

CREATE FUNCTION statement 334,
344, 361

SQL limits 551
SQL path 40, 54

function resolution 95
SQL procedure

assignment statement 522
CALL statement 523
CASE statement 525
compound statement 527
condition handler statement 531
condition handlers 531
DECLARE statement 527
GET DIAGNOSTICS statement 534

Index 757

SQL procedure (continued)
GOTO statement 536
IF statement 537
LEAVE statement 539
LOOP statement 540
REPEAT statement 541
RESIGNAL statement 543
RETURN statement 545
SET statement 522
SIGNAL statement 547
variables 527
WHILE statement 549

SQL return code 279, 581
SQL statement

format in SQLJ 669
handling errors in SQLJ 680

SQL statements
ALTER TABLE 281
BEGIN DECLARE SECTION 295
CALL 297
characteristics 557
CLOSE 302
COMMENT 304
COMMIT 309
CONNECT (Type 1) 311
CONNECT (Type 2) 315
CONNECT differences 633
CREATE ALIAS 318
CREATE DISTINCT TYPE 319, 324
CREATE FUNCTION 325
CREATE FUNCTION (External

Scalar) 329, 340
CREATE FUNCTION (External

Table) 340, 349
CREATE FUNCTION (Sourced) 350,

356
CREATE FUNCTION (SQL

Scalar) 357, 363
CREATE INDEX 364
CREATE PROCEDURE 366
CREATE PROCEDURE

(External) 367
CREATE PROCEDURE (SQL) 374
CREATE TABLE 379
CREATE TRIGGER 398
CREATE VIEW 406
data access classification 560
DECLARE CURSOR 411
DECLARE GLOBAL TEMPORARY

TABLE 416
DELETE 424
DESCRIBE 429
DROP 433
END DECLARE SECTION 438
EXECUTE 439
EXECUTE IMMEDIATE 442
FETCH 444
FREE LOCATOR 447
GRANT (Distinct Type

Privileges) 448
GRANT (Function or Procedure

Privileges) 450
GRANT (Package Privileges) 454
GRANT (Table or View

Privileges) 456
INCLUDE 459
INSERT 461

SQL statements (continued)
LOCK TABLE 466
OPEN 467
PREPARE 471
RELEASE 478
RELEASE SAVEPOINT 480
RENAME 481
REVOKE (Distinct Type

Privileges) 483
REVOKE (Function or Procedure

Privileges) 485
REVOKE (Package Privileges) 489
REVOKE (Table and View

Privileges) 491
ROLLBACK 496
SAVEPOINT 496, 497
SELECT 498
SELECT INTO 499
SET CONNECTION 501
SET PATH 503
SET transition-variable 506
UPDATE 508
VALUES 514
VALUES INTO 515
WHENEVER 517

SQL variables 527
SQL-label

description 37
SQL-parameter-name

description 37
SQL-variable-name

description 37
SQLCA (SQL communication area)

C 635
COBOL 651
contents 567
description 567
entry changed by UPDATE 511
INCLUDE statement 459
REXX 688

SQLCA (SQL communications area)
Java 669

SQLCABC field of SQLCA 567
SQLCAID field of SQLCA 567
SQLCCSID field of SQLDA

in REXX 689
SQLCODE

description 279
field description 567
in REXX 688

SQLD field of SQLDA
field description 572
in REXX 689
information generated by DESCRIBE

statement 430
SQLDA (SQL descriptor area)

C 635
COBOL 651
contents 571
DESCRIBE statement 429
description 571
FETCH statement 444
INCLUDE statement 459
Java 669
REXX 688

SQLDABC field of SQLDA 430, 572
SQLDAID field of SQLDA 429, 572

SQLDATA field of SQLDA
CCSID values 577
field description 574
in REXX 690

SQLDATALEN field of SQLDA 574
SQLERRD field of SQLCA 568, 688
SQLERRMC field of SQLCA 567, 688
SQLERRML field of SQLCA 567
SQLERROR clause of WHENEVER

statement 517
SQLERRP field of SQLCA 567, 688
SQLIND field of SQLDA 574

field description 574
in REXX 690

SQLJ
basic concepts 669
comment 670
connecting to a data source 671
description 669
error handling 680
executable clause 669
format of SQL statement 669
importing Java packages 669
including code to access 669
loading JDBC driver 669
SQLJ iterator 674
valid SQL statements 669

SQLJ application
writing 669

SQLJ iterator
description 674
positioned iterator 677
retrieving rows in SQLJ 674, 677, 678

SQLLEN field of SQLDA 574
field description 574
in REXX 689

SQLLONGLEN field of SQLDA 574
SQLN field of SQLDA 429, 572
SQLNAME field of SQLDA 574

CCSID values 577
field description 574
in REXX 689

SQLPRECISION field of SQLDA 689
SQLSCALE field of SQLDA 689
SQLSTATE

description 279
field description 569
in REXX 688
values 581

SQLTYPE field of SQLDA 574
field description 574
in REXX 689

SQLVAR field of SQLDA 430, 574
SQLWARN field of SQLCA 568, 688
SQLWARNING clause of WHENEVER

statement 517
SQRT function 220
STAFF sample table 727
statement-name

description 37
in DECLARE CURSOR

statement 411, 412
in DESCRIBE

in C 635
in COBOL 652

in DESCRIBE statement 429
in EXECUTE statement 439

758 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

statement-name (continued)
in OPEN statement 467
in PREPARE

in C 636
in PREPARE statement 471
length 38

states
connection 27

STATIC DISPATCH 361
STATIC DISPATCH clause

CREATE FUNCTION statement 335,
345

static select 278
static SQL

definition 1
use of SQL path 40

STDDEV function 141
storage

assignment 62
storage structures 19
string

assignment 62
binary 48
character 46
columns 46, 48
comparison 67
constant

character 75
graphic 76

conversion 20
graphic 47
limitations on use of 50
LOB 49
variable

fixed-length 46
varying-length 46

string limits 552, 553
subquery

description 85, 246
HAVING clause 258
WHERE clause 256

subquery in a basic predicate
equivalent term 738

subselect
description 85, 246
equivalent term 738
examples of 259
in basic predicate 116
in CREATE VIEW statement 246
in EXISTS predicate 120
in GROUP BY clause 257
in HAVING clause 258
in IN predicate 121
in quantified predicate 117
in UPDATE statement 510
in WHERE clause 256

substitution character 21
SUBSTR function 221
SUM function 142
synonym

CREATE ALIAS statement 318
synonym for qualifying a column

name 81
syntax diagrams x
system schema 3

T
table

alias 318
changing 281
column 3
creating 379
dependent 4
descendent 4
description 3
designator 84
dropping 436
parent 4
primary key 4
relational database 1
renaming

RENAME statement 481
result table 3
row 3
self-referencing 4
temporary 469

table check constraint 3, 6
TABLE clause

COMMENT statement 307
DROP statement 436

table expression
equivalent term 737

table function 93
table-name

description 37
in ALTER TABLE statement 281, 284
in COMMENT statement 304, 307
in CREATE GLOBAL TEMPORARY

TABLE statement 418
in CREATE INDEX statement 365
in CREATE TABLE statement 379,

382
in DELETE statement 424, 425
in DROP statement 433, 436
in GRANT (Table or View Privileges)

statement 456, 457
in INSERT statement 461, 462
in LOCK TABLE statement 466
in REVOKE (Table and View

Privileges) statement 491, 492
in SELECT clause 247
in UPDATE statement 508, 509
unqualified, length of 38

TAN function 224
TANH function 225
target specification

equivalent term 737
temporary tables in OPEN 469
time

arithmetic operations 106
duration 104
strings 52

TIME
assignment 64
data type 51, 386
function 226

timestamp
arithmetic operations 107
duration 104
strings 53

TIMESTAMP
assignment 65
data type 51, 386

TIMESTAMP (continued)
function 227

TO
clause of CONNECT (Type 2)

statement 315
tokens

delimiter 32
ordinary 32
SQL 32

transaction
equivalent term 737

TRANSLATE function 229
trigger

creating 398
dropping 436

TRIGGER clause
COMMENT statement 307
DROP statement 436

trigger-name
description 37
in COMMENT statement 304
in CREATE TRIGGER statement 399
in DROP statement 436

TRUNCATE function 231
truncation of numbers 61
truth table 129
truth valued logic 129
type

dropping 434
TYPE clause

DROP statement 434

U
UCASE function 233
UDF (user-defined function) 93

external 93
sourced 93
SQL 93

unary
minus 100
plus 100

uncommitted read 18
unconnected state 28
undefined reference 84
Unicode data

description 47, 48
UNION

result data type 70
UNION ALL operator of fullselect 261
UNION operator

duplicate rows 261
fullselect 261

UNIQUE clause
ALTER TABLE statement 288
CREATE INDEX statement 364
CREATE TABLE statement 390
in SAVEPOINT statement 496

UNIQUE clause of CREATE TABLE
statement 287, 389

unique constraint 3
unique index 4
unique key 3
unique-constraint clause of CREATE

TABLE statement 390
unit of work

description 14

Index 759

unit of work (continued)
ending 309, 495

updatable
view 409

UPDATE
clause of GRANT (Table or View

Privileges) statement 457
clause of REVOKE (Table and View

Privileges) statement 492
clause of select-statement 267
rules 511
statement 508
use in update-clause 267

UPDATE clause
select-statement 267

UPPER function 234
UR (uncommitted read) isolation

level 18
USA (IBM USA standard)

argument in CHAR function 153
USAGE

in GRANT (Distinct Type Privileges)
statement 448

in REVOKE (Distinct Type Privileges)
statement 483

USAGE privilege 448, 483
USER special register 80
user-defined function 93

CREATE FUNCTION (External Scalar)
statement 329

CREATE FUNCTION (External Table)
statement 340

CREATE FUNCTION (Sourced)
statement 350

CREATE FUNCTION (SQL Scalar)
statement 357

CREATE FUNCTION statement 325
external 93
sourced 93
SQL 93

user-defined type
description 53

user-defined types (UDTs)
casting 56

USING clause
CALL statement 299
EXECUTE statement 439
FETCH statement 444
OPEN statement 467

V
valid SQL statements

SQLJ 669
value expression

equivalent term 737
VALUE function 235
value in SQL 44
VALUES

statement 514
VALUES clause

VALUES INTO statement 515
VALUES clause of INSERT

statement 462
VALUES INTO

statement 515
VAR function 143

VARCHAR
function 236

VARCHAR data type in CREATE TABLE
statement 383

VARGRAPHIC
data type 384
function 238

variable names used in SQL 34
variables, host

C 639
COBOL 654
REXX 692

VARIANCE function 143
varying-length string 46, 48
view

alias 318
creating 406
deletable 409
description 8
dropping 437
insertable 409
name 38
read-only 409
updatable 409

VIEW clause
CREATE VIEW statement 406
DROP statement 436

view-name
description 38
in COMMENT statement 304, 307
in CREATE VIEW statement 406
in DELETE statement 424, 425
in DROP statement 433, 436
in GRANT (Table or View Privileges)

statement 456, 457
in INSERT statement 461, 462
in REVOKE (Table and View

Privileges) statement 491, 492
in SELECT clause 247
in UPDATE statement 508, 509
unqualified, length of 38

W
warning return code 279, 581
WEEK function 241
WEEK_ISO function 242
WHENEVER statement 517

C 639
COBOL 654
REXX, substitute for 691

WHERE clause
DELETE statement 425
SELECT INTO statement 499
subselect 256
UPDATE statement 511

WHERE CURRENT OF clause
DELETE statement 426
UPDATE statement 511

WHILE statement 549
WITH CHECK OPTION

See CHECK OPTION clause of
CREATE VIEW statement

WITH CHECK OPTION clause of
CREATE VIEW statement

INSERT rules 464
UPDATE rules 512

WITH clause
DELETE statement 426, 511
INSERT statement 463

WITH GRANT OPTION clause
GRANT (Distinct Type Privileges)

statement 449
GRANT (Function or Procedure

Privileges) statement 453
GRANT (package privileges)

statement 455
GRANT (Table or View Privileges)

statement 458
WITH HOLD clause of DECLARE

CURSOR statement 411
with positioned iterators 677
WITH RETURN clause of DECLARE

CURSOR statement 412
with SQLJ iterators 674
WORK keyword

COMMIT statement 309
ROLLBACK statement 494

Y
YEAR function 243
YEAR labeled duration 99, 103
YEARS labeled duration 99, 103

760 DB2 UDB SQL Reference for Cross-Platform Development Version 1.1

����

Printed in U.S.A.

	Contents
	About this book
	Who should read this book
	How to use this book
	Assumptions relating to examples of SQL statements
	Code disclaimer information

	How to read the syntax diagrams
	Conventions used in this manual
	Highlighting conventions
	Conventions for describing mixed data values

	SQL accessibility
	Related documentation
	DB2 Universal Database for z/OS and OS/390
	DB2 Universal Database for iSeries
	DB2 Universal Database for the Linux, UNIX and Windows Platforms
	Distributed relational database architecture
	Character data representation architecture
	Industry standards

	Chapter 1. Concepts
	Relational database
	Structured query language
	Static SQL
	Dynamic SQL
	Interactive SQL
	SQL call level interface and open database connectivity
	Java database connectivity and embedded SQL for Java programs

	Schemas
	Tables
	Keys
	Constraints
	Unique constraints
	Referential constraints
	Check constraints

	Indexes
	Triggers

	Views
	Aliases
	Packages and access plans
	Routines
	Functions
	Procedures

	Authorization, privileges and object ownership
	Catalog
	Application processes, concurrency, and recovery
	Locking, commit, and rollback
	Unit of work
	Rolling back work
	Rolling back all changes
	Rolling back selected changes using savepoints

	Isolation level
	Repeatable read
	Read stability
	Cursor stability
	Uncommitted read
	Comparison of isolation levels

	Storage structures
	Character conversion
	Character sets and code pages
	Coded character sets and CCSIDs
	Default CCSID

	Distributed relational database
	Application servers
	CONNECT (Type 1) and CONNECT (Type 2)
	Remote unit of work
	Remote unit of work connection management

	Application-directed distributed unit of work
	Application-directed distributed unit of work connection management
	Connection states
	Application process connection states
	When a connection is ended

	Data representation considerations

	Chapter 2. Language elements
	Characters
	Tokens
	Identifiers
	SQL identifiers
	Examples

	Host identifiers

	Naming conventions
	SQL path
	Qualification of unqualified object names
	Unqualified alias, index, package, table, trigger, and view names
	Unqualified distinct type, function, procedure, and specific names

	Aliases
	Authorization IDs and authorization names
	Example

	Data types
	Nulls
	Numbers
	Small integer
	Large integer
	Floating-point
	Decimal
	Numeric host variables
	String Representations of numeric values

	Character strings
	Fixed-length character strings
	Varying-length caracter strings
	Character-string variables

	Character encoding schemes
	Examples

	Graphic strings
	Fixed-length graphic strings
	Varying-length graphic strings
	Graphic-string variables

	Graphic encoding schemes
	Binary strings
	Large objects
	Manipulating large objects with locators

	Limitations on use of strings
	Datetime values
	Date
	Time
	Timestamp
	Datetime host variables
	String representations of datetime values

	User-defined types
	Distinct types

	Promotion of data types
	Casting between data types
	Assignments and comparisons
	Numeric assignments
	Decimal or integer to floating-point
	Floating-point or decimal to integer
	Decimal to decimal
	Integer to decimal
	Floating-point to decimal
	Assignments to COBOL integers

	String assignments
	Binary string assignments
	Character and graphic string assignments

	Datetime assignments
	Distinct type assignments
	Assignments to host variables
	Assignments other than to host variables

	Assignments to LOB locators
	Numeric comparisons
	String comparisons
	Binary string comparisons
	Character and graphic string comparisons
	Conversion rules for comparison

	Datetime comparisons
	Distinct type comparisons

	Rules for result data types
	Numeric operands
	Character string operands
	Graphic string operands
	Binary string operands
	Datetime operands
	Distinct type operands

	Conversion rules for operations that combine strings
	Constants
	Integer constants
	Examples

	Floating-point constants
	Examples

	Decimal constants
	Examples

	Character-string constants
	Examples

	Graphic-string constants
	Decimal point

	Special registers
	CURRENT DATE
	Example

	CURRENT PATH
	Example

	CURRENT SERVER
	Example

	CURRENT TIME
	Example

	CURRENT TIMESTAMP
	Example

	CURRENT TIMEZONE
	Example

	USER
	Example

	Column names
	Qualified column names
	Correlation names
	Column name qualifiers to avoid ambiguity
	Table designators
	Avoiding undefined or ambiguous references

	Column name qualifiers in correlated references
	Unqualified column names in correlated references

	References to variables
	References to host variables
	Example

	Host variables in dynamic SQL
	References to LOB host variables
	References to LOB locator variables
	Host structures

	Functions
	Types of functions
	Function invocation
	Function resolution
	Determining the best fit
	Best fit considerations

	Expressions
	Without operators
	Examples

	With arithmetic operators
	Two integer operands
	Integer and decimal operands
	Two decimal operands
	Floating-point operands
	Distinct type operands

	With the concatenation operator
	Datetime operands and durations
	Datetime arithmetic in SQL
	Date arithmetic
	Time arithmetic
	Timestamp arithmetic

	Precedence of operations
	CASE expressions
	Examples

	CAST specification
	Examples

	Predicates
	Basic predicate
	Examples

	Quantified predicate
	Examples

	BETWEEN predicate
	Examples

	EXISTS predicate
	Example

	IN predicate
	Examples

	LIKE predicate
	Examples

	NULL predicate
	Examples

	Search conditions
	Examples

	Chapter 3. Built-in functions
	Column functions
	AVG
	Examples

	COUNT
	Examples

	COUNT_BIG
	Examples

	MAX
	Examples

	MIN
	Examples

	STDDEV
	Example

	SUM
	Example

	VARIANCE or VAR
	Example

	Scalar functions
	Example
	ABS
	Note
	Example

	ACOS
	Example

	ASIN
	Example

	ATAN
	Example

	ATANH
	Example

	ATAN2
	Example

	BLOB
	Note
	Examples

	CEILING
	Examples

	CHAR
	Note
	Examples

	CLOB
	Note
	Example

	COALESCE
	Examples

	CONCAT
	Example

	COS
	Example

	COSH
	Example

	DATE
	Note
	Examples

	DAY
	Examples

	DAYOFWEEK
	Examples

	DAYOFWEEK_ISO
	Examples

	DAYOFYEAR
	Example

	DAYS
	Examples

	DBCLOB
	Note
	Example

	DECIMAL or DEC
	Note
	Examples

	DEGREES
	Example

	DIGITS
	Examples

	DOUBLE_PRECISION or DOUBLE
	Note
	Example

	EXP
	Example

	FLOAT
	FLOOR
	Examples

	GRAPHIC
	Note
	Example

	HEX
	Example

	HOUR
	Example

	IDENTITY_VAL_LOCAL
	Notes
	Examples

	INTEGER or INT
	Note
	Example

	JULIAN_DAY
	Examples

	LCASE
	LEFT
	Example

	LENGTH
	Examples

	LN
	Example

	LOCATE
	Example

	LOG10
	Example

	LOWER
	Note
	Example

	LTRIM
	Example

	MICROSECOND
	Example

	MIDNIGHT_SECONDS
	Examples

	MINUTE
	Example

	MOD
	Examples

	MONTH
	Example

	NULLIF
	Example

	POSSTR
	Example

	POWER
	Example

	QUARTER
	Example

	RADIANS
	Example

	RAND
	Examples

	REAL
	Note
	Example

	ROUND
	Examples

	RTRIM
	Example

	SECOND
	Examples

	SIGN
	Example

	SIN
	Example

	SINH
	Example

	SMALLINT
	Note
	Example

	SPACE
	Example

	SQRT
	Example

	SUBSTR
	Examples

	TAN
	Example

	TANH
	Example

	TIME
	Note
	Example

	TIMESTAMP
	Note
	Example

	TRANSLATE
	Examples

	TRUNCATE or TRUNC
	Examples

	UCASE
	UPPER
	Note
	Examples

	VALUE
	VARCHAR
	Note
	Example

	VARGRAPHIC
	Note
	Example

	WEEK
	Examples

	WEEK_ISO
	Examples

	YEAR
	Examples

	Chapter 4. Queries
	Authorization
	subselect
	select-clause
	Select list notation
	Applying the select list
	Null attributes of result columns
	Names of result columns
	Data types of result columns

	from-clause
	table-reference
	joined-table

	where-clause
	group-by-clause
	having-clause
	Examples of a subselect
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8

	fullselect
	Rules for columns
	Examples of a fullselect
	Example 1
	Example 2
	Example 3

	select-statement
	order-by-clause
	fetch-first-clause
	update-clause
	read-only-clause
	optimize-clause
	isolation-clause
	Examples of a select-statement
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Chapter 5. Statements
	How SQL statements are invoked
	Embedding a statement in an application program
	Executable statements
	Nonexecutable statements

	Dynamic preparation and execution
	Static invocation of a select-statement
	Dynamic invocation of a select-statement
	Interactive invocation

	SQL return codes
	SQLSTATE
	SQLCODE

	SQL comments
	ALTER TABLE
	BEGIN DECLARE SECTION
	CALL
	CLOSE
	COMMENT
	COMMIT
	CONNECT (Type 1)
	CONNECT (Type 2)
	CREATE ALIAS
	CREATE DISTINCT TYPE
	CREATE FUNCTION
	CREATE FUNCTION (External Scalar)
	CREATE FUNCTION (External Table)
	CREATE FUNCTION (Sourced)
	CREATE FUNCTION (SQL Scalar)
	CREATE INDEX
	CREATE PROCEDURE
	CREATE PROCEDURE (External)
	CREATE PROCEDURE (SQL)
	CREATE TABLE
	CREATE TRIGGER
	CREATE VIEW
	DECLARE CURSOR
	DECLARE GLOBAL TEMPORARY TABLE
	DELETE
	DESCRIBE
	DROP
	END DECLARE SECTION
	EXECUTE
	EXECUTE IMMEDIATE
	FETCH
	FREE LOCATOR
	GRANT (Distinct Type Privileges)
	GRANT (Function or Procedure Privileges)
	GRANT (Package Privileges)
	GRANT (Table or View Privileges)
	INCLUDE
	INSERT
	LOCK TABLE
	OPEN
	PREPARE
	RELEASE (Connection)
	RELEASE SAVEPOINT
	RENAME
	REVOKE (Distinct Type Privileges)
	REVOKE (Function or Procedure Privileges)
	REVOKE (Package Privileges)
	REVOKE (Table and View Privileges)
	ROLLBACK
	SAVEPOINT
	SELECT
	SELECT INTO
	SET CONNECTION
	SET PATH
	SET transition-variable
	UPDATE
	VALUES
	VALUES INTO
	WHENEVER

	Chapter 6. SQL control statements
	References to SQL parameters and SQL variables
	SQL-procedure-statement
	assignment-statement
	CALL statement
	CASE statement
	compound-statement
	GET DIAGNOSTICS statement
	GOTO statement
	IF statement
	LEAVE statement
	LOOP statement
	REPEAT statement
	RESIGNAL statement
	RETURN statement
	SIGNAL statement
	WHILE statement

	Appendix A. SQL limits
	Appendix B. Characteristics of SQL statements
	Actions allowed on SQL statements
	SQL statement data access classification for routines
	Considerations for using distributed relational database

	Appendix C. SQLCA (SQL communication area)
	Field descriptions
	INCLUDE SQLCA declarations
	For C
	For COBOL

	Appendix D. SQLDA (SQL descriptor area)
	Field descriptions in an SQLDA header
	Determining how many occurrences of SQLVAR entries are needed

	Field descriptions in an occurrence of SQLVAR
	Fields in an occurrence of a base SQLVAR
	Fields in an occurrence of a secondary SQLVAR

	SQLTYPE and SQLLEN
	CCSID values in SQLDATA and SQLNAME
	INCLUDE SQLDA declarations
	For C
	For COBOL

	Appendix E. SQLSTATE values—common return codes
	Using SQLSTATE values

	Appendix F. CCSID values
	Appendix G. CONNECT (Type 1) and CONNECT (Type 2) differences
	Determining the CONNECT rules that apply
	Connecting to application servers that only support remote unit of work

	Appendix H. Coding SQL statements in C applications
	Defining the SQL communications area in C
	Defining SQL descriptor areas in C
	Embedding SQL statements in C
	Comments
	Continuation for SQL statements
	Cursors
	Including code
	Margins
	Names
	NULLs and NULs
	Statement labels
	Preprocessor considerations
	Trigraphs
	Handling SQL errors and warnings in C

	Using host variables in C
	Declaring host variables in C
	Numeric host variables
	Character host variables (excluding CLOB)
	Graphic host variables (excluding DBCLOB)
	LOB host variables
	LOB locator
	Indicator variables in C

	Declaring host structures in C
	Host structure indicator array

	Using pointer data types in C

	Determining equivalent SQL and C data types

	Appendix I. Coding SQL statements in COBOL applications
	Defining the SQL communications area in COBOL
	Defining SQL descriptor areas in COBOL
	Embedding SQL statements in COBOL
	Comments
	Continuation for SQL statements
	Cursors
	Including code
	Margins
	Names
	Statement labels
	Handling SQL errors and warnings in COBOL

	Using host variables in COBOL
	Declaring host variables in COBOL
	Numeric host variables
	Character host variables (excluding CLOB)
	Graphic host variables (excluding DBCLOB)
	LOB host variables
	LOB locators
	Indicator variables in COBOL

	Declaring host structures in COBOL
	Host structure indicator array

	Determining equivalent SQL and COBOL data types
	Notes on COBOL variable declaration and usage

	Appendix J. Coding SQL statements in Java applications
	Defining the SQL communications area in Java
	Defining SQL descriptor areas in Java
	Embedding SQL statements in Java
	Comments

	Connecting to, and using a data source
	Declaring a connection context
	Initiating and using a connection

	Using host variables and expressions in Java
	Using SQLJ iterators to retrieve rows from a result table
	Declaring iterators
	Using positioned iterators to retrieve rows from a result table
	Using named iterators to retrieve rows from a result table

	Using iterators for positioned update and delete operations
	Handling SQL errors and warnings in Java
	Determining equivalent SQL and Java data types
	Example

	Appendix K. Coding SQL statements in REXX applications
	Defining the SQL communications area in REXX
	Defining SQL descriptor areas in REXX
	Embedding SQL statements in REXX
	Comments
	Continuation of SQL statements
	Including code
	Margins
	Names
	Nulls
	Statement labels
	Handling SQL errors and warnings in REXX
	Isolation level

	Using host variables in REXX
	Determining data types of input host variables
	The format of output host variables
	Avoiding REXX conversion
	Indicator variables in REXX
	Example

	Appendix L. Coding programs for use by external routines
	Parameter passing for external routines
	Parameter passing for external functions written in C or COBOL
	Parameter passing for external functions written in Java
	Parameter passing for external procedures written in C or COBOL
	Parameter passing for external procedures written in Java
	Attributes of the arguments of a routine program
	Declaring a LOB parameter

	Database information in external routines (DBINFO)
	CCSID information in DBINFO
	Table function column list information in DBINFO
	DBINFO structure for C
	DBINFO structure for COBOL

	Scratch pad in external functions

	Appendix M. Sample tables
	ACT
	CL_SCHED
	DEPARTMENT
	EMP_PHOTO
	EMP_RESUME
	EMPLOYEE
	EMPPROJACT
	IN_TRAY
	ORG
	PROJACT
	PROJECT
	SALES
	STAFF
	Sample files with BLOB and CLOB data type
	Quintana photo
	Quintana resume
	Nicholls photo
	Nicholls resume
	Adamson photo
	Adamson resume
	Walker photo
	Walker resume

	Appendix N. Terminology differences
	Appendix O. Reserved schema names and reserved words
	Reserved schema names
	Reserved words

	Notices
	Programming interface information
	Trademarks

	Index

